Mobile Kommunikation/Wahrscheinlichkeitsdichte des Rayleigh–Fadings: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(15 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 6: Zeile 6:
 
}}
 
}}
  
== Allgemeine Beschreibung des Mobilfunkkanals ==
+
== Eine sehr allgemeine Beschreibung des Mobilfunkkanals ==
 
<br>
 
<br>
Im Folgenden wird zur Vereinfachung der Schreibweise auf den Zusatz &bdquo;TP&rdquo; verzichtet. Somit liegt das reelle Signal <i>s</i>(<i>t</i>) = 1 am Eingang des Mobilfunkkanals an und das Ausgangssignal <i>r</i>(<i>t</i>) ist komplexwertig. Zusätzliche Rauschprozesse werden ausgeschlossen.<br>
+
Im Folgenden wird zur Vereinfachung der Schreibweise auf den Zusatz &bdquo;TP&rdquo; verzichtet.&nbsp; Somit liegt das reelle Signal&nbsp; $s(t) = 1$&nbsp; am Eingang des Mobilfunkkanals an und das Ausgangssignal&nbsp; $r(t)$&nbsp; ist komplexwertig.&nbsp; Zusätzliche Rauschprozesse werden ausgeschlossen.<br>
  
Das Funksignal <i>s</i>(<i>t</i>) kann den Empfänger über eine Vielzahl von Pfaden erreichen, wobei die einzelnen Signalanteile in unterschiedlicher Weise gedämpft und verschieden lang verzögert werden. Allgemein kann man für das Tiefpass&ndash;Empfangssignal ohne Berücksichtigung von thermischem Rauschen schreiben:
+
Das Funksignal&nbsp; $s(t)$&nbsp; kann den Empfänger über eine Vielzahl von Pfaden erreichen, wobei die einzelnen Signalanteile in unterschiedlicher Weise gedämpft und verschieden lang verzögert werden.&nbsp; Allgemein kann man für das Tiefpass&ndash;Empfangssignal ohne Berücksichtigung von thermischem Rauschen schreiben:
  
:<math>r(t)=  \sum_{k=1}^{K}  \alpha_{k}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{k}(t)} \cdot s(t - \tau_{k})
+
::<math>r(t)=  \sum_{k=1}^{K}  \alpha_{k}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{k}(t)} \cdot s(t - \tau_{k})
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
 
Hierbei sind folgende Bezeichnungen verwendet:
 
Hierbei sind folgende Bezeichnungen verwendet:
*Der zeitabhängige Dämpfungsfaktor auf dem <i>k</i>&ndash;ten Pfad ist <i>&alpha;<sub>k</sub></i>(<i>t</i>).<br>
+
*Der zeitabhängige Dämpfungsfaktor auf dem&nbsp; $k$&ndash;ten Pfad ist&nbsp; $\alpha_k(t)$.<br>
  
*Der zeitabhängige Phasenverlauf auf dem <i>k</i>&ndash;ten Pfad ist <i>&#981;<sub>k</sub></i>(<i>t</i>).<br>
+
*Der zeitabhängige Phasenverlauf auf dem&nbsp; $k$&ndash;ten Pfad ist&nbsp; $\phi_k(t)$.<br>
  
*Die Laufzeit auf dem <i>k</i>&ndash;ten Pfad ist <i>&tau;<sub>k</sub></i>.<br><br>
+
*Die zeitabhängige Laufzeit auf dem&nbsp; $k$&ndash;ten Pfad ist&nbsp; $\tau_k(t)$.<br><br>
  
Die Anzahl <i>K</i> der sich (zumindest geringfügig) unterscheidenden Pfade ist meist sehr groß und für eine direkte Modellierung ungeeignet. Das Modell lässt sich aber entscheidend vereinfachen, wenn man jeweils Pfade mit näherungsweise gleichen Verzögerungen zusammenfasst. Man unterscheidet somit nur noch <i>M</i> Hauptpfade, die durch großräumige Wegeunterschiede und damit merkliche Laufzeitunterschiede gekennzeichnet sind:
+
Die Anzahl&nbsp; $K$&nbsp; der sich (zumindest geringfügig) unterscheidenden Pfade ist meist sehr groß und für eine direkte Modellierung ungeeignet.  
  
:<math>r(t)=  \sum_{m=1}^{M} \hspace{0.1cm} \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.01cm}n}(t) \cdot
+
*Das Modell lässt sich aber entscheidend vereinfachen, wenn man jeweils Pfade mit näherungsweise gleichen Verzögerungen zusammenfasst.
 +
*Man unterscheidet somit nur noch&nbsp; $M$&nbsp; Hauptpfade, die durch großräumige Wegeunterschiede und damit merkliche Laufzeitunterschiede gekennzeichnet sind:
 +
 
 +
::<math>r(t)=  \sum_{m=1}^{M} \hspace{0.1cm} \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.04cm}n}(t) \cdot
 
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm}
 
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm}
  \phi_{m,\hspace{0.02cm}n}(t)}
+
  \phi_{m,\hspace{0.04cm}n}(t)}
  \cdot s(t - \tau_{m,\hspace{0.02cm}n})
+
  \cdot s(t - \tau_{m,\hspace{0.04cm}n})
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Die beiden bisher angegebenen Gleichungen sind identisch. Eine Vereinfachung ergibt sich, wenn man für jeden Hauptpfad <i>m</i> die <i>N<sub>m</sub></i> Laufzeiten, die sich durch Reflexionen an Feinstrukturen sowie eventuell durch Beugungs&ndash; und Brechungserscheinungen geringfügig unterscheiden, durch eine mittlere Laufzeit ersetzt:
+
Die beiden bisher angegebenen Gleichungen sind identisch.&nbsp; Eine Vereinfachung ergibt sich erst dann, wenn man für jeden Hauptpfad&nbsp; $m \in \{1, \hspace{0.04cm}\text{...}\hspace{0.04cm}, M\}$&nbsp; die&nbsp; $N_m$&nbsp; Laufzeiten, die sich durch Reflexionen an Feinstrukturen sowie eventuell durch Beugungs&ndash; und Brechungserscheinungen geringfügig unterscheiden, durch eine mittlere Laufzeit ersetzt:
  
:<math>\tau_{m} =  \frac{1}{N_m} \cdot  \sum_{n=1}^{N_m} \tau_{m,\hspace{0.02cm}n}
+
::<math>\tau_{m} =  \frac{1}{N_m} \cdot  \sum_{n=1}^{N_m} \tau_{m,\hspace{0.04cm}n}
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Damit erhält man das folgende wichtige Zwischenergebnis:
+
{{BlaueBox|TEXT= 
 +
$\text{Fazit:}$&nbsp; Damit erhält man folgendes Zwischenergebnis für den Mobilfunk: &nbsp; Das&nbsp; '''Empfangssignal im äquivalenten Tiefpassbereich'''&nbsp; kann dargestellt werden als
  
:<math>r(t)=  \sum_{m=1}^{M} z_m(t) \cdot  s(t - \tau_{m}) \hspace{0.5cm} {\rm mit}
+
::<math>r(t)=  \sum_{m=1}^{M} z_m(t) \cdot  s(t - \tau_{m}) \hspace{0.5cm} {\rm mit}
  \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.01cm}n}(t) \cdot
+
  \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.04cm}n}(t) \cdot
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot  \hspace{0.02cm}
+
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot  \hspace{0.05cm}
  \phi_{m,\hspace{0.02cm}n}(t)}
+
  \phi_{m,\hspace{0.04cm}n}(t)}
  \hspace{0.05cm}.</math>
+
  \hspace{0.05cm}.</math>}}
  
== Modellierung von nichtfrequenzselektivem Fading (1) ==
+
== Frequenzselektives Fading vs.  nichtfrequenzselektives Fading==
 
<br>
 
<br>
 
Ausgehend von der soeben hergeleiteten Gleichung
 
Ausgehend von der soeben hergeleiteten Gleichung
  
:<math>r(t)=  \sum_{m=1}^{M} z_m(t) \cdot  s(t - \tau_{m}) \hspace{0.5cm} {\rm mit}
+
::<math>r(t)=  \sum_{m=1}^{M} z_m(t) \cdot  s(t - \tau_{m}) \hspace{0.5cm} {\rm mit}
  \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.01cm}n}(t) \cdot
+
  \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.04cm}n}(t) \cdot
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot  \hspace{0.02cm}
+
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot  \hspace{0.05cm}
  \phi_{m,\hspace{0.02cm}n}(t)}
+
  \phi_{m,\hspace{0.04cm}n}(t)}
 
  \hspace{0.05cm}</math>
 
  \hspace{0.05cm}</math>
  
 
können zwei wichtige Sonderfälle abgeleitet werden:
 
können zwei wichtige Sonderfälle abgeleitet werden:
*Gibt es mehr als einen Hauptpfad (<i>M</i> &#8805; 2), so spricht man von <i>Mehrwegeausbreitung</i>. Wie im Kapitel 2 noch gezeigt werden wird, kommt es dann &ndash; je nach Frequenz &ndash; zu konstruktiven oder destruktiven Überlagerungen bis hin zu völliger Auslöschung. Für manche Frequenzen erweist sich die Mehrwegeausbreitung als günstig, für andere als extrem ungünstig. Man bezeichnet diesen Effekt auch als frequenzselektives Fading.<br>
+
*Gibt es mehr als einen Hauptpfad&nbsp; $(M \ge 2)$, so spricht man von&nbsp; <b>Mehrwegeausbreitung</b>.&nbsp; Wie im zweiten Hauptkapitel &nbsp; &rArr; &nbsp; [[Mobile_Kommunikation/Allgemeine_Beschreibung_zeitvarianter_Systeme|Frequenzselektive Übertragungskanäle]]&nbsp; noch gezeigt werden wird, kommt es dann&nbsp; &ndash;&nbsp; je nach Frequenz&nbsp; &ndash;&nbsp; zu konstruktiven oder destruktiven Überlagerungen bis hin zu völliger Auslöschung.  
 +
*Für manche Frequenzen erweist sich die Mehrwegeausbreitung als günstig, für andere als sehr ungünstig.&nbsp; Man bezeichnet diesen Effekt als&nbsp; '''frequenzselektives Fading'''.<br>
  
*Bei nur einem Hauptpfad (<i>M</i> = 1, auf den Index &bdquo;1&rdquo; verzichten wir in diesem Fall) vereinfacht sich die obige Gleichung wie folgt:
+
*Bei nur einem Hauptpfad&nbsp; $(M = 1)$&nbsp; vereinfacht sich die obige Gleichung wie folgt&nbsp; $($auf den Index &bdquo;$m = 1$&rdquo; verzichten wir in diesem Fall$)$:
  
 
::<math>r(t)=  z(t) \cdot  s(t - \tau)  
 
::<math>r(t)=  z(t) \cdot  s(t - \tau)  
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
:Die Verzögerung <i>&tau;</i> bewirkt hier eine für alle Frequenzen konstante Laufzeit, die nicht weiter betrachtet wird. Es gibt nun keine Überlagerungen von Signalanteilen mit merklichen Laufzeitunterschieden und damit auch keine Frequenzabhängigkeit des Gesamtsignals. Man spricht deshalb von nichtfrequenzselektivem Fading oder <i>Flat&ndash;Fading</i>. Für dieses gilt:
+
*Die Verzögerung&nbsp; $\tau$&nbsp; bewirkt hier eine für alle Frequenzen konstante Laufzeit, die nicht weiter betrachtet werden muss.  
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Fazit:}$&nbsp; Für&nbsp; $M=1$&nbsp; gibt es keine Überlagerung von Signalanteilen mit merklichen Laufzeitunterschieden, also auch keine Frequenzabhängigkeit des Gesamtsignals:&nbsp;  
  
 
::<math>r(t)=  z(t) \cdot  s(t) \hspace{0.5cm} {\rm mit}
 
::<math>r(t)=  z(t) \cdot  s(t) \hspace{0.5cm} {\rm mit}
Zeile 68: Zeile 77:
 
  \phi_{n}(t)}
 
  \phi_{n}(t)}
 
  \hspace{0.05cm}. </math>
 
  \hspace{0.05cm}. </math>
 +
Man spricht in diesem Fall von&nbsp; '''nichtfrequenzselektivem Fading'''&nbsp; oder&nbsp; '''Flat&ndash;Fading'''</i>&nbsp; oder&nbsp; '''Rayleigh&ndash;Fading'''. }}
  
Die Grafik zeigt das Modell zur Erzeugung von nichtfrequenzselektivem Fading. Man spricht auch von Rayleigh&ndash;Fading.<br>
+
== Modellierung von nichtfrequenzselektivem Fading==
 +
<br>
 +
Die Grafik zeigt das Modell zur Erzeugung von nichtfrequenzselektivem Fading &nbsp; &rArr; &nbsp; Rayleigh&ndash;Fading.<br>
  
[[Datei:P ID2108 Mob T 1 2 S2 v2.png|Rayleigh–Fading–Kanalmodell|class=fit]]<br>
+
*Das Empfangssignal&nbsp; $r(t)$&nbsp; ergibt sich, wenn man das Sendesignal&nbsp;  $s(t)$&nbsp; mit der Zeitfunktion&nbsp; $z(t)$&nbsp; multipliziert.
 +
*Es sei nochmals daran erinnert, dass sich alle Signale bzw. Zeitfunktionen&nbsp; $s(t)$,&nbsp; $z(t)$&nbsp; und&nbsp; $r(t)$&nbsp; auf den äquivalenten Tiefpassbereich beziehen.
  
Die Bildbeschreibung folgt auf der nächsten Seite.<br>
 
  
== Modellierung von nichtfrequenzselektivem Fading (2) ==
+
[[Datei:P ID2108 Mob T 1 2 S2 v2.png|center|frame|Rayleigh–Fading–Kanalmodell|class=fit]]
<br>
+
 
Wir betrachten die multiplikative Verfälschung <i>z</i>(<i>t</i>) entsprechend dem Rayleigh&ndash;Modell genauer. Für den komplexen Koeffizienten gilt entsprechend der letzten Seite:
+
Wir betrachten nun die multiplikative Verfälschung&nbsp; $z(t)$&nbsp; gemäß diesem Rayleigh&ndash;Modell genauer.&nbsp; Für den komplexen Koeffizienten gilt entsprechend der letzten Seite:
  
:<math>z(t) = \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
+
::<math>z(t) = \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot  \hspace{0.02cm}
+
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.04cm}\cdot  \hspace{0.04cm}
 
  \phi_{n}(t) }=  
 
  \phi_{n}(t) }=  
 
\sum_{n=1}^{N}  \alpha_{n}(t) \cdot
 
\sum_{n=1}^{N}  \alpha_{n}(t) \cdot
  \cos(
+
  \cos\hspace{-0.1cm}\big [
  \phi_{n}( t)) + {\rm j}\cdot \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
+
  \phi_{n}( t) \big ] + {\rm j}\cdot \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
  \sin(
+
  \sin\hspace{-0.1cm}\big [ 
  \phi_{n}( t))
+
  \phi_{n}( t)\big ]
 
  \hspace{0.05cm}. </math>
 
  \hspace{0.05cm}. </math>
  
Das Empfangssignal <i>r</i>(<i>t</i>) ergibt sich, wenn man das Sendesignal <i>s</i>(<i>t</i>) mit der Zeitfunktion <i>z</i>(<i>t</i>) multipliziert. Es sei nochmals daran erinnert, dass sich alle Signale bzw. Zeitfunktionen <i>s</i>(<i>t</i>), <i>z</i>(<i>t</i>) und <i>r</i>(<i>t</i>) auf den äquivalenten Tiefpassbereich beziehen.<br>
+
Zu dieser Gleichung und obiger Grafik ist anzumerken:
 +
*Die zeitabhängige Dämpfung&nbsp; $\alpha_{n}(t)$&nbsp; und die zeitabhängige Phase&nbsp; $\phi_{n}(t)$&nbsp; hängen von den Umgebungsbedingungen ab.
 +
* $\phi_{n}(t)$&nbsp; erfasst die geringfügig unterschiedlichen Laufzeiten auf den&nbsp; $N$&nbsp; Pfaden und den&nbsp; [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh–Prozesses#Ph.C3.A4nomenologische_Beschreibung_des_Dopplereffekts| Dopplereffekt]]&nbsp; aufgrund der Bewegung.
 +
 
 +
*Die Zeitfunktion&nbsp; $z(t)$&nbsp; ist eine komplexe Größe, deren Real&ndash; und Imaginärteil wir im Folgenden wieder mit&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; bezeichnen.&nbsp;
 +
*Eine deterministische Beschreibung der Zufallsgröße&nbsp; $z(t) = x(t)  + {\rm j}\cdot  y(t)$&nbsp; ist nicht möglich.&nbsp; Vielmehr müssen die Zeitfunktionen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$ durch stochastische Prozesse modelliert werden.
 +
 
 +
*Ist die Anzahl&nbsp; $N$&nbsp; der&nbsp; (leicht)&nbsp; unterschiedlichen Laufzeiten hinreichend groß, so ergeben sich nach dem&nbsp; [https://de.wikipedia.org/wiki/Zentraler_Grenzwertsatz zentralen Grenzwertsatz]&nbsp; hierfür &nbsp;[[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen|Gaußsche Zufallsgrößen]].
  
[[Datei:P ID2109 Mob T 1 2 S2 v3.png|Rayleigh–Fading–Kanalmodell|class=fit]]<br>
+
*Die beiden Komponenten&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; sind jeweils mittelwertfrei und besitzen die gleiche Varianz&nbsp; $\sigma^2$:
  
Zu obiger Gleichung und der Grafik ist anzumerken:
+
::<math>{\rm E}[x(t)] = {\rm E}\big[y(t)\big] = 0\hspace{0.05cm}, \hspace{0.8cm}{\rm E}\big[x^2(t)\big] = {\rm E}\big[y^2(t)\big] = \sigma^2
*<i>&alpha;<sub>n</sub></i>(<i>t</i>) und <i>&#981;<sub>n</sub></i>(<i>t</i>) hängen von den Umgebungsbedingungen ab. <i>&#981;<sub>n</sub></i>(<i>t</i>) erfasst die verschiedenen Laufzeiten auf den <i>N</i> Pfaden und den [http://www.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Ph.C3.A4nomenologische_Beschreibung_des_Dopplereffektes_.281.29 Dopplereffekt] aufgrund der Bewegung.
+
  \hspace{0.05cm}.</math>
  
*Die Zeitfunktion <i>z</i>(<i>t</i>) ist eine komplexe Größe, deren Real&ndash; und Imaginärteil wir im Folgenden wieder mit <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) bezeichnen.
+
*Zu berücksichtigen ist die Orthogonität von Realteil und Imaginärteil&nbsp; (jeweils Cosinus und Sinus des gleichen Arguments).&nbsp; Damit sind die beiden Komponenten auch unkorreliert.&nbsp; Nur bei Gaußschen Zufallsgrößen folgt daraus weiter die statistische Unabhängigkeit von&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$.
  
*Eine deterministische Beschreibung der Zufallsgröße <i>z</i>(<i>t</i>) = <i>x</i>(<i>t</i>) + j &middot; <i>y</i>(<i>t</i>) ist nicht möglich, vielmehr müssen diese Funktionen durch stochastische Prozesse modelliert werden.
+
*Aufgrund des Dopplereffekts gibt es allerdings statistische Bindungen innerhalb des Realteils&nbsp; $x(t)$&nbsp;  und innerhalb des Imaginärteils&nbsp; $y(t)$.&nbsp; Diese beiden Größen werden im obigen Modell durch zwei&nbsp; [[Stochastische_Signaltheorie/Digitale_Filter| Digitale Filter]]&nbsp; erzeugt.
  
*Ist die Anzahl <i>N</i> der (leicht) unterschiedlichen Laufzeiten hinreichend groß, so ergeben sich nach dem zentralen Grenzwertsatz Gaußsche Zufallsgrößen <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>).
+
== Beispielhafte Signalverläufe bei Rayleigh–Fading==
 +
<br>
 +
Die folgenden Grafiken zeigen jeweils durch Simulation gewonnene Signalverläufe von&nbsp; $\text{100 ms}$&nbsp; Dauer und die dazugehörigen Dichtefunktionen.&nbsp; Es handelt sich um Bildschirmabzüge des Windows&ndash;Programms &bdquo;Mobilfunkkanal&rdquo; aus dem (ehemaligen) Praktikum ''Simulation digitaler Übertragungssysteme'' an der TU München:
 +
*[http://www.lntwww.de/downloads/Sonstiges/Programme/MFK.zip Windows&ndash;Programm MFK] &nbsp; ⇒ &nbsp; Link verweist auf die ZIP-Version des Programms und
 +
*[http://www.lntwww.de/downloads/Sonstiges/Texte/Mobilfunkkanal.pdf Praktikumsanleitung] &nbsp; ⇒ &nbsp; Link verweist auf die PDF-Version (58 Seiten).
  
*<i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) sind jeweils mittelwertfrei und besitzen die gleiche Varianz <i>&sigma;</i><sup>2</sup>:
 
  
::<math>{\rm E}[x(t)] = {\rm E}[y(t)] = 0\hspace{0.05cm}, \hspace{0.2cm}{\rm E}[x^2(t)] = {\rm E}[y^2(t)] = \sigma^2
+
{{GraueBox|TEXT=
\hspace{0.05cm}.</math>
+
$\text{Beispiel 1:}$&nbsp; Nachfolgend sind beispielhafte Signalverläufe bei Rayleigh–Fading und die dazugehörigen Wahrscheinlichkeitsdichtefunktionen dargestellt.&nbsp; Diese Zeitverläufe Darstellungen können sich wie folgt interpretiert werden:
  
*Zu berücksichtigen ist die Orthogonität von Realteil und Imaginärteil (jeweils Cosinus und Sinus des gleichen Arguments); damit sind sie auch unkorreliert. Nur bei Gaußschen Zufallsgrößen folgt daraus weiter die statistische Unabhängigkeit von <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>).
+
[[Datei:P ID2110 Mob T 1 2 S3 v1.png|right|frame|Realteil, Imaginärteil und Phasenverlauf bei Rayleigh-Fading|class=fit]]
  
*Aufgrund des Dopplereffekts gibt es allerdings statistische Bindungen innerhalb des Realteils <i>x</i>(<i>t</i>) und innerhalb des Imaginärteils <i>y</i>(<i>t</i>). Diese werden im Modell durch zwei [http://www.lntwww.de/Stochastische_Signaltheorie/Digitale_Filter Digitale Filter] erzeugt.
+
*Der Realteil ist gaußverteilt&nbsp; (siehe rechte obere Grafik), wie auch aus dem Zeitsignalverlauf&nbsp; $x(t)$&nbsp; hervorgeht.&nbsp; Rot eingezeichnet ist die Gaußsche WDF $f_x(x)$ und blau das durch Simulation über&nbsp; $10\hspace{0.05cm}000$&nbsp; Abtastwerte gewonnene Histogramm.
  
== Beispielhafte Signalverläufe bei Rayleigh–Fading (1) ==
+
*Eingestellt war hierfür eine&nbsp; [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh–Prozesses#Dopplerfrequenz_und_deren_Verteilung|maximale Dopplerfrequenz]]&nbsp; von&nbsp; $f_{\rm D, \ max} = 100 \ \rm Hz$.&nbsp; Deshalb gibt es statistische Bindungen innerhalb der Funktionen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$.&nbsp; Genauere Angaben zum Dopplereffekt finden Sie im nächsten Kapitel.
<br>
 
Die Grafiken auf dieser und der nächsten Seite zeigen jeweils durch Simulation gewonnene Signalverläufe von 100 ms Dauer und die dazugehörigen Dichtefunktionen. Es handelt sich um Bildschirmabzüge des Windows&ndash;Programms &bdquo;Mobilfunkkanal&rdquo; aus dem Praktikum [Söd01]<ref>Söder, G.: ''Simulation digitaler Übertragungssysteme.'' Anleitung zum gleichnamigen Praktikum. Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2001.</ref>.<br>
 
  
[[Datei:P ID2110 Mob T 1 2 S3 v1.png|Realteil, Imaginärteil und Phasenverlauf bei Rayleigh-Fading|class=fit]]<br>
+
*Die WDF&nbsp; $f_y(y)$&nbsp; des Imaginärteils ist identisch mit&nbsp; $f_x(x)$.&nbsp; Die Varianz beträgt bei der betrachteten Konstellation jeweils&nbsp; $\sigma_x^2 =\sigma_y^2 = 0.5 \ (=\sigma^2)$.&nbsp; Zwischen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; bestehen keine statistischen Bindungen;&nbsp; die Signale sind orthogonal.
  
Die Darstellungen lassen sich wie folgt interpretieren:
+
*Die Phase&nbsp; $\phi(t)$&nbsp; ist gleichverteilt zwischen&nbsp; $\pm\pi$.&nbsp; Wie aus den Sprungstellen im Phasenverlauf zu erahnen ist, kann&nbsp; $\phi(t)$&nbsp; auch größere Werte annehmen.&nbsp; Bei  der Histogrammerstellung wurden aber die Bereiche&nbsp; $(2k+1)\cdot \pi$&nbsp; auf den Wertebereich vo&nbsp;n $-\pi$ ... $+\pi$&nbsp; projiziert &nbsp;$(k$&nbsp; ganzzahlig$)$.
*Der Realteil ist gaußverteilt (siehe rechte obere Grafik), wie auch aus dem Zeitsignalverlauf  <i>x</i>(<i>t</i>) hervorgeht. Rot eingezeichnet ist die Gaußsche WDF <i>f<sub>x</sub></i>(<i>x</i>) und blau das durch Simulation über 10.000 Abtastwerte gewonnene Histogramm.
 
  
*Im Programm eingestellt war für diese Darstellung eine [http://www.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Dopplerfrequenz_und_deren_Verteilung_.281.29 maximale Dopplerfrequenz] von 100 Hz. Deshalb gibt es statistische Bindungen innerhalb der Signale <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>). Näheres hierzu finden Sie im [http://www.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Einige_allgemeine_Bemerkungen_zu_AKF_und_LDS Kapitel 1.3.]
+
*Die gleichverteilte Phase wird anhand der (nicht dargestellten) 2D&ndash;WDF verständlich.&nbsp;  Diese ist rotationssymmetrisch und dementsprechend gibt es auch keine Vorzugsrichtung:
  
*Die WDF <i>f<sub>y</sub></i>(<i>y</i>) des Imaginärteils ist identisch mit <i>f<sub>x</sub></i>(<i>x</i>). Die Varianz beträgt jeweils <i>&sigma;</i><sup>2</sup> = 0.5. Zwischen <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) bestehen keine statistischen Bindungen; die Signale sind orthogonal.
+
::<math>f_{x,\hspace{0.02cm}y}(x, y) = \frac{1}{2\pi \cdot \sigma^2} \cdot
 +
{\rm e}^{  -(x^2 + y^2)/(2\sigma^2)} .</math>}}
  
*Die Phase <i>&#981;</i>(<i>t</i>) ist gleichverteilt zwischen &plusmn;&pi;. Wie aus den Sprungstellen im Phasenverlauf zu erkennen, kann <i>&#981;</i>(<i>t</i>) durchaus größere Werte annehmen. Alle Bereiche (2<i>k</i>&plusmn;1)&pi; wurden aber bei  der Histogrammerstellung auf den Wertebereich &ndash;&pi; ... +&pi; projiziert (<i>k</i> ganzzahlig).
 
  
*Die gleichverteilte Phase wird anhand der (hier nicht dargestellten) 2D&ndash;WDF verständlich. Diese ist rotationssymmetrisch und dementsprechend gibt es auch keine Vorzugsrichtung:
+
[[Datei:P ID2111 Mob T 1 2 S3b v1.png|right|frame|Realteil, Imaginärteil, Betrag und Betragsquadrat bei Rayleigh-Fading|class=fit]]
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp;Fortsetzung von $\text{Beispiel 1}$:
 +
 +
Diese Grafik zeigt oben nochmals
 +
*den Realteil&nbsp;  $x(t)$&nbsp; und den Imaginärteil&nbsp; $y(t)$&nbsp; von&nbsp; $z(t)$&nbsp; und
 +
*rechts die WDF $f_x(x)$;&nbsp; die WDF $f_y(y)$ hat genau die gleiche Form.  
  
::<math>f_{x,\hspace{0.02cm}y}(x, y) = \frac{1}{2\pi \cdot \sigma^2} \cdot
 
{\rm exp} \left [ - \frac{x^2 + y^2}{2\sigma^2} \right ] .</math>
 
  
== Beispielhafte Signalverläufe bei Rayleigh–Fading (2) ==
+
Darunter gezeichnet sind Verlauf und WDF  
<br>
+
* des Betrags&nbsp; $a(t) =\vert z(t)\vert$&nbsp; und   
Die Grafik zeigt oben nochmals Real&ndash; und Imaginärteil von <i>z</i>(<i>t</i>) = <i>x</i>(<i>t</i>) + j &middot; <i>y</i>(<i>t</i>). Darunter gezeichnet sind Verlauf und WDF von Betrag <i>a</i>(<i>t</i>) = |<i>z</i>(<i>t</i>)| und  Betragsquadrat <i>p</i>(<i>t</i>) = <i>a</i><sup>2</sup>(<i>t</i>) = |<i>z</i>(<i>t</i>)|<sup>2</sup>.<br>
+
*des Betragsquadrat&nbsp; $p(t) =a^2(t) =\vert z(t)\vert^2$.<br>
  
[[Datei:P ID2111 Mob T 1 2 S3b v1.png|Realteil, Imaginärteil, Betrag und Betragsquadrat bei Rayleigh-Fading|class=fit]]<br>
 
  
 
Aus diesen Darstellungen geht hervor:
 
Aus diesen Darstellungen geht hervor:
*Der Betrag besitzt eine [http://www.lntwww.de/Stochastische_Signaltheorie/Weitere_Verteilungen#Rayleighverteilung Rayleigh&ndash;WDF] &nbsp;&#8658;&nbsp; Name &bdquo;<i>Rayleigh&ndash;Fading</i>&rdquo;:
+
*Der Betrag&nbsp; $a(t) =\vert z(t)\vert$&nbsp;  besitzt eine&nbsp; [[Stochastische_Signaltheorie/Weitere_Verteilungen#Rayleighverteilung| Rayleigh&ndash;WDF]] &nbsp;&#8658;&nbsp; daher der Name &bdquo;Rayleigh&ndash;Fading&rdquo;:
  
 
::<math>f_a(a) =
 
::<math>f_a(a) =
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm exp} [ -a^2/(2\sigma^2)] \\
+
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^{-a^2/(2\sigma^2)} \\
0  \end{array} \right.\quad
+
0  \end{array} \right.\hspace{0.15cm}
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} a \ge 0
+
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.1cm} a\hspace{-0.05cm} \ge \hspace{-0.05cm}0,
\\  {\rm f\ddot{u}r}\hspace{0.15cm} a < 0 \\ \end{array}
+
\\  {\rm f\ddot{u}r}\hspace{0.1cm} a \hspace{-0.05cm}<\hspace{-0.05cm} 0. \\ \end{array}
\hspace{0.05cm}.</math>
+
</math>
  
*Für die Momente erster bzw. zweiter Ordnung und die Varianz des Betrags <i>a</i>(<i>t</i>) = |<i>z</i>(<i>t</i>)| gilt:
+
*Für die Momente erster bzw. zweiter Ordnung und die Varianz der Betragsfunktion&nbsp; $a(t)$&nbsp; gilt:
  
::<math>{\rm E}[a] = \sigma \cdot \sqrt {{\pi}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm E}[a^2] = 2 \cdot \sigma^2
+
::<math>{\rm E}\big [a \big] = \sigma \cdot \sqrt {{\pi}/{2}}\hspace{0.05cm},\hspace{0.5cm}{\rm E}\big[a^2 \big] = 2 \cdot \sigma^2</math>
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Var}[a] = \sigma_a^2 = \sigma^2 \cdot \left ( 2 - {\pi}/{2}\right )
+
::<math> \Rightarrow \hspace{0.3cm} {\rm Var}\big[a \big] = \sigma_a^2 = \sigma^2 \cdot \left ( 2 - {\pi}/{2}\right )
 
  \hspace{0.05cm}.  </math>
 
  \hspace{0.05cm}.  </math>
  
*Die WDF des Betragsquadrats <i>p</i>(<i>t</i>) ergibt sich durch [http://www.lntwww.de/Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgr%C3%B6%C3%9Fen#Transformation_von_Zufallsgr.C3.B6.C3.9Fen nichtlineare Transformation] der WDF <i>f<sub>a</sub></i>(<i>a</i>) und führt zu einer Exponentialverteilung:
+
*Die WDF des Betragsquadrats&nbsp; $p(t)$&nbsp; ergibt sich durch&nbsp; [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgr%C3%B6%C3%9Fen#Transformation_von_Zufallsgr.C3.B6.C3.9Fen| nichtlineare Transformation]]&nbsp; der WDF $f_a(a)$ &nbsp; &rArr; &nbsp; $f_p(p)$&nbsp; ist exponentialverteilt:
 +
 
 +
::<math>f_p(p) \hspace{-0.05cm}=\hspace{-0.05cm}
 +
\left\{ \begin{array}{c} (2\sigma^2)^{-1} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm e}^{-p^2\hspace{-0.05cm}/(2\sigma^2)} \\
 +
0  \end{array} \right.\hspace{0.05cm}
 +
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.05cm} p \hspace{-0.05cm}\ge \hspace{-0.05cm}0,
 +
\\  {\rm f\ddot{u}r}\hspace{0.15cm} p\hspace{-0.05cm} < \hspace{-0.05cm}0. \\ \end{array}
 +
</math>}}
  
::<math>f_p(p) =
 
\left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm exp} [ -p/(2\sigma^2)] \\
 
0  \end{array} \right.\quad
 
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} p \ge 0
 
\\  {\rm f\ddot{u}r}\hspace{0.15cm} p < 0 \\ \end{array}
 
\hspace{0.05cm}.</math>
 
  
Weitere Informationen zum <i>Rayleigh&ndash;Fading</i> finden Sie in Aufgabe A1.3 und Aufgabe Z1.3.<br>
+
Weitere Informationen zum&nbsp; Rayleigh&ndash;Fading&nbsp; finden Sie in der&nbsp;  [[Aufgaben:Aufgabe_1.3:_Rayleigh–Fading|Aufgabe 1.3]]&nbsp; und der&nbsp; [[Aufgaben:Aufgabe_1.3Z:_Nochmals_Rayleigh–Fading%3F|Aufgabe 1.3Z]].<br>
  
==Aufgaben==
+
==Aufgaben zum Kapitel==
 
<br>
 
<br>
[[Aufgaben:1.3 Rayleigh–Fading|A1.3 Rayleigh–Fading]]
+
[[Aufgaben:Aufgabe_1.3:_Rayleigh–Fading|Aufgabe 1.3: Rayleigh–Fading]]
  
[[Zusatzaufgaben:1.3 Nochmals Rayleigh–Fading?]]
+
[[Aufgaben:Aufgabe_1.3Z:_Nochmals_Rayleigh–Fading%3F|Aufgabe 1.3Z: Nochmals Rayleigh–Fading?]]
  
==Quellenverzeichnis==
 
  
<references/>
 
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 12. Februar 2021, 13:31 Uhr

Eine sehr allgemeine Beschreibung des Mobilfunkkanals


Im Folgenden wird zur Vereinfachung der Schreibweise auf den Zusatz „TP” verzichtet.  Somit liegt das reelle Signal  $s(t) = 1$  am Eingang des Mobilfunkkanals an und das Ausgangssignal  $r(t)$  ist komplexwertig.  Zusätzliche Rauschprozesse werden ausgeschlossen.

Das Funksignal  $s(t)$  kann den Empfänger über eine Vielzahl von Pfaden erreichen, wobei die einzelnen Signalanteile in unterschiedlicher Weise gedämpft und verschieden lang verzögert werden.  Allgemein kann man für das Tiefpass–Empfangssignal ohne Berücksichtigung von thermischem Rauschen schreiben:

\[r(t)= \sum_{k=1}^{K} \alpha_{k}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{k}(t)} \cdot s(t - \tau_{k}) \hspace{0.05cm}.\]

Hierbei sind folgende Bezeichnungen verwendet:

  • Der zeitabhängige Dämpfungsfaktor auf dem  $k$–ten Pfad ist  $\alpha_k(t)$.
  • Der zeitabhängige Phasenverlauf auf dem  $k$–ten Pfad ist  $\phi_k(t)$.
  • Die zeitabhängige Laufzeit auf dem  $k$–ten Pfad ist  $\tau_k(t)$.

Die Anzahl  $K$  der sich (zumindest geringfügig) unterscheidenden Pfade ist meist sehr groß und für eine direkte Modellierung ungeeignet.

  • Das Modell lässt sich aber entscheidend vereinfachen, wenn man jeweils Pfade mit näherungsweise gleichen Verzögerungen zusammenfasst.
  • Man unterscheidet somit nur noch  $M$  Hauptpfade, die durch großräumige Wegeunterschiede und damit merkliche Laufzeitunterschiede gekennzeichnet sind:
\[r(t)= \sum_{m=1}^{M} \hspace{0.1cm} \sum_{n=1}^{N_m} \alpha_{m,\hspace{0.04cm}n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{m,\hspace{0.04cm}n}(t)} \cdot s(t - \tau_{m,\hspace{0.04cm}n}) \hspace{0.05cm}.\]

Die beiden bisher angegebenen Gleichungen sind identisch.  Eine Vereinfachung ergibt sich erst dann, wenn man für jeden Hauptpfad  $m \in \{1, \hspace{0.04cm}\text{...}\hspace{0.04cm}, M\}$  die  $N_m$  Laufzeiten, die sich durch Reflexionen an Feinstrukturen sowie eventuell durch Beugungs– und Brechungserscheinungen geringfügig unterscheiden, durch eine mittlere Laufzeit ersetzt:

\[\tau_{m} = \frac{1}{N_m} \cdot \sum_{n=1}^{N_m} \tau_{m,\hspace{0.04cm}n} \hspace{0.05cm}.\]

$\text{Fazit:}$  Damit erhält man folgendes Zwischenergebnis für den Mobilfunk:   Das  Empfangssignal im äquivalenten Tiefpassbereich  kann dargestellt werden als

\[r(t)= \sum_{m=1}^{M} z_m(t) \cdot s(t - \tau_{m}) \hspace{0.5cm} {\rm mit} \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m} \alpha_{m,\hspace{0.04cm}n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi_{m,\hspace{0.04cm}n}(t)} \hspace{0.05cm}.\]

Frequenzselektives Fading vs. nichtfrequenzselektives Fading


Ausgehend von der soeben hergeleiteten Gleichung

\[r(t)= \sum_{m=1}^{M} z_m(t) \cdot s(t - \tau_{m}) \hspace{0.5cm} {\rm mit} \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m} \alpha_{m,\hspace{0.04cm}n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi_{m,\hspace{0.04cm}n}(t)} \hspace{0.05cm}\]

können zwei wichtige Sonderfälle abgeleitet werden:

  • Gibt es mehr als einen Hauptpfad  $(M \ge 2)$, so spricht man von  Mehrwegeausbreitung.  Wie im zweiten Hauptkapitel   ⇒   Frequenzselektive Übertragungskanäle  noch gezeigt werden wird, kommt es dann  –  je nach Frequenz  –  zu konstruktiven oder destruktiven Überlagerungen bis hin zu völliger Auslöschung.
  • Für manche Frequenzen erweist sich die Mehrwegeausbreitung als günstig, für andere als sehr ungünstig.  Man bezeichnet diesen Effekt als  frequenzselektives Fading.
  • Bei nur einem Hauptpfad  $(M = 1)$  vereinfacht sich die obige Gleichung wie folgt  $($auf den Index „$m = 1$” verzichten wir in diesem Fall$)$:
\[r(t)= z(t) \cdot s(t - \tau) \hspace{0.05cm}.\]
  • Die Verzögerung  $\tau$  bewirkt hier eine für alle Frequenzen konstante Laufzeit, die nicht weiter betrachtet werden muss.


$\text{Fazit:}$  Für  $M=1$  gibt es keine Überlagerung von Signalanteilen mit merklichen Laufzeitunterschieden, also auch keine Frequenzabhängigkeit des Gesamtsignals: 

\[r(t)= z(t) \cdot s(t) \hspace{0.5cm} {\rm mit} \hspace{0.5cm} z(t) = \sum_{n=1}^{N} \alpha_{n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{n}(t)} \hspace{0.05cm}. \]

Man spricht in diesem Fall von  nichtfrequenzselektivem Fading  oder  Flat–Fading  oder  Rayleigh–Fading.

Modellierung von nichtfrequenzselektivem Fading


Die Grafik zeigt das Modell zur Erzeugung von nichtfrequenzselektivem Fading   ⇒   Rayleigh–Fading.

  • Das Empfangssignal  $r(t)$  ergibt sich, wenn man das Sendesignal  $s(t)$  mit der Zeitfunktion  $z(t)$  multipliziert.
  • Es sei nochmals daran erinnert, dass sich alle Signale bzw. Zeitfunktionen  $s(t)$,  $z(t)$  und  $r(t)$  auf den äquivalenten Tiefpassbereich beziehen.


Rayleigh–Fading–Kanalmodell

Wir betrachten nun die multiplikative Verfälschung  $z(t)$  gemäß diesem Rayleigh–Modell genauer.  Für den komplexen Koeffizienten gilt entsprechend der letzten Seite:

\[z(t) = \sum_{n=1}^{N} \alpha_{n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.04cm}\cdot \hspace{0.04cm} \phi_{n}(t) }= \sum_{n=1}^{N} \alpha_{n}(t) \cdot \cos\hspace{-0.1cm}\big [ \phi_{n}( t) \big ] + {\rm j}\cdot \sum_{n=1}^{N} \alpha_{n}(t) \cdot \sin\hspace{-0.1cm}\big [ \phi_{n}( t)\big ] \hspace{0.05cm}. \]

Zu dieser Gleichung und obiger Grafik ist anzumerken:

  • Die zeitabhängige Dämpfung  $\alpha_{n}(t)$  und die zeitabhängige Phase  $\phi_{n}(t)$  hängen von den Umgebungsbedingungen ab.
  • $\phi_{n}(t)$  erfasst die geringfügig unterschiedlichen Laufzeiten auf den  $N$  Pfaden und den  Dopplereffekt  aufgrund der Bewegung.
  • Die Zeitfunktion  $z(t)$  ist eine komplexe Größe, deren Real– und Imaginärteil wir im Folgenden wieder mit  $x(t)$  und  $y(t)$  bezeichnen. 
  • Eine deterministische Beschreibung der Zufallsgröße  $z(t) = x(t) + {\rm j}\cdot y(t)$  ist nicht möglich.  Vielmehr müssen die Zeitfunktionen  $x(t)$  und  $y(t)$ durch stochastische Prozesse modelliert werden.
  • Die beiden Komponenten  $x(t)$  und  $y(t)$  sind jeweils mittelwertfrei und besitzen die gleiche Varianz  $\sigma^2$:
\[{\rm E}[x(t)] = {\rm E}\big[y(t)\big] = 0\hspace{0.05cm}, \hspace{0.8cm}{\rm E}\big[x^2(t)\big] = {\rm E}\big[y^2(t)\big] = \sigma^2 \hspace{0.05cm}.\]
  • Zu berücksichtigen ist die Orthogonität von Realteil und Imaginärteil  (jeweils Cosinus und Sinus des gleichen Arguments).  Damit sind die beiden Komponenten auch unkorreliert.  Nur bei Gaußschen Zufallsgrößen folgt daraus weiter die statistische Unabhängigkeit von  $x(t)$  und  $y(t)$.
  • Aufgrund des Dopplereffekts gibt es allerdings statistische Bindungen innerhalb des Realteils  $x(t)$  und innerhalb des Imaginärteils  $y(t)$.  Diese beiden Größen werden im obigen Modell durch zwei  Digitale Filter  erzeugt.

Beispielhafte Signalverläufe bei Rayleigh–Fading


Die folgenden Grafiken zeigen jeweils durch Simulation gewonnene Signalverläufe von  $\text{100 ms}$  Dauer und die dazugehörigen Dichtefunktionen.  Es handelt sich um Bildschirmabzüge des Windows–Programms „Mobilfunkkanal” aus dem (ehemaligen) Praktikum Simulation digitaler Übertragungssysteme an der TU München:


$\text{Beispiel 1:}$  Nachfolgend sind beispielhafte Signalverläufe bei Rayleigh–Fading und die dazugehörigen Wahrscheinlichkeitsdichtefunktionen dargestellt.  Diese Zeitverläufe Darstellungen können sich wie folgt interpretiert werden:

Realteil, Imaginärteil und Phasenverlauf bei Rayleigh-Fading
  • Der Realteil ist gaußverteilt  (siehe rechte obere Grafik), wie auch aus dem Zeitsignalverlauf  $x(t)$  hervorgeht.  Rot eingezeichnet ist die Gaußsche WDF $f_x(x)$ und blau das durch Simulation über  $10\hspace{0.05cm}000$  Abtastwerte gewonnene Histogramm.
  • Eingestellt war hierfür eine  maximale Dopplerfrequenz  von  $f_{\rm D, \ max} = 100 \ \rm Hz$.  Deshalb gibt es statistische Bindungen innerhalb der Funktionen  $x(t)$  und  $y(t)$.  Genauere Angaben zum Dopplereffekt finden Sie im nächsten Kapitel.
  • Die WDF  $f_y(y)$  des Imaginärteils ist identisch mit  $f_x(x)$.  Die Varianz beträgt bei der betrachteten Konstellation jeweils  $\sigma_x^2 =\sigma_y^2 = 0.5 \ (=\sigma^2)$.  Zwischen  $x(t)$  und  $y(t)$  bestehen keine statistischen Bindungen;  die Signale sind orthogonal.
  • Die Phase  $\phi(t)$  ist gleichverteilt zwischen  $\pm\pi$.  Wie aus den Sprungstellen im Phasenverlauf zu erahnen ist, kann  $\phi(t)$  auch größere Werte annehmen.  Bei der Histogrammerstellung wurden aber die Bereiche  $(2k+1)\cdot \pi$  auf den Wertebereich vo n $-\pi$ ... $+\pi$  projiziert  $(k$  ganzzahlig$)$.
  • Die gleichverteilte Phase wird anhand der (nicht dargestellten) 2D–WDF verständlich.  Diese ist rotationssymmetrisch und dementsprechend gibt es auch keine Vorzugsrichtung:
\[f_{x,\hspace{0.02cm}y}(x, y) = \frac{1}{2\pi \cdot \sigma^2} \cdot {\rm e}^{ -(x^2 + y^2)/(2\sigma^2)} .\]


Realteil, Imaginärteil, Betrag und Betragsquadrat bei Rayleigh-Fading

$\text{Beispiel 2:}$ Fortsetzung von $\text{Beispiel 1}$:

Diese Grafik zeigt oben nochmals

  • den Realteil  $x(t)$  und den Imaginärteil  $y(t)$  von  $z(t)$  und
  • rechts die WDF $f_x(x)$;  die WDF $f_y(y)$ hat genau die gleiche Form.


Darunter gezeichnet sind Verlauf und WDF

  • des Betrags  $a(t) =\vert z(t)\vert$  und
  • des Betragsquadrat  $p(t) =a^2(t) =\vert z(t)\vert^2$.


Aus diesen Darstellungen geht hervor:

  • Der Betrag  $a(t) =\vert z(t)\vert$  besitzt eine  Rayleigh–WDF  ⇒  daher der Name „Rayleigh–Fading”:
\[f_a(a) = \left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^{-a^2/(2\sigma^2)} \\ 0 \end{array} \right.\hspace{0.15cm} \begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.1cm} a\hspace{-0.05cm} \ge \hspace{-0.05cm}0, \\ {\rm f\ddot{u}r}\hspace{0.1cm} a \hspace{-0.05cm}<\hspace{-0.05cm} 0. \\ \end{array} \]
  • Für die Momente erster bzw. zweiter Ordnung und die Varianz der Betragsfunktion  $a(t)$  gilt:
\[{\rm E}\big [a \big] = \sigma \cdot \sqrt {{\pi}/{2}}\hspace{0.05cm},\hspace{0.5cm}{\rm E}\big[a^2 \big] = 2 \cdot \sigma^2\]
\[ \Rightarrow \hspace{0.3cm} {\rm Var}\big[a \big] = \sigma_a^2 = \sigma^2 \cdot \left ( 2 - {\pi}/{2}\right ) \hspace{0.05cm}. \]
  • Die WDF des Betragsquadrats  $p(t)$  ergibt sich durch  nichtlineare Transformation  der WDF $f_a(a)$   ⇒   $f_p(p)$  ist exponentialverteilt:
\[f_p(p) \hspace{-0.05cm}=\hspace{-0.05cm} \left\{ \begin{array}{c} (2\sigma^2)^{-1} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm e}^{-p^2\hspace{-0.05cm}/(2\sigma^2)} \\ 0 \end{array} \right.\hspace{0.05cm} \begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.05cm} p \hspace{-0.05cm}\ge \hspace{-0.05cm}0, \\ {\rm f\ddot{u}r}\hspace{0.15cm} p\hspace{-0.05cm} < \hspace{-0.05cm}0. \\ \end{array} \]


Weitere Informationen zum  Rayleigh–Fading  finden Sie in der  Aufgabe 1.3  und der  Aufgabe 1.3Z.

Aufgaben zum Kapitel


Aufgabe 1.3: Rayleigh–Fading

Aufgabe 1.3Z: Nochmals Rayleigh–Fading?