Erzeugung vorgegebener AKF-Eigenschaften

Aus LNTwww
Wechseln zu:Navigation, Suche

AKF am Ausgang eines nichtrekursiven Filters

Wir betrachten ein nichtrekursives Laufzeitfilter M-ter Ordnung gemäß der folgenden Grafik. Die zeitdiskrete Eingangsgröße $〈x_ν〉$ ist

  • mittelwertfrei ($m_x = 0$),
  • gaußverteilt (mit Streuung $σ_x$), und
  • ohne Gedächtnis(„Weißes Rauschen”)   ⇒   statistisch unabhängige Abtastwerte.
Nichtrekursives Filter M-ter Ordnung

Daraus ergeben sich folgende Eigenschaften:

  • Die zeitdiskrete Autokorrelationsfunktion (AKF) am Eingang lautet:
$$\varphi _x ( {k \cdot T_{\rm A} } ) = \left\{ {\begin{array}{*{20}c} {\sigma _x ^2 } & {\rm{f\ddot{u}r}\quad {\it k} = 0,} \\ 0 & {\rm{f\ddot{u}r}\quad {\it k} \ne 0.} \\\end{array}} \right.$$
  • Die AKF der zeitdiskreten Ausgangsfolge $〈y_ν〉$ ist wie folgt gegeben:
$$\varphi _y ( {k \cdot T_{\rm A} } ) = \sigma _x ^2 \cdot \sum\limits_{\mu = 0}^{M - k} {a_\mu \cdot a_{\mu + k } } \quad {\rm{f\ddot{u}r}}\quad {\it k} = 0, 1,\,...\,,\,{\it M}.$$
  • Alle AKF–Werte mit $k > M$ sind $0$, und alle AKF–Werte mit $k < M$ sind symmetrisch um $0$:
$$\varphi _y ( { - k \cdot T_{\rm A} } ) = \varphi _y ( {k \cdot T_{\rm A} } ).$$


:  Liegt am Eingang eines nichtrekursiven Filters erster Ordnung (Filterkoeffizienten $a_0 = 0.6$, $a_1 = 0.8$) zeitdiskretes weißes Rauschen mit der Streuung $σ_x = 2$ an, so lauten die diskreten AKF-Werte des Ausgangssignals (alle anderen AKF-Werte sind $0$):
AKF am Ausgang eines Filters erster Ordnung
$$\varphi _y (0) = \sigma _x ^2 \cdot ( {a_0 ^2 + a_1 ^2 }) = 4,$$
$$\varphi _y ( { - T_{\rm A} } ) = \varphi _y ( {T_{\rm A} } ) = \sigma _x ^2 \cdot a_0 \cdot a_1 = 1.92.$$


Die Grafik kann wie folgt interpretiert werden:

  • Wegen $a_0^2 + a_1^2 =$ 1 besitzt das Ausgangssignal $y(t)$ genau die gleiche Varianz $σ_y^2 = φ_y(0)$ wie das Eingangssignal: $σ_x^2 = φ_x(0) = 4$.
  • Im Gegensatz zur Eingangsfolge $〈x_ν〉$ gibt es bei der Ausgangsfolge $〈y_ν〉$ statistische Bindungen zwischen benachbarten Abtastwerten.


Zur Koeffizientenbestimmung

Nun soll die Frage geklärt werden, wie die Koeffizienten $a_0$, ... , $a_M$ eines nichtrekursiven Filters $M$–ter Ordnung ermittelt werden können, wenn die gewünschten AKF-Werte $φ_y(0)$, ... , $φ_y(M · T_{\rm A})$ gegeben sind. Außerhalb des Bereiches von $-M · T_{\rm A}$ bis $+M · T_{\rm A}$ sollen alle AKF-Werte gleich $0$ sein.

Für $σ_x = 1$ ergibt sich das folgende nichtlineare Gleichungssystem, wobei zur Vereinfachung der Schreibweise $φ_k = φ_y(k · T_{\rm A})$ verwendet wird: $$\begin{align*}\varphi _0 & = \sum\limits_{\mu = 0}^M {a_\mu^2 ,}\\ \varphi _1 & = \sum\limits_{\mu = 0}^{M - 1} {a_\mu \cdot a_{\mu + 1} ,} \\ & . & \\ & . &\\ & . &\\ \varphi _{M - 1} & = a_0 \cdot a_{M - 1} + a_1 \cdot a_M , \\ \varphi _M & = a_0 \cdot a_M .\end{align*}$$ Man erhält somit für die $M +$ 1 Koeffizienten auch $M +$ 1 unabhängige Gleichungen. Durch sukzessives Eliminieren der Koeffizienten $a_1, ... , a_M$ bleibt für $a_0$ eine nichtlineare Gleichung höherer Ordnung übrig.


:  Wir betrachten die folgende Konstellation:
  • ein rekursives Filter erster Ordnung ⇒ $M = 1$,
  • eine zeitdiskrete Eingangsfolge $〈x_ν〉$ mit Mittelwert $m_x =$ 0 und Streuung $σ_x = 1$,
  • gewünschte AKF-Werte der Folge $〈y_ν〉: φ_y(0) = φ_0 =0.58$ und $φ_y(±T_{\rm A}) = φ_1 = 0.21$.

Damit lautet das obige Gleichungssystem:

$$\varphi _0 = a_0 ^2 + a_1 ^2 = 0.58,$$
$$\varphi _1 = a_0 \cdot a_1 = 0.21.$$

Dies führt zu einer Gleichung vom Grad $4$, nämlich

$$a_0 ^2 + \left( { { {0.21} }/{ {a_0 } } } \right)^2 = 0.58\quad \Rightarrow \quad a_0 ^4 - 0.58 \cdot a_0 ^2 + 0.21^2 = 0.$$
Eine Lösung stellt $a_0 = 0.7$ dar. Durch Einsetzen in die zweite Gleichung findet man $a_1 = 0.3$.


Man erkennt aus diesem Beispiel, dass sich schon im einfachsten Fall ⇒ $M = 1$ eine nichtlineare Bestimmungsgleichung für $a_0$ vom Grad $4$ ergibt.

Mehrdeutigkeiten bei der Koeffizientenbestimmung

Wie das letzte Beispiel gezeigt hat, ist mit $M = 1$ die Bestimmungsgleichung für $a_0$ vom Grad $4$. Dies bedeutet gleichzeitig, dass es auch vier Koeffizientensätze gibt, die alle zur gleichen AKF führen. Dies ist aus folgenden Gründen einsichtig:

  • Die Koeffizienten $a_0$ und $a_1$ können gleichzeitig ihr Vorzeichen ändern, ohne dass dadurch das Gleichungssystem verändert wird.
  • Ersetzt man $a_0$ durch $a_1$ und umgekehrt, so ergibt sich die gleiche Bestimmungsgleichung. Diese Operation entspricht einer Spiegelung und Verschiebung der Impulsantwort.


:  Wie im letzten Abschnitt gezeigt wurde, ist der Parametersatz $a_0 = 0.7$, $a_1 = 0.3$ geeignet, die AKF-Werte $φ_0 = 0.58$ und $φ_1 = 0.21$ zu generieren. Die gewünschte AKF der Ausgangsfolge lautet dann in ausführlicher Schreibweise:
$$\varphi_y(\tau) = 0.58 \cdot \delta(\tau) + 0.21 \cdot \delta(\tau - T_{\rm A}) + 0.21 \cdot \delta(\tau + T_{\rm A}) .$$
Beispiel zur AKF-Berechnung

Zur gleichen AKF kommt man auch mit den Koeffizientenpaaren

  • $a_0 = - 0.7,\quad a_1 = -0.3,$
  • $a_0 = +0.3,\quad a_1 = +0.7,$
  • $a_0 = - 0.3,\quad a_1 = -0.7.$

Diese Konfigurationen ergeben sich durch

  • gleichzeitiges Multiplizieren aller Koeffizienten mit $–1$, sowie
  • Vertauschen der Zahlenwerte von $a_0$ und $a_1$.


Die Grafik zeigt die entsprechenden Impulsantworten, die zur gewünschten AKF führen.


Aufgaben zum Kapitel

Aufgabe 5.5:   AKF-äquivalente Filter

Zusatzaufgabe 5.5Z:   AKF nach Filter 1. Ordnung

Aufgabe 5.6:   Filterdimensionierung

Zusatzaufgabe 5.6Z:   Nochmals FIlterdimensionierung