Mobile Kommunikation/Das GWSSUS–Kanalmodell: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(40 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 6: Zeile 6:
 
}}
 
}}
  
== Verallgemeinerte Systemfunktionen zeitvarianter Systeme (1) ==
+
== Verallgemeinerte Systemfunktionen zeitvarianter Systeme ==
 
<br>
 
<br>
Während es bei linearen zeitinvarianten (LZI) Systemen mit der Übertragungsfunktion <i>H</i>(<i>f</i>) und der Impulsantwort <i>h</i>(<i>&tau;</i>) nur zwei das System vollständig beschreibende Funktionen gibt, sind bei zeitvarianten (LZV) Systemen insgesamt vier verschiedene Systemfunktionen möglich. Eine formale Untersscheidung dieser Funktionen hinsichtlich Zeit&ndash; und Frequenzbereichsdarstellung durch Klein&ndash; und Großbuchstaben ist damit ausgeschlossen.<br>
+
Während es bei linearen zeitinvarianten Systemen&nbsp; $\rm (LZI)$&nbsp; mit der Übertragungsfunktion&nbsp; $H(f)$&nbsp;  und der Impulsantwort&nbsp; $h(t)$ &ndash; nach Umbenennung&nbsp; $h(\tau)$ &ndash; nur zwei das System vollständig beschreibende Systemfunktionen gibt, sind bei zeitvarianten Systemen&nbsp; $\rm (LZV)$&nbsp; vier verschiedene Funktionen möglich.&nbsp; Eine formale Untersscheidung dieser Funktionen hinsichtlich Zeit&ndash; und Frequenzbereichsdarstellung durch Klein&ndash; und Großbuchstaben ist damit ausgeschlossen.<br>
  
 
Deshalb nehmen wir nun eine Nomenklaturänderung vor, die sich wie folgt formalisieren lässt:
 
Deshalb nehmen wir nun eine Nomenklaturänderung vor, die sich wie folgt formalisieren lässt:
*Die vier möglichen Systemfunktionen werden einheitlich mit <b><i>&eta;</i><sub>12</sub></b> bezeichnet.<br>
+
*Die vier möglichen Systemfunktionen werden einheitlich mit&nbsp; $\boldsymbol{\eta}_{12}$&nbsp; bezeichnet.<br>
  
*Der erste Index ist entweder ein <b>V</b> (Verzögerungszeit <i>&tau;</i>) oder ein <b>F</b> (Frequenz <i>f</i>).<br>
+
*Der erste Index ist entweder ein&nbsp; $\boldsymbol{\rm V}$&nbsp; $($Verzögerungszeit &nbsp;$\tau)$&nbsp; oder ein&nbsp; $\boldsymbol{\rm F}$&nbsp; $($Frequenz&nbsp; $f)$.<br>
  
*Als zweiter Index ist entweder ein <b>Z</b> (Zeit <i>t</i>) oder ein <b>D</b> (Dopplerfrequenz <i>f</i><sub>D</sub>) möglich.<br><br>
+
*Als zweiter Index ist entweder ein&nbsp; $\boldsymbol{\rm Z}$&nbsp; $($Zeit&nbsp; $t)$&nbsp; oder ein&nbsp; $\boldsymbol{\rm D}$&nbsp; $($Dopplerfrequenz&nbsp; $f_{\rm D})$&nbsp; möglich.
  
Da beim Mobilfunk im Gegensatz zur leitungsgebundenen Übertragung die Systemfunktionen nicht deterministisch beschrieben werden können, sondern statistische Größen sind, müssen später noch entsprechende Korrelationsfunktionen betrachtet werden. Diese bezeichnen wir im Folgenden einheitlich mit <b><i>&phi;</i><sub>12</sub></b>, und verwenden gleiche Indizes wie für die Systemfunktionen <b><i>&eta;</i><sub>12</sub></b>.<br>
+
[[Datei:P ID2165 Mob T 2 3 S1 v1.png|right|frame|Zusammenhang zwischen den vier Systemfunktionen|class=fit]]
  
Diese formalisierten Bezeichnungen sind in der folgenden Grafik in blauer Schrift eingetragen. Zusätzlich sind die in anderen Kapiteln oder der Literatur verwendeten Bezeichnungen angegeben (graue Schrift). In den weiteren Kapiteln werden diese teilweise ebenfalls benutzt.<br>
+
<br>Da beim Mobilfunk im Gegensatz zur leitungsgebundenen Übertragung die Systemfunktionen nicht deterministisch beschrieben werden können, sondern statistische Größen sind, müssen später noch entsprechende Korrelationsfunktionen betrachtet werden.&nbsp;
  
[[Datei:P ID2165 Mob T 2 3 S1 v1.png|Zusammenhang zwischen den Systemfunktionen|class=fit]]<br>
+
Diese bezeichnen wir im Folgenden einheitlich mit&nbsp; $\boldsymbol{\varphi}_{12}$,&nbsp; und verwenden gleiche Indizes wie für die Systemfunktionen&nbsp;  $\boldsymbol{\eta}_{12}$.<br>
  
Die Bildbeschreibung folgt auf der nächsten Seite.
+
Diese formalisierten Bezeichnungen sind in der Grafik in blauer Schrift eingetragen.
 +
*Zusätzlich sind  die in anderen Kapiteln oder der Literatur verwendeten Bezeichnungen angegeben&nbsp; (graue Schrift).
 +
 +
*In den weiteren Kapiteln werden diese teilweise ebenfalls benutzt.
 +
<br clear=all>
 +
*Oben erkennt man die&nbsp; '''zeitvariante Impulsantwort'''&nbsp; ${\eta}_{\rm VZ}(\tau,\hspace{0.05cm} t) \equiv h(\tau,\hspace{0.05cm} t)$&nbsp; im "Verzögerungs&ndash;Zeit&ndash;Bereich".&nbsp; Die zugehörige Autokorrelationsfunktion (AKF) ist
 +
::<math>\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \big [ \eta_{\rm VZ}(\tau_1,\hspace{0.05cm}  t_1) \cdot
 +
\eta_{\rm VZ}^{\star}(\tau_2, t_2) \big ]\hspace{0.05cm}. </math>
  
== Verallgemeinerte Systemfunktionen zeitvarianter Systeme (2) ==
+
*Zur&nbsp; "Frequenz&ndash;Zeit&ndash;Darstellung"&nbsp;  kommt man durch Fouriertransformation bezüglich der Verzögerung&nbsp; $\tau$.&nbsp; Man erhält so die&nbsp; '''zeitvariante Übertragungsfunktion'''&nbsp; ${\eta}_{\rm FZ}(f,\hspace{0.05cm} t) \equiv H(f,\hspace{0.05cm} t)$.&nbsp; Die Fouriertransformation hinsichtlich&nbsp; $\tau$&nbsp; ist in der Grafik durch&nbsp; ${\rm F}_\tau\hspace{0.05cm}[ \cdot ]$&nbsp; angedeutet.&nbsp; Ausgeschrieben lautet das Fourierintegral:
<br>
+
::<math>\eta_{\rm FZ}(f, \hspace{0.05cm} t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau,\hspace{0.05cm}  t) \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau}\hspace{0.15cm}{\rm d}\tau  
In der [http://www.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme_.281.29 Grafik] auf der letzten Seite sind die vier Systemfunktionen dargestellt. Oben erkennt man die zeitvariante Impulsantwort <i>&eta;</i><sub>VZ</sub>(<i>&tau;</i>, <i>t</i>), die in [http://www.lntwww.de/Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk#Zeitinvariante_Beschreibung_des_Zweiwegekanals_.281.29 Kapitel 2.2] mit <i>h</i>(<i>&tau;</i>, <i>t</i>) bezeichnet wurde. Die zugehörige Autokorrelationsfunktion (AKF) ist
+
  \hspace{0.05cm}, \hspace{0.3cm} \text{kurz:} \hspace{0.2cm} \eta_{\rm FZ}(f, t)
 
 
:<math>\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \left [ \eta_{\rm VZ}(\tau_1, t_1) \cdot
 
\eta_{\rm VZ}^{\star}(\tau_2, t_2) \right ]\hspace{0.05cm}. </math>
 
 
 
Zur <i>Frequenz&ndash;Zeit&ndash;Darstellung</i> (rechter Block) kommt man durch eine Fouriertransformation bezüglich der Verzögerung <i>&tau;</i>. Man erhält so die zeitvariante Übertragungsfunktion <i>H</i>(<i>f</i>, <i>t</i>) = <i>&eta;</i><sub>FZ</sub>(<i>f</i>, <i>t</i>). Die Fouriertransformation hinsichtlich <i>&tau;</i> ist in der Grafik durch &bdquo;<i>F<sub>&tau;</sub></i>[ &middot; ]&rdquo; angedeutet. Ausgeschrieben lautet das Fourierintegral:
 
 
 
:<math>\eta_{\rm FZ}(f, t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm exp}(- {\rm j}\cdot 2 \pi f \tau)\hspace{0.15cm}{\rm d}\tau  
 
  \hspace{0.05cm}, \hspace{0.3cm} {\rm kurz:} \hspace{0.2cm} \eta_{\rm FZ}(f, t)
 
 
  \hspace{0.2cm}  \stackrel{f, \hspace{0.05cm} \tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)
 
  \hspace{0.2cm}  \stackrel{f, \hspace{0.05cm} \tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Die AKF dieser zeitvarianten Übertragungsfunktion lautet allgemein:
+
:Die AKF dieser zeitvarianten Übertragungsfunktion lautet allgemein:
 
 
:<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \left [ \eta_{\rm FZ}(f_1, t_1) \cdot
 
\eta_{\rm FZ}^{\star}(f_2, t_2) \right ]\hspace{0.05cm}.</math>
 
  
Die Scatter&ndash;Funktion <i>&eta;</i><sub>VD</sub>(<i>&tau;</i>, <i>f</i><sub>D</sub>) entsprechend dem linken Block &ndash; manchmal auch mit <i>s</i>(<i>&tau;</i>, <i>f</i><sub>D</sub>) bezeichnet &ndash; beschreibt den Mobilfunkkanal im Verzögerungs&ndash;Doppler&ndash;Bereich. Sie ergibt sich aus der zeitvarianten Impulsantwort  <i>&eta;</i><sub>VZ</sub>(<i>&tau;</i>, <i>t</i>) durch Fouriertransformation bezüglich des zweiten Parameters <i>t</i>:
+
::<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \big [ \eta_{\rm FZ}(f_1, t_1) \cdot
 +
  \eta_{\rm FZ}^{\star}(f_2, t_2) \big ]\hspace{0.05cm}.</math>
  
:<math> \eta_{\rm VD}(\tau, f_{\rm D})
+
*Die&nbsp; '''Scatter&ndash;Funktion'''&nbsp; ${\eta}_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D}) \equiv s(\tau,\hspace{0.05cm} f_{\rm D})$&nbsp; entsprechend dem linken Block beschreibt den Mobilfunkkanal im&nbsp; "Verzögerungs&ndash;Doppler&ndash;Bereich".&nbsp; Der Funktionsparameter&nbsp; $f_{\rm D}$&nbsp; bezeichnet hierbei die&nbsp; [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Dopplerfrequenz_und_deren_Verteilung| Dopplerfrequenz]].&nbsp; Die Scatter&ndash;Funktion ergibt sich aus der zeitvarianten Impulsantwort&nbsp;  ${\eta}_{\rm VZ}(\tau,\hspace{0.05cm} t)$&nbsp; durch Fouriertransformation bezüglich des zweiten Parameters&nbsp; $t$:
\hspace{0.2cm} \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)</math>
 
  
:<math>\Rightarrow \hspace{0.3cm} \varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm VD}(\tau_1, f_{\rm D_1}) \cdot  
+
::<math> \eta_{\rm VD}(\tau, f_{\rm D})
 +
\hspace{0.2cm}  \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} \varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm VD}(\tau_1, f_{\rm D_1}) \cdot  
 
  \eta_{\rm VD}^{\star}(\tau_2, f_{\rm D_2}) \right ]
 
  \eta_{\rm VD}^{\star}(\tau_2, f_{\rm D_2}) \right ]
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Der Funktionsparameter <i>f</i><sub>D</sub> bezeichnet hierbei die [http://www.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Dopplerfrequenz_und_deren_Verteilung_.281.29 Dopplerfrequenz.]<br>
+
*Abschließend betrachten wir noch die so genannte&nbsp; '''frequenzvariante Übertragungsfunktion''', also die&nbsp; "Frequenz&ndash;Doppler&ndash;Darstellung".&nbsp; Entsprechend der Grafik gelangt man zu dieser auf zwei Wege:
 
 
Abschließend betrachten wir noch die so genannte frequenzvariante Übertragungsfunktion, also die Frequenz&ndash;Doppler&ndash;Darstellung. Entsprechend der [http://www.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme_.281.29 Grafik] gelangt man zu dieser auf zwei Wege:
 
  
:<math>\eta_{\rm FD}(f, f_{\rm D})
+
::<math>\eta_{\rm FD}(f, f_{\rm D})
 
  \hspace{0.2cm}  \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm FZ}(f, t)\hspace{0.05cm},</math>
 
  \hspace{0.2cm}  \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm FZ}(f, t)\hspace{0.05cm},</math>
  
:<math>\eta_{\rm FD}(f, f_{\rm D})
+
::<math>\eta_{\rm FD}(f, f_{\rm D})
 
  \hspace{0.2cm}  \stackrel{f, \hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.</math>
 
  \hspace{0.2cm}  \stackrel{f, \hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.</math>
  
Anzumerken ist, dass die angegebenen Fourier&ndash;Zusammenhänge zwischen den Systemfunktionen in der Grafik durch die äußeren, dunkelgrünen Pfeile veranschaulicht sind. Die inneren (helleren) Pfeile kennzeichnen jeweils die Verknüpfungen über die [http://www.lntwww.de/Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_zweite_Fourierintegral inverse Fouriertransformation.]<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Hinweise:}$&nbsp;
 +
*Die angegebenen Fourier&ndash;Zusammenhänge zwischen den Systemfunktionen in der Grafik sind durch die äußeren, dunkelgrünen Pfeile veranschaulicht und mit &nbsp; ${\rm F}_p\hspace{0.05cm}[\hspace{0.05cm} \cdot \hspace{0.05cm}]$ &nbsp; bezeichnet.&nbsp; $p$&nbsp; gibt an, auf welchen Parameter&nbsp; $\tau$,&nbsp; $f$,&nbsp; $t$&nbsp; oder&nbsp;  $f_{\rm D}$&nbsp; sich die Fouriertransformation bezieht.
 +
 
 +
*Die inneren&nbsp; (helleren)&nbsp; Pfeile kennzeichnen jeweils die Verknüpfungen über die&nbsp; [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_zweite_Fourierintegral|inverse Fouriertransformation]]&nbsp; (Fourierrücktransformation).&nbsp; Hierfür verwenden wir die Notation&nbsp; ${ {\rm F}_p}^{-1}\hspace{0.05cm}[ \hspace{0.05cm} \cdot \hspace{0.05cm} ]$.
  
<b>Hinweis:</b> Ein Interaktionsmodul zeigt den Zusammenhang zwischen Zeit&ndash; und Frequenzbereich, formelmäßig beschreibbar durch Fouriertransformation und Fourierrücktransformation:<br>
+
*Das Applet&nbsp; [[Applets:Impulse_und_Spektren|Impulse und Spektren]] verdeutlicht den Zusammenhang zwischen Zeit&ndash; und Frequenzbereich, formelmäßig beschreibbar durch Fouriertransformation und Fourierrücktransformation.}}
  
[[Zeitfunktion und zugehörige Spektralfunktion Please add link and do not upload flash video.]]
 
  
 
== Vereinfachungen aufgrund der GWSSUS–Voraussetzungen ==
 
== Vereinfachungen aufgrund der GWSSUS–Voraussetzungen ==
 
<br>
 
<br>
Der allgemeine Zusammenhang zwischen den vier Systemfunktionen ist aufgrund nichtstationärer Effekte sehr kompliziert. Es müssen gegenüber dem allgemeinen Modell einige Einschränkungen getroffen werden, um zu einem geeigneten Modell für den Mobilfunkkanal zu gelangen, aus dem sich relevante Aussagen für praktische Anwendungen ableiten lassen.<br>
+
Der allgemeine Zusammenhang zwischen den vier Systemfunktionen ist aufgrund nichtstationärer Effekte sehr kompliziert.  
 
 
Man kommt zum GWSSUS&ndash;Modell (<i><b>G</b>aussian <b>W</b>ide <b>S</b>ense <b>S</b>tationary <b>U</b>ncorrelated <b>S</b>cattering</i>) durch folgende Festlegungen:
 
*Der Zufallsprozess der Kanalimpulsantwort <i>h</i>(<i>&tau;</i>, <i>t</i>) = <i>&eta;</i><sub>VZ</sub>(<i>&tau;</i>, <i>t</i>) wird allgemein als komplex (also Beschreibung im äquivalenten Tiefpassbereich), gaußisch (Kennung <b>G</b>) sowie als mittelwertfrei (Rayleigh, nicht Rice, also keine Sichtverbindung) angenommen.<br>
 
  
*Der Zufallsprozess sei schwach stationär, das heißt, seine Kenngrößen ändern sich mit der Zeit nur geringfügig, und die AKF <i>&phi;</i><sub>VZ</sub>(<i>&tau;</i><sub>1</sub>, <i>t</i><sub>1</sub>, <i>&tau;</i><sub>2</sub>, <i>t</i><sub>2</sub>) der zeitvarianten Impulsantwort hängt nicht mehr von den absoluten Zeiten <i>t</i><sub>1</sub> und <i>t</i><sub>2</sub> ab, sondern nur noch von der Zeitdifferenz &Delta;<i>t</i> = <i>t</i><sub>2</sub> &ndash; <i>t</i><sub>1</sub>. Darauf weist die Kennung <b>WSS</b> &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i><b>W</b>ide <b>S</b>ense <b>S</b>tationary</i> hin.<br>
+
[[Datei:Mob_T_2_3_S2_neu.png|right|frame|Zusammenhänge zwischen den Beschreibungsfunktionen des GWSSUS–Modells|class=fit]]
 +
Gegenüber dem allgemeinen Modell müssen einige Einschränkungen getroffen werden, um zu einem geeigneten Modell für den Mobilfunkkanal zu gelangen, aus dem sich relevante Aussagen für praktische Anwendungen ableiten lassen.<br>
  
*Die einzelnen Echos aufgrund von Mehrwegeausbreitung sind unkorreliert, was durch die Kennung <b>US</b> &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i><b>U</b>ncorrelated <b>S</b>cattering</i> ausgedrückt wird.<br>
+
Durch folgende Festlegungen kommt man zum&nbsp; $\rm GWSSUS$&ndash;Modell&nbsp; <br>$( \rm G$aussian&nbsp; $\rm W$ide&nbsp; $\rm S$ense&nbsp; $\rm S$tationary&nbsp; $\rm U$ncorrelated&nbsp; $\rm S$cattering$)$:
 +
*Der Zufallsprozess der Kanalimpulsantwort&nbsp; $h(\tau,\hspace{0.1cm} t) = {\eta}_{\rm VZ}(\tau,\hspace{0.1cm} t)$&nbsp; wird allgemein als komplex&nbsp; (also Beschreibung im äquivalenten Tiefpassbereich),&nbsp; gaußisch&nbsp; $($Kennung&nbsp; $\rm G)$&nbsp; sowie als mittelwertfrei&nbsp; (Rayleigh, nicht Rice, also keine Sichtverbindung)&nbsp; angenommen.<br>
  
[[Datei:P ID2166 Mob T 2 3 S2 v1.png|Zusammenhänge zwischen den Beschreibungsfunktionen des GWSSUS–Modells|class=fit]]<br>
+
*Der Zufallsprozess sei schwach stationär&nbsp; &rArr; &nbsp; seine Kenngrößen ändern sich  mit der Zeit nur geringfügig, und die AKF&nbsp; $ {\varphi}_{\rm VZ}(\tau_1,\hspace{0.05cm} t_1,\hspace{0.05cm}\tau_2,\hspace{0.05cm} t_2)$&nbsp; der zeitvarianten Impulsantwort hängt nicht von den absoluten Zeiten&nbsp; $t_1$&nbsp; und&nbsp; $t_2$&nbsp; ab, sondern nur von der Zeitdifferenz&nbsp; $\Delta t = t_2 - t_1$.&nbsp; Darauf weist die Kennung&nbsp; $\rm WSS$&nbsp; hin &nbsp;&nbsp;&#8658;&nbsp;&nbsp; $\rm W$ide $\rm S$ense $\rm S$tationary.<br>
  
Unter Berücksichtigung dieser Eigenschaften lässt sich der Mobilfunkkanal entsprechend der hier angegebenen Grafik beschreiben. Auf die einzelnen Leistungsdichtespektren (blau beschriftet) und die Korrelationsfunktion (mit roter Schrift) wird auf den nächsten Seiten noch im Detail eingegangen.<br>
+
*Die einzelnen Echos durch Mehrwegeausbreitung sind unkorreliert, was die Kennung&nbsp; $\rm US$  &nbsp;&nbsp;&#8658;&nbsp;&nbsp;  $\rm U$ncorrelated $\rm S$cattering</i> ausdrückt.
 +
<br clear=all>
 +
Der Mobilfunkkanal lässt sich gemäß dieser Grafik vollständig beschreiben.&nbsp; Auf die einzelnen Leistungsdichtespektren&nbsp; (blau beschriftet)&nbsp; und die Korrelationsfunktion&nbsp; (mit roter Schrift)&nbsp; wird auf den nächsten Seiten im Detail eingegangen.<br>
  
== AKF und LDS der zeitvarianten Impulsantwort (1) ==
+
== Autokorrelationsfunktion der zeitvarianten Impulsantwort==
 
<br>
 
<br>
Zunächst betrachten wir die Autokorrelationsfunktion (AKF) der zeitvarianten Impulsantwort &nbsp;&#8658;&nbsp;  <i>h</i>(<i>&tau;</i>, <i>t</i>) = <i>&eta;</i><sub>VZ</sub>(<i>&tau;</i>, <i>t</i>) etwas genauer. Dabei zeigt sich:
+
Wir  betrachten nun die&nbsp; [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]]&nbsp; $\rm (AKF)$&nbsp; der zeitvarianten Impulsantwort &nbsp; &#8658; &nbsp;  $h(\tau,\hspace{0.1cm} t) = {\eta}_{\rm VZ}(\tau,\hspace{0.1cm} t)$&nbsp; genauer.&nbsp; Es zeigt sich:
  
*Aufgrund der <b>WSS</b>&ndash;Eigenschaft lässt sich mit &Delta;<i>t</i> = <i>t</i><sub>2</sub> &ndash; <i>t</i><sub>1</sub> schreiben:
+
*Aufgrund der&nbsp; $\rm WSS$&ndash;Eigenschaft lässt sich mit&nbsp; $\Delta t = t_2 - t_1$&nbsp; für die Autokorrelationsfunktion schreiben:
  
 
::<math>\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = \varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t)\hspace{0.05cm}.</math>
 
::<math>\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = \varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t)\hspace{0.05cm}.</math>
  
*Da die Echos als unabhängig voneinander vorausgesetzt wurden (<b>US</b>&ndash;Eigenschaft), kann man die Impulsantwort bezüglich den Verzögerungen <i>&tau;</i><sub>1</sub>, <i>&tau;</i><sub>2</sub> als unkorreliert annehmen. Dann gilt:
+
*Da die Echos als unabhängig voneinander vorausgesetzt wurden&nbsp; $\rm (US$&ndash;Eigenschaft$)$, kann man die Impulsantwort bezüglich den Verzögerungen&nbsp; $\tau_1$&nbsp; und&nbsp; $\tau_2$&nbsp; als unkorreliert annehmen.&nbsp; Dann gilt:
  
 
::<math>\varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t) = 0 \hspace{0.35cm}{\rm f\ddot{u}r}\hspace{0.35cm} \tau_1 \ne \tau_2\hspace{0.05cm}. </math>
 
::<math>\varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t) = 0 \hspace{0.35cm}{\rm f\ddot{u}r}\hspace{0.35cm} \tau_1 \ne \tau_2\hspace{0.05cm}. </math>
  
*Ersetzt man nun <i>&tau;</i><sub>1</sub> durch <i>&tau;</i> und <i>&tau;</i><sub>2</sub> durch <i>&tau;</i> + &Delta;<i>&tau;</i>, so lässt sich diese Autokorrelationsfunktion in folgender Weise darstellen:
+
*Ersetzt man nun&nbsp; $\tau_1$&nbsp; durch&nbsp; $\tau$&nbsp; und&nbsp; $\tau_2$&nbsp; durch&nbsp; $\tau + \Delta \tau$, so lässt sich diese Autokorrelationsfunktion in folgender Weise darstellen:
  
 
::<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}. </math>
 
::<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}. </math>
  
*Wegen der Ausblendeigenschaft der Diracfunktion  verschwindet die AKF für <i>&tau;</i><sub>1</sub>&nbsp;&ne;&nbsp;<i>&tau;</i><sub>2</sub> &nbsp;&#8658;&nbsp; &Delta;<i>t</i> &ne; 0. <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) nennt man das <i>Verzögerungs&ndash;Zeit&ndash;Kreuzleistungsdichtespektrum</i>, das von der Verzögerung <i>&tau;</i> (= <i>&tau;</i><sub>1</sub> = <i>&tau;</i><sub>2</sub>) und zusätzlich von der Zeitdifferenz &Delta;<i>t</i> = <i>t</i><sub>1</sub> &ndash; <i>t</i><sub>2</sub> abhängt.<br><br>
+
*Wegen der Ausblendeigenschaft der Diracfunktion  verschwindet die AKF für&nbsp; $\tau_1 \ne \tau_2$ &nbsp; &#8658; &nbsp; $\Delta \tau \ne 0$.  
 +
 
 +
 
 +
*$ {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.1cm}$&nbsp; ist das&nbsp; "Verzögerungs&ndash;Zeit&ndash;Kreuzleistungsdichtespektrum", das von der Verzögerung&nbsp; $\tau \ (= \tau_1 =\tau_2)$&nbsp; und von der Zeitdifferenz&nbsp; $\Delta t = t_2 - t_1$&nbsp; abhängt.<br><br>
  
Beachten Sie, dass hier Autokorrelationsfunktion <i>&phi;</i><sub>VZ</sub>(&Delta;<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) und Leistungsdichtespektrum <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) nicht wie sonst üblich über die Fouriertransformation zusammenhängen, sondern nach obiger Gleichung über eine Diracfunktion verknüpft sind. Nicht alle Symmetrieeigenschaften, die aus dem [http://www.lntwww.de/Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine Wiener&ndash;Chintchine&ndash;Theorem] folgen, sind somit auch hier gegeben. Insbesondere ist es durchaus möglich und sogar sehr wahrscheinlich, dass ein solches Leistungsdichtespektrum eine ungerade Funktion ist.<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Bitte beachten Sie:}$&nbsp;
 +
*Bei dieser Betrachtungsweise  hängen Autokorrelationsfunktion&nbsp; $\varphi_{\rm VZ}(\Delta \tau, \Delta t)$&nbsp; und Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $&nbsp; nicht wie sonst üblich über die Fouriertransformation zusammen, sondern sind über eine Diracfunktion verknüpft:
 +
::<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}. </math>
 +
*Nicht alle Symmetrieeigenschaften, die aus dem&nbsp; [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine| Wiener&ndash;Chintchine&ndash;Theorem]]&nbsp; folgen, sind somit auch hier gegeben. Insbesondere ist es durchaus möglich und sogar sehr wahrscheinlich, dass ein solches Leistungsdichtespektrum eine ungerade Funktion ist.}}<br>
  
In der [http://www.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Vereinfachungen_aufgrund_der_GWSSUS.E2.80.93Voraussetzungen Übersicht] ist  das Verzögerungs&ndash;Zeit&ndash;Kreuzleistungsdichtespektrum <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) oben in der Mitte zu erkennen. Da <i>&eta;</i><sub>VZ</sub>(<i>&tau;</i>, <i>t</i>) wie jede beliebige [http://www.lntwww.de/Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich#Impulsantwort Impulsantwort] die Einheit [1/s] aufweist, hat die Autokorrelationsfunktion
+
In der Übersicht auf der letzten Seite ist  das&nbsp; '''Verzögerungs&ndash;Zeit&ndash;Kreuzleistungsdichtespektrum'''&nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $&nbsp; oben in der Mitte zu erkennen.  
 +
*Da&nbsp; $\eta_{\rm VZ}(\tau, t) $&nbsp; wie jede beliebige&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich#Impulsantwort|Impulsantwort]]&nbsp; die Einheit&nbsp; $\rm [1/s]$&nbsp; aufweist, hat die Autokorrelationsfunktion die Einheit&nbsp; $\rm [1/s^2]$:
  
:<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = {\rm E} \left [ \eta_{\rm VZ}(\tau, t) \cdot  
+
::<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = {\rm E} \left [ \eta_{\rm VZ}(\tau, t) \cdot  
  \eta_{\rm VZ}^{\star}(\tau + \Delta \tau, t + \Delta t) \right ]</math>
+
  \eta_{\rm VZ}^{\star}(\tau + \Delta \tau, t + \Delta t) \right ].</math>
  
die Einheit [1/s<sup>2</sup>]. Da aber auch die Diracfunktion mit Zeitargument, <i>&delta;</i>(&Delta;<i>&tau;</i>), die Einheit [1/s] aufweist, besitzt das Verzögerungs&ndash;Zeit&ndash;Kreuzleistungsdichtespektrum <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) ebenfalls die Einheit [1/s]:
+
*Da aber auch die Diracfunktion mit Zeitargument, also&nbsp; $\delta(\Delta \tau)$, die Einheit&nbsp; $\rm [1/s]$&nbsp; hat, besitzt das Verzögerungs&ndash;Zeit&ndash;Kreuzleistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $&nbsp; ebenfalls die Einheit $\rm [1/s]$:
  
:<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}.</math>
+
::<math>\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}.</math>
  
== AKF und LDS der zeitvarianten Impulsantwort (2) ==
+
==Leistungsdichtespektrum der zeitvarianten Impulsantwort==
 
<br>
 
<br>
Zum Verzögerungs&ndash;Leistungsdichtespektrum <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) kommt man, indem man in der Funktion <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) den zweiten Parameter &Delta;<i>t</i> = 0 setzt. Die Grafik zeigt einen beispielhaften Verlauf.<br>
+
[[Datei:P ID2170 Mob T 2 3 S3a v2.png|right|frame|Verzögerungs–Leistungsdichtespektrum|class=fit]]
 +
Zum&nbsp;  '''Verzögerungs&ndash;Leistungsdichtespektrum'''&nbsp; ${\it \Phi}_{\rm V}(\Delta \tau)$&nbsp; kommt man, indem man in der Funktion&nbsp; ${\it \Phi}_{\rm VZ}(\Delta \tau, \Delta t)$&nbsp; den zweiten Parameter&nbsp; $\Delta t = 0$&nbsp; setzt.&nbsp; Die Grafik zeigt einen beispielhaften Verlauf.<br>
  
[[Datei:P ID2170 Mob T 2 3 S3a v2.png|Verzögerungs–Leistungsdichtespektrum|class=fit]]<br>
+
Das Verzögerungs&ndash;Leistungsdichtespektrum ist eine zentrale Größe für die Beschreibung des Mobilfunkkanals.&nbsp; Diese weist folgende Eigenschaften auf:
 +
*${\it \Phi}_{\rm V}(\Delta \tau_0)$&nbsp; ist ein Maß für die &bdquo;Leistung&rdquo; derjenigen Signalanteile, die um&nbsp; $\tau_0$&nbsp; verzögert werden.&nbsp; Es wird hierfür implizit eine Mittelung über alle Dopplerfrequenzen&nbsp; $(f_{\rm D})$&nbsp; vorgenommen.<br>
  
Das Verzögerungs&ndash;Leistungsdichtespektrum <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) ist eine zentrale Größe für die Beschreibung eines Mobilfunkkanals. Es weist folgende Eigenschaften auf:
+
*Das Verzögerungs&ndash;Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm V}(\Delta \tau)$&nbsp; hat wie&nbsp; ${\it \Phi}_{\rm VZ}(\Delta \tau, \Delta t)$&nbsp; die Einheit&nbsp; $\rm [1/s]$.&nbsp; Es charakterisiert die Leistungsverteilung über alle möglichen Verzögerungszeiten&nbsp; $\tau$.<br>
*<i>&Phi;</i><sub>V</sub>(<i>&tau;</i><sub>0</sub>) ist ein Maß für die &bdquo;Leistung&rdquo; derjenigen Signalanteile, die um <i>&tau;</i><sub>0</sub> verzögert werden. Es wird hierfür implizit eine Mittelung über alle Dopplerfrequenzen (<i>f</i><sub>D</sub>) vorgenommen.<br>
 
  
*Das Verzögerungs&ndash;Leistungsdichtespektrum <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) hat wie <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>,&nbsp;&Delta;<i>t</i>) die Einheit [1/s]. Es charakterisiert die Leistungsverteilung über alle möglichen Verzögerungszeiten <i>&tau;</i>.<br>
+
*In der Grafik farblich markiert ist die Leistung&nbsp; $ P_0 \approx {\it \Phi}_{\rm V}(\Delta \tau_0)\cdot \Delta \tau$&nbsp; solcher Signalanteile, die beim Empfänger über beliebige Pfade mit einer Verzögerung zwischen&nbsp; $\tau_0 \pm \Delta \tau/2$&nbsp; eintreffen.<br>
  
*In obiger Grafik farblich markiert ist die Leistung <i>P</i><sub>0</sub> &asymp; <i>&Phi;</i><sub>V</sub>(<i>&tau;</i><sub>0</sub>) &middot; &Delta;<i>&tau;</i> solcher Signalanteile, die beim Empfänger über beliebige Pfade mit einer Verzögerung zwischen <i>&tau;</i><sub>0</sub> &plusmn; &Delta;<i>&tau;</i>/2 eintreffen.<br>
+
*Normiert man das Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm V}(\Delta \tau)$&nbsp; derart, dass sich die Fläche&nbsp; $1$&nbsp; ergibt, so erhält man die&nbsp; "Wahrscheinlichkeitsdichtefunktion"&nbsp; $\rm (WDF)$ der Verzögerungszeit:
  
*Normiert man das Leistungsdichtespektrum <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) derart, dass sich die Fläche 1 ergibt, so erhält man die Wahrscheinlichkeitsdichtefunktion (WDF) der Verzögerungszeit:
+
::<math>{\rm WDF}_{\rm V}(\tau) = \frac{{\it \Phi}_{\rm V}(\tau)}{\int_{0 }^{\infty}{\it \Phi}_{\rm V}(\tau)\hspace{0.15cm}{\rm d}\tau} \hspace{0.05cm}.</math>
  
::<math>{\rm WDF}_{\rm V}(\tau) = \frac{{\it \Phi}_{\rm V}(\tau)}{\int_{0 }^{\infty}{\it \Phi}_{\rm V}(\tau)\hspace{0.15cm}{\rm d}\tau} \hspace{0.05cm}.</math>
+
''Anmerkung zur Nomenklatur'':  
 +
*Im Buch &bdquo;Stochastische Signaltheorie&rdquo; hätten wir diese&nbsp; [[Stochastische_Signaltheorie/Wahrscheinlichkeitsdichtefunktion_(WDF)#Definition_der_Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsdichtefunktion]]&nbsp; mit&nbsp; $f_\tau(\tau)$&nbsp; bezeichnet.
 +
*Um den Zusammenhang zwischen&nbsp;  ${\it \Phi}_{\rm V}(\Delta \tau)$&nbsp; und WDF zu verdeutlichen und Verwechslungen mit der Frequenz&nbsp; $f$&nbsp; zu vermeiden, verwenden wir diese  Nomenklatur.<br>
  
Im Buch &bdquo;Stochastische Signaltheorie&rdquo; hätten wir diese [http://www.lntwww.de/Stochastische_Signaltheorie/Wahrscheinlichkeitsdichtefunktion_(WDF)#Eigenschaften_kontinuierlicher_Zufallsgr.C3.B6.C3.9Fen Wahrscheinlichkeitsdichtefunktion] mit <i>f<sub>&tau;</sub></i>(<i>&tau;</i>) bezeichnet. Um den Zusammenhang zwischen  <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) und der WDF deutlich werden zu lassen und Verwechslungen mit der Frequenz <i>f</i> zu vermeiden, wurde hier diese Nomenklatur gewählt.<br>
 
  
== Verzögerungsmodelle nach COST 207 ==
+
{{GraueBox|TEXT=
 +
$\text{Beispiel 1: Verzögerungsmodelle nach COST 207}$
 
<br>
 
<br>
In den 1990er Jahren gründete die Europäische Union die Arbeitsgruppe COST 207 mit dem Ziel, standardisierte Kanalmodelle für den zellularen Mobilfunk bereitzustellen. Hierbei  steht COST für <i>European Cooperation in Science and Technology</i>.<br>
 
  
In diesem internationalen Gremium wurden vier Profile für die Verzögerungszeit <i>&tau;</i> entwickelt, basierend auf Messungen und gültig für unterschiedliche Anwendungsszenarien. Im Folgenden werden vier verschiedene Verzögerungs&ndash;Leistungsdichtespektren angegeben, wobei stets der  Normierungsfaktor <i>&Phi;</i><sub>0</sub> = <i>&Phi;</i><sub>V</sub>(<i>&tau;</i> = 0) verwendet wird:
+
In den 1990er Jahren gründete die Europäische Union die Arbeitsgruppe COST 207 mit dem Ziel, standardisierte Kanalmodelle für den zellularen Mobilfunk bereitzustellen.&nbsp; Hierbei  steht &bdquo;COST&rdquo; für&nbsp; <i>European Cooperation in Science and Technology</i>.<br>
*Profil RA (englisch <i>Rural Area</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; ländliches Gebiet:
+
 
::<math>{{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0}  
+
In diesem internationalen Gremium wurden Profile für die Verzögerungszeit&nbsp; $\tau$&nbsp; entwickelt, basierend auf Messungen und gültig für verschiedene Anwendungsszenarien.&nbsp; Im Folgenden werden vier verschiedene Verzögerungs&ndash;Leistungsdichtespektren angegeben, wobei stets der  Normierungsfaktor&nbsp; ${\it \Phi}_0 = {\it \Phi}_{\rm V}(\tau = 0)$&nbsp; verwendet wird.&nbsp; Die Grafik zeigt die Verzögerungs&ndash;Leistungsdichte dieser Profile in logarithmischer Darstellung:
  \hspace{0.15cm}{\rm im \hspace{0.15cm}Bereich}\hspace{0.15cm} 0 < \tau < 0.7\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.109\,{\rm \mu s}\hspace{0.05cm}.</math>
+
 
 +
[[Datei:P ID2175 Mob T 2 3 S4a v1.png|right|frame|Verzögerungs–Leistungsdichte nach COST|class=fit]]
 +
 
 +
'''(1)'''&nbsp; Profil $\rm RA$ (englisch "Rural Area") &nbsp;&nbsp;&#8658;&nbsp;&nbsp; ländliches Gebiet:
 +
::<math>{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0}  
 +
  \hspace{0.3cm}{\rm im \hspace{0.15cm}Bereich}\hspace{0.3cm} 0 < \tau < 0.7\,{\rm &micro;  s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.109\,{\rm &micro; s}\hspace{0.05cm}.</math>
  
*Profil TU (englisch <i>Typical Urban</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; Städte und Vororte:
+
'''(2)'''&nbsp; Profil $\rm TU$ (englisch "Typical Urban") &nbsp;&nbsp;&#8658;&nbsp;&nbsp; Städte und Vororte:
::<math>{{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0}  
+
::<math>{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0}  
  \hspace{0.15cm}{\rm im \hspace{0.15cm}Bereich}\hspace{0.15cm} 0 < \tau < 7\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm \mu s}\hspace{0.05cm}.</math>
+
  \hspace{0.3cm}{\rm im \hspace{0.15cm}Bereich}\hspace{0.3cm} 0 < \tau < 7\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s}\hspace{0.05cm}.</math>
  
*Profil BU (englisch <i>Bad Urban</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; ungünstige Bedingungen in Städten:
+
'''(3)'''&nbsp; Profil $\rm BU$ (englisch "Bad Urban") &nbsp;&nbsp;&#8658;&nbsp;&nbsp; ungünstige Bedingungen in Städten:
::<math>{{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0}  
+
::<math>{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0}  
 
  = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\
 
  = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\
  0.5 \cdot {\rm e}^{ (5\,{\rm \mu s}-\tau) / \tau_0}  \end{array} \right.\quad
+
  0.5 \cdot {\rm e}^{ (5\,{\rm &micro; s}-\tau) / \tau_0}  \end{array} \right.\quad
\begin{array}{*{1}l} \hspace{-0.05cm} {\rm im \hspace{0.15cm}Bereich}\hspace{0.15cm} 0 < \tau < 5\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm \mu s}\hspace{0.05cm},
+
\begin{array}{*{1}l} \hspace{0.1cm} {\rm für}\hspace{0.3cm} 0 < \tau < 5\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s}\hspace{0.05cm},
\\  \hspace{-0.05cm} {\rm im \hspace{0.15cm}Bereich}\hspace{0.15cm} 5\,{\rm \mu s} < \tau < 10\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm \mu s} \hspace{0.05cm}. \\ \end{array}</math>
+
\\  \hspace{0.1cm} {\rm für}\hspace{0.3cm} 5\,{\rm &micro; s} < \tau < 10\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s} \hspace{0.05cm}. \\ \end{array}</math>
  
*Profil HT (englisch <i>Hilly Terrain</i>) &nbsp;&nbsp;&#8658;&nbsp;&nbsp; hügeliges Gebiet und Bergland:
+
'''(4)'''&nbsp; Profil $\rm HT$ (englisch "Hilly Terrain") &nbsp;&nbsp;&#8658;&nbsp;&nbsp; hügeliges Gebiet und Bergland:
::<math>{{\it \Phi}_{\rm V}(\tau)}/{\it \Phi}_{\rm 0}   
+
::<math>{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0}   
 
  = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\
 
  = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\
  0.04 \cdot {\rm e}^{ (15\,{\rm \mu s}-\tau) / \tau_0}  \end{array} \right.\quad
+
  0.04 \cdot {\rm e}^{ (15\,{\rm &micro; s}-\tau) / \tau_0}  \end{array} \right.\quad
\begin{array}{*{1}l} \hspace{-0.4cm} {\rm im \hspace{0.15cm}Bereich}\hspace{0.15cm} 0 < \tau < 2\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.286\,{\rm \mu s}\hspace{0.05cm},
+
\begin{array}{*{1}l} \hspace{-0.25cm} {\rm für}\hspace{0.3cm} 0 < \tau < 2\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.286\,{\rm &micro; s}\hspace{0.05cm},
\\  \hspace{-0.4cm} {\rm im \hspace{0.15cm}Bereich}\hspace{0.15cm} 15\,{\rm \mu s} < \tau < 20\,{\rm \mu s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm \mu s} \hspace{0.05cm}. \\ \end{array}</math>
+
\\  \hspace{-0.25cm} {\rm für}\hspace{0.3cm} 15\,{\rm &micro; s} < \tau < 20\,{\rm &micro; s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm &micro; s} \hspace{0.05cm}. \\ \end{array}</math>
 
 
Die Grafik zeigt die Verzögerungs&ndash;Leistungsdichte dieser Profile in logarithmischer Darstellung. Aus den Exponentialfunktionen bei linearer Darstellung werden nun geradlinige Verläufe.<br>
 
  
[[Datei:P ID2175 Mob T 2 3 S4a v1.png|Verzögerungs–Leistungsdichte nach COST|class=fit]]<br>
+
Man erkennt aus den Grafiken:
 +
*Aus den Exponentialfunktionen bei linearer Darstellung werden nun geradlinige Verläufe.
  
Bei dieser logarithmischen Darstellung kann man den LDS&ndash;Parameter <i>&tau;</i><sub>0</sub> bei 10 &middot lg(1/e) = &ndash;4.34 dB ablesen, wie in der Grafik für das TU-Profil eingezeichnet. Auf diese vier COST&ndash;Profile wird in der Aufgabe A2.8 noch genauer eingegangen.
+
*Bei logarithmischer Darstellung kann man den LDS&ndash;Parameter&nbsp; $\tau_0$&nbsp; bei&nbsp; $\rm 10 \cdot  lg \ (1/e) = -4.34 \ dB$&nbsp; ablesen, wie in der Grafik für das&nbsp; $\rm TU$-Profil eingezeichnet.
 +
 
 +
*Auf diese vier COST&ndash;Profile wird in der&nbsp; [[Aufgaben:Aufgabe_2.8:_COST-Verzögerungsmodelle|Aufgabe 2.8]]&nbsp; noch genauer eingegangen.}}
 +
<br clear =all>
  
 
== AKF und LDS der frequenzvarianten Übertragungsfunktion ==
 
== AKF und LDS der frequenzvarianten Übertragungsfunktion ==
 
<br>
 
<br>
Die in der [http://www.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme_.281.29 Grafik] auf der ersten Seite dieses Kapitels unten dargestellte Systemfunktion <i>&eta;</i><sub>FD</sub>(<i>f</i>, <i>f</i><sub>D</sub>) wird auch frequenzvariante Übertragungsfunktion genannt, wobei sich das Adjektiv &bdquo;frequenzvariant&rdquo; auf die Dopplerfrequenz bezieht. Die dazugehörige AKF ist wie folgt definiert:
+
Die in der&nbsp; [[Mobile_Kommunikation/Das_GWSSUS–Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme|Übersicht auf der ersten Seite dieses Kapitels]]&nbsp; unten dargestellte Systemfunktion&nbsp; $\eta_{\rm FD}(f, f_{\rm D})$&nbsp; wird auch&nbsp; ''frequenzvariante Übertragungsfunktion''&nbsp; genannt, wobei sich das Adjektiv &bdquo;frequenzvariant&rdquo; auf die Dopplerfrequenz bezieht.  
 +
 
 +
Die dazugehörige AKF ist wie folgt definiert:
  
:<math>\varphi_{\rm FD}(f_1, f_{\rm D_1}, f_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm FD}(f_1, f_{\rm D_1}) \cdot  
+
::<math>\varphi_{\rm FD}(f_1, f_{\rm D_1}, f_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm FD}(f_1, f_{\rm D_1}) \cdot  
 
  \eta_{\rm FZ}^{\star}(f_2, f_{\rm D_2}) \right ]\hspace{0.05cm}. </math>
 
  \eta_{\rm FZ}^{\star}(f_2, f_{\rm D_2}) \right ]\hspace{0.05cm}. </math>
  
Durch ähnliche Überlegungen wie auf der letzten Seite kann man diese Autokorrelationsfunktion unter GWSSUS&ndash;Bedingungen wie folgt darstellen:
+
Durch ähnliche Überlegungen wie auf der&nbsp; [[Mobile_Kommunikation/Das_GWSSUS–Kanalmodell#Autokorrelationsfunktion_der_zeitvarianten_Impulsantwort|vorletzten Seite]]&nbsp; kann man diese Autokorrelationsfunktion unter GWSSUS&ndash;Bedingungen wie folgt darstellen:
  
:<math>\varphi_{\rm FD}(\Delta f, \Delta f_{\rm D}) = \delta(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \hspace{0.05cm}.</math>
+
::<math>\varphi_{\rm FD}(\Delta f, \Delta f_{\rm D}) = \delta(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \hspace{0.05cm}.</math>
  
 
Dabei gilt:
 
Dabei gilt:
*<i>&Phi;</i><sub>FD</sub>(&Delta;<i>f</i>, <i>f</i><sub>D</sub>) ist das sogenannte <i>Frequenz&ndash;Doppler&ndash;Kreuzleistungsdichtespektrum</i>, das in der Grafik am Seitenende durch gelbe Hinterlegung hervorgehoben ist.<br>
+
*${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; ist das so genannte&nbsp; '''Frequenz&ndash;Doppler&ndash;Kreuzleistungsdichtespektrum''', das in der Grafik am Seitenende durch gelbe Hinterlegung hervorgehoben ist.<br>
  
*Das erste Argument &Delta;<i>f</i> = <i>f</i><sub>2</sub> &ndash; <i>f</i><sub>1</sub> berücksichtigt, dass aufgrund der <i>Stationarität</i> die AKF und das LDS nur von der Frequenzdifferenz abhängen.<br>
+
*Das erste Argument&nbsp; $\Delta f = f_2 - f_1$&nbsp; berücksichtigt, dass AKF und LDS aufgrund der Stationarität nur von der Frequenzdifferenz abhängen.
 +
 +
*Der Faktor&nbsp; $\delta (\Delta  f_{\rm D})$&nbsp; mit&nbsp;  $\Delta  f_{\rm D} = f_{\rm D_2} - f_{\rm D_1}$&nbsp;  drückt die Unkorreliertheit der AKF bezüglich der Dopplerverschiebung aus.<br>
  
*Der Faktor <i>&delta;</i>(&Delta;<i>f</i><sub>D</sub>) mit  &Delta;<i>f</i><sub>D</sub> = <i>f</i><sub>D</sub><sub>2</sub> &ndash; <i>f</i><sub>D</sub><sub>1</sub> drückt die <i>Unkorreliertheit</i> der AKF bezüglich der Dopplerverschiebung aus.<br>
+
*Man kommt von&nbsp; ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; zum&nbsp; '''Doppler&ndash;Leistungsdichtespektrum'''&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$, wenn man&nbsp; $\Delta f= 0$&nbsp; setzt.
 +
 +
*Das Doppler&ndash;Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; gibt an, mit welcher Leistung einzelne Dopplerfrequenzen auftreten.<br>
  
*Man kommt von <i>&Phi;</i><sub>FD</sub>(&Delta;<i>f</i>,&nbsp;<i>f</i><sub>D</sub>)&nbsp;zum Doppler&ndash;Leistungsdichtespektrum <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>), wenn man &Delta;<i>f</i> = 0 setzt. <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>) gibt an, mit welcher Leistung einzelne Dopplerfrequenzen auftreten.<br>
+
*Die Wahrscheinlichkeitsdichte der Dopplerfrequenz ergibt sich aus&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; durch geeignete Flächennormierung.&nbsp; Die WDF weist wie&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; die Einheit&nbsp; $\rm [1/Hz]$&nbsp; auf:
  
*Die <i>Wahrscheinlichkeitsdichte</i> der Dopplerfrequenz ergibt sich aus <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>) durch geeignete Flächennormierung. Diese weist wie <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>) die Einheit [1/Hz] auf:
+
[[Datei:P ID2173 Mob T 2 3 S5 v1.png|right|frame|Zur Berechnung des Doppler–Leistungsdichtespektrums|class=fit]]
  
 
::<math>{\rm WDF}_{\rm D}(f_{\rm D}) = \frac{{\it \Phi}_{\rm D}(f_{\rm D})}{\int_{-\infty }^{+\infty}{\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.15cm}{\rm d}f_{\rm D}} \hspace{0.05cm}.</math>
 
::<math>{\rm WDF}_{\rm D}(f_{\rm D}) = \frac{{\it \Phi}_{\rm D}(f_{\rm D})}{\int_{-\infty }^{+\infty}{\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.15cm}{\rm d}f_{\rm D}} \hspace{0.05cm}.</math>
  
*In vielen Fällen, so zum Beispiel für eine vertikale Monopulsantenne im isotrop gestreuten Feld, ist <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>) durch das [http://www.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading Jakes&ndash;Spektrum] gegeben.<br><br>
+
*Oft, so zum Beispiel für eine vertikale Monopulsantenne im isotrop gestreuten Feld, ist&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; durch das&nbsp; [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading| Jakes&ndash;Spektrum]]&nbsp; gegeben.<br>
 
 
Das <i>Frequenz&ndash;Doppler&ndash;Kreuzleistungsdichtespektrum</i> <i>&Phi;</i><sub>FD</sub>(&Delta;<i>f</i>, <i>f</i><sub>D</sub>) ist in der folgenden Grafik gelb hinterlegt.<br>
 
  
[[Datei:P ID2173 Mob T 2 3 S5 v1.png|Zur Berechnung des Doppler–Leistungsdichtespektrums|class=fit]]<br>
 
  
Eingezeichnet sind in dieser Grafik auch die Fourierzusammenhänge zu den benachbarten GWSSUS&ndash;Systembeschreibungsfunktionen.<br>
+
Das Frequenz&ndash;Doppler&ndash;Kreuzleistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; ist gelb hinterlegt.
Wir verweisen hier auf das folgende Interaktionsmodul:<br>
+
*Eingezeichnet sind auch die Fourierzusammenhänge zu den benachbarten GWSSUS&ndash;Systembeschreibungsfunktionen.<br>
[[Zur Verdeutlichung des Dopplereffekts Please add link and do not upload flash videos.]]
 
  
 +
*Wir verweisen hier auf das interaktive Applet&nbsp; [[Applets:Zur_Verdeutlichung_des_Dopplereffekts|Zur Verdeutlichung des Dopplereffekts]].
 +
<br clear=all>
 
== AKF und LDS der Verzögerungs–Doppler–Funktion ==
 
== AKF und LDS der Verzögerungs–Doppler–Funktion ==
 
<br>
 
<br>
Die in der [http://www.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme_.281.29 Übersicht] auf der ersten Seite von Kapitel 2.3 links dargestellte Systemfunktion wurde mit <i>&eta;</i><sub>VD</sub>(<i>&tau;</i>, <i>f</i><sub>D</sub>) bezeichnet. Die AKF dieser Verzögerungs&ndash;Doppler&ndash;Funktion kann unter Berücksichtigung der GWSSUS&ndash;Eigenschaften mit &Delta;<i>&tau;</i> = <i>&tau;</i><sub>2</sub> &ndash; <i>&tau;</i><sub>1</sub> und &Delta;<i>f</i><sub>D</sub> = <i>f</i><sub>D</sub><sub>2</sub> &ndash; <i>f</i><sub>D</sub><sub>1</sub> wie folgt geschrieben werden:
+
Die in der&nbsp;  [[Mobile_Kommunikation/Das_GWSSUS–Kanalmodell#Verallgemeinerte_Systemfunktionen_zeitvarianter_Systeme|Übersicht auf der ersten Seite dieses Kapitels]]&nbsp;  links dargestellte Systemfunktion wurde mit&nbsp; $\eta_{\rm VD}(\tau, f_{\rm D})$&nbsp; bezeichnet.&nbsp; Die AKF dieser Verzögerungs&ndash;Doppler&ndash;Funktion kann unter Berücksichtigung der GWSSUS&ndash;Eigenschaften mit&nbsp; $\Delta \tau = \tau_2 - \tau_1$&nbsp; und&nbsp; $\Delta f_{\rm D} = f_{\rm D2} - f_{\rm D1}$&nbsp; wie folgt geschrieben werden:
  
:<math>\varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = \varphi_{\rm VD}(\Delta \tau, \Delta f_{\rm D}) =  
+
::<math>\varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = \varphi_{\rm VD}(\Delta \tau, \Delta f_{\rm D}) =  
 
  \delta(\Delta \tau) \cdot {\rm \delta}(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \hspace{0.05cm}.</math>
 
  \delta(\Delta \tau) \cdot {\rm \delta}(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \hspace{0.05cm}.</math>
  
 
Zu dieser Gleichung ist anzumerken:
 
Zu dieser Gleichung ist anzumerken:
*Die erste Diracfunktion &delta;(&Delta;<i>&tau;</i>)  berücksichtigt, dass die Verzögerungen unkorreliert sind (&bdquo;<i>Uncorrelated Scattering</i>&rdquo;), die zweite Diracfunktion &delta;(&Delta;<i>f</i><sub>D</sub>) folgt aus der Stationarität (&bdquo;<i>Wide Sense Stationary</i>&rdquo;).<br>
+
*Die erste Diracfunktion&nbsp; $\delta (\Delta \tau)$&nbsp; berücksichtigt, dass die Verzögerungen unkorreliert sind (&bdquo;<i>Uncorrelated Scattering</i>&rdquo;).
 +
 +
*Die zweite Diracfunktion&nbsp; $\delta (\Delta   f_{\rm D})$&nbsp; folgt aus der Stationarität (&bdquo;<i>Wide Sense Stationary</i>&rdquo;).<br>
  
*Das Verzögerungs&ndash;Doppler&ndash;Leistungsdichtespektrum <i>&Phi;</i><sub>VD</sub>(<i>&tau;</i>, <i>f</i><sub>D</sub>) &ndash; auch Scatter&ndash;LDS genannt &ndash; kann aus <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>, &Delta;<i>t</i>) bzw. <i>&Phi;</i><sub>FD</sub>(&Delta;<i>f</i>, <i>f</i><sub>D</sub>) wie folgt berechnet werden:
+
*Das Verzögerungs&ndash;Doppler&ndash;Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$&nbsp; &ndash; auch &nbsp;'''Scatter&ndash;LDS'''&nbsp; genannt &ndash; kann aus&nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$&nbsp; bzw.&nbsp; ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; berechnet werden:
  
::<math>{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm}  = \hspace{-0.1cm} {\rm F}_{\Delta t} \left [ {\it \Phi}_{\rm VZ}(\tau, \Delta t) \right ]
+
::<math>{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) ={\rm F}_{\Delta t} \big [ {\it \Phi}_{\rm VZ}(\tau, \Delta t) \big ]
  = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm VZ}(\tau, \Delta t) \cdot {\rm exp}(- {\rm j}\cdot 2 \pi \cdot f_{\rm D} \cdot \Delta t)\hspace{0.15cm}{\rm d}\Delta t \hspace{0.05cm},</math>
+
  = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm VZ}(\tau, \Delta t) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm D} \hspace{0.05cm}\cdot \hspace{0.05cm}\Delta t}\hspace{0.15cm}{\rm d}\Delta t \hspace{0.05cm},</math>
::<math>{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \hspace{-0.1cm}  = \hspace{-0.1cm} {\rm F}_{f_{\rm D}}^{-1} \left [ {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \right ]
+
::<math>{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\rm F}_{f_{\rm D}}^{-1} \big [ {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \big ]
  = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \cdot {\rm exp}({\rm j}\cdot 2 \pi \cdot \tau \cdot \Delta f)\hspace{0.15cm}{\rm d}\Delta f \hspace{0.05cm}. </math>
+
  = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \cdot {\rm e}^{+{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \tau \hspace{0.05cm}\cdot \hspace{0.05cm} \Delta f}\hspace{0.15cm}{\rm d}\Delta f \hspace{0.05cm}. </math>
  
*Sowohl die Systemfunktion <i>&eta;</i><sub>VD</sub>(<i>&tau;</i>, <i>f</i><sub>D</sub>) als auch die abgeleiteten Funktionen <i>&phi;</i><sub>VD</sub>(&Delta;<i>&tau;</i>, &Delta;<i>f</i><sub>D</sub>) und <i>&Phi;</i><sub>VD</sub>(<i>&tau;</i>, <i>f</i><sub>D</sub>) sind dimensionslos. Nähere Angaben hierüber finden Sie in Aufgabe A2.6.
+
*Sowohl die Systemfunktion&nbsp; $\eta_{\rm VD}(\tau, f_{\rm D})$&nbsp; als auch die abgeleiteten Funktionen&nbsp; $\varphi _{\rm VD}(\Delta \tau, \Delta f_{\rm D})$&nbsp; und&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$&nbsp; sind dimensionslos.&nbsp; Nähere Angaben hierüber finden Sie in der Angabe zu&nbsp; [[Aufgaben:Aufgabe_2.6:_Einheiten_bei_GWSSUS|Aufgabe 2.6]].
  
 
*Weiterhin ist bei Erfüllung der GWSSUS&ndash;Voraussetzungen die Scatterfunktion gleich dem Produkt aus Verzögerungs&ndash; und Doppler&ndash;Leistungsdichtespektrum:
 
*Weiterhin ist bei Erfüllung der GWSSUS&ndash;Voraussetzungen die Scatterfunktion gleich dem Produkt aus Verzögerungs&ndash; und Doppler&ndash;Leistungsdichtespektrum:
Zeile 222: Zeile 245:
 
::<math>{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.</math>
 
::<math>{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.</math>
  
Die Abbildung fasst die bisherigen Ergebnisse dieses Kapitels zusammen, wobei die auf dieser Seite beschriebenen Leistungsdichtespektren farblich hervorgehoben sind.<br>
+
[[Datei:P ID2171 Mob T 2 3 S6 v1.png|right|frame|Eindimensionale Beschreibungsfunktionen des GWSSUS–Modells|class=fit]]
 +
{{BlaueBox|TEXT= 
 +
$\text{Fazit:}$&nbsp; Die Abbildung fasst die bisherigen Ergebnisse dieses Kapitels zusammen.  
  
[[Datei:P ID2171 Mob T 2 3 S6 v1.png|Eindimensionale Beschreibungsfunktion des GWSSUS–Modells|class=fit]]<br>
+
Festzuhalten ist:
  
Festzuhalten ist:
+
'''(1)''' &nbsp; Der Einfluss der Verzögerungszeit (Laufzeit)&nbsp; $\tau$&nbsp; und der Dopplerfrequenz&nbsp; $f_{\rm D}$&nbsp; lässt sich separieren
*Der Einfluss der Verzögerungszeit (Laufzeit)  <i>&tau;</i> und der Dopplerfrequenz <i>f</i><sub>D</sub> lässt sich durch die Leistungsdichtespektren <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) und <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>) separieren.<br>
+
*in das blaue Leistungsdichtespektrum ${\it \Phi}_{\rm V}(\tau)$, und  
 +
*das rote Leistungsdichtespektrum  ${\it \Phi}_{\rm D}(f_{\rm D})$.<br>
  
*Die 2D&ndash;Verzögerungs&ndash;Doppler&ndash;Leistungsdichte <i>&Phi;</i><sub>VD</sub>(<i>&tau;</i>, <i>f</i><sub>D</sub>) ist gleich dem Produkt aus <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) und <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>).<br>
 
  
 +
'''(2)''' &nbsp; Das 2D&ndash;Verzögerungs&ndash;Doppler&ndash;Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$&nbsp; ist gleich dem Produkt aus diesen beiden Anteilen.}}
 +
<br clear=all>
 
== AKF und LDS der zeitvarianten Übertragungsfunktion ==
 
== AKF und LDS der zeitvarianten Übertragungsfunktion ==
 
<br>
 
<br>
Die folgende Grafik zeigt alle Zusammenhänge zwischen den einzelnen Leistungsdichtespektren nochmals in kompakter Form. Auf den letzten Seiten wurden dabei bereits behandelt:
+
Die folgende Grafik zeigt alle Zusammenhänge zwischen den einzelnen Leistungsdichtespektren nochmals in kompakter Form.  
*[http://www.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#AKF_und_LDS_der_zeitvarianten_Impulsantwort_.281.29 Verzögerungs&ndash;Zeit&ndash;Kreuzleistungsdichtespektrum] <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>, &Delta;<i>t</i>); mit &Delta;<i>t</i> = 0 &nbsp;&#8658;&nbsp; <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) ,<br>
+
[[Datei:P ID2176 Mob T 2 3 S7 v1.png|right|frame|Kompakte Zusammenstellung aller GWSSUS–Beschreibungsgrößen|class=fit]]
 
+
Auf den letzten Seiten wurden dabei bereits behandelt:
*[http://www.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#AKF_und_LDS_der_frequenzvarianten_.C3.9Cbertragungsfunktion Frequenz&ndash;Doppler&ndash;Kreuzleistungsdichtespektrum] <i>&Phi;</i><sub>FD</sub>(&Delta;<i>f</i>, <i>f</i><sub>D</sub>); mit &Delta;<i>f</i> = 0 &nbsp;&#8658;&nbsp; <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>),<br>
+
*das&nbsp; [[Mobile_Kommunikation/Das_GWSSUS–Kanalmodell#Autokorrelationsfunktion_der_zeitvarianten_Impulsantwort|Verzögerungs&ndash;Zeit&ndash;Kreuzleistungsdichtespektrum]]:
 
+
:$${\it \Phi}_{\rm VZ}(\tau, \Delta t)\hspace{0.55cm}\Rightarrow \hspace{0.3cm}\text{mit}  \hspace{0.2cm}\Delta t = 0\text{:}  \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau),$$
*[http://www.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#AKF_und_LDS_der_Verz.C3.B6gerungs.E2.80.93Doppler.E2.80.93Funktion Verzögerungs&ndash;Doppler&ndash;Kreuzleistungsdichtespektrum] <i>&Phi;</i><sub>VD</sub>(<i>&tau;</i>, <i>f</i><sub>D</sub>) &nbsp;&#8658;&nbsp; <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) &middot; <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>).<br>
+
*das&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#AKF_und_LDS_der_frequenzvarianten_.C3.9Cbertragungsfunktion |Frequenz&ndash;Doppler&ndash;Kreuzleistungsdichtespektrum]]:
 +
:$${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{mit}  \hspace{0.2cm}\Delta f = 0\text{:} \hspace{0.2cm} {\it \Phi}_{\rm D}( f_{\rm D}),$$
 +
*das&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#AKF_und_LDS_der_Verz.C3.B6gerungs.E2.80.93Doppler.E2.80.93Funktion |Verzögerungs&ndash;Doppler&ndash;Kreuzleistungsdichtespektrum]]:
 +
:$${\it \Phi}_{\rm VD}(\tau, f_{\rm D})= {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.$$
  
:[[Datei:P ID2176 Mob T 2 3 S7 v1.png|Zusammenstellung aller GWSSUS–Beschreibungsgrößen|class=fit]]<br>
 
  
Bisher noch nicht betrachtet wurde die gelb markierte Frequenz&ndash;Zeit&ndash;Korrelationsfunktion
+
Bisher noch nicht betrachtet wurde die&nbsp; '''Frequenz&ndash;Zeit&ndash;Korrelationsfunktion''' <br>(in nebenstehender Grafik  gelb markiert):
  
:<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \left [ \eta_{\rm FZ}(f_1, t_1) \cdot  
+
::<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \left [ \eta_{\rm FZ}(f_1, t_1) \cdot  
 
  \eta_{\rm FZ}^{\star}(f_2, t_2) \right ]\hspace{0.05cm}.</math>
 
  \eta_{\rm FZ}^{\star}(f_2, t_2) \right ]\hspace{0.05cm}.</math>
  
Berücksichtigt man wieder die GWSSUS&ndash;Vereinfachungen sowie die Identität <i>&eta;</i><sub>VZ</sub>(<i>f</i>, <i>t</i>) = <i>H</i>(<i>f</i>, <i>t</i>), so lässt sich diese AKF mit &Delta;<i>f</i> = <i>f</i><sub>2</sub> &ndash; <i>f</i><sub>1</sub> und &Delta;<i>t</i> = <i>t</i><sub>2</sub> &ndash; <i>t</i><sub>1</sub> auch wie folgt schreiben:
+
Berücksichtigt man wieder die GWSSUS&ndash;Vereinfachungen sowie die Identität&nbsp; $\eta_{\rm FZ}(f, \hspace{0.05cm}t) = H(f, \hspace{0.05cm}t)$, so lässt sich die AKF mit&nbsp; $\Delta f = f_2 - f_1$&nbsp; und&nbsp; $\Delta t = t_2 - t_1$&nbsp; auch wie folgt schreiben:
  
:<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\varphi_{\rm FZ}(\Delta f, \Delta t)
+
::<math>\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\varphi_{\rm FZ}(\Delta f, \Delta t)
  = {\rm E} \left [ H(f, t) \cdot  
+
  = {\rm E} \big [ H(f, t) \cdot  
  H^{\star}(f + \Delta f, t + \Delta t) \right ]\hspace{0.05cm}.</math>
+
  H^{\star}(f + \Delta f, t + \Delta t) \big ]\hspace{0.05cm}.</math>
  
 
Hierzu ist anzumerken:
 
Hierzu ist anzumerken:
*Schon an der Namensgebung ist zu erkennen, dass <i>&phi;</i><sub>FZ</sub>(&Delta;<i>f</i>, &Delta;<i>t</i>) eine Korrelationsfunktion ist und kein Leistungsdichtespektrum wie die Funktionen <i>&Phi;</i><sub>VZ</sub>(<i>&tau;</i>, &Delta;<i>t</i>),  <i>&Phi;</i><sub>FD</sub>(&Delta;<i>f</i>, <i>f</i><sub>D</sub>), <i>&Phi;</i><sub>VD</sub>(<i>&tau;</i>, <i>f</i><sub>D</sub>).<br>
+
*Schon an der Namensgebung ist zu erkennen, dass&nbsp; $\varphi_{\rm FZ}(\Delta f, \Delta t)$&nbsp; eine Korrelationsfunktion ist und kein Leistungsdichtespektrum wie die Funktionen&nbsp; ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$,&nbsp; ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$&nbsp; und&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$.<br>
  
 
*Die Fourierzusammenhänge mit den benachbarten Funktionen lauten:
 
*Die Fourierzusammenhänge mit den benachbarten Funktionen lauten:
Zeile 263: Zeile 292:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Setzt man in dieser zweidimensionalen Funktion die Parameter &Delta;<i>t</i> = 0 bzw. &Delta;<i>f</i> = 0, so ergeben sich die separaten Korrelationsfunktionen für den Frequenz&ndash; bzw. Zeitbereich:
+
*Setzt man in dieser 2D&ndash; Funktion die Parameter&nbsp; $\Delta t = 0$&nbsp; bzw.&nbsp; $\Delta f = 0$, so ergeben sich die separaten Korrelationsfunktionen für den Frequenz&ndash; bzw. den Zeitbereich:
  
::<math>\varphi_{\rm F}(\Delta f) =  \varphi_{\rm FZ}(\Delta f, \Delta t = 0) \hspace{0.05cm},\hspace{0.2cm}
+
::<math>\varphi_{\rm F}(\Delta f) =  \varphi_{\rm FZ}(\Delta f, \Delta t = 0) \hspace{0.05cm},</math>
\varphi_{\rm Z}(\Delta t) =  \varphi_{\rm FZ}(\Delta f = 0, \Delta t ) \hspace{0.05cm}.</math>
+
::<math>\varphi_{\rm Z}(\Delta t) =  \varphi_{\rm FZ}(\Delta f = 0, \Delta t ) \hspace{0.05cm}.</math>
  
*Aus der Grafik wird auch deutlich, dass diese Korrelationsfunktionen mit den hergeleiteten Leistungsdichtespektren wieder über die Fouriertransformation korrespondieren:
+
*Aus obiger Grafik wird auch deutlich, dass diese Korrelationsfunktionen mit den hergeleiteten Leistungsdichtespektren über die Fouriertransformation korrespondieren:
  
 
::<math>\varphi_{\rm F}(\Delta f) \hspace{0.2cm}  {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm},  
 
::<math>\varphi_{\rm F}(\Delta f) \hspace{0.2cm}  {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm},  
 
\hspace{0.4cm}\varphi_{\rm Z}(\Delta t) \hspace{0.2cm}  {\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.</math><br>
 
\hspace{0.4cm}\varphi_{\rm Z}(\Delta t) \hspace{0.2cm}  {\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.</math><br>
  
== Kenngrößen des GWSSUS–Modells (1) ==
+
== Kenngrößen des GWSSUS–Modells==
 
<br>
 
<br>
 
Entsprechend den Ergebnissen der letzten Seite wird der Mobilfunkkanal durch
 
Entsprechend den Ergebnissen der letzten Seite wird der Mobilfunkkanal durch
*das Verzögerungs&ndash;Leistungsdichtespektrum <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) und<br>
+
*das Verzögerungs&ndash;Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; und<br>
 +
 
 +
*das Doppler&ndash;Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$<br><br>
  
*das Doppler&ndash;Leistungsdichtespektrum <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>)<br><br>
+
vollständig beschrieben.&nbsp; Durch geeignete Normierung auf die jeweilige Fläche&nbsp; $1$&nbsp; ergeben sich daraus die Dichtefunktionen bezüglich der Verzögerungszeit&nbsp; $\tau$&nbsp; bzw. der Dopplerfrequenz&nbsp; $f_{\rm D}$.<br>
  
vollständig beschrieben. Durch geeignete Normierung auf die jeweilige Fläche 1 ergeben sich daraus die Dichtefunktionen bezüglich der Verzögerungszeit <i>&tau;</i> bzw. der Dopplerfrequenz <i>f</i><sub>D</sub>.<br>
+
Aus den Leistungsdichtespektren bzw. den zugehörigen Korrelationsfunktionen können Kenngrößen abgeleitet werden.&nbsp; Die wichtigsten sind hier zusammengestellt:
  
Aus den Leistungsdichtespektren bzw. den zugehörigen Korrelationsfunktionen können Kenngrößen abgeleitet werden. Die wichtigsten sind hier zusammengestellt:
+
{{BlaueBox|TEXT= 
*Die Mehrwegeverbreiterung (englisch: <i>Time Delay Spread</i> oder <i>Multipath Spread</i>) <i>T</i><sub>V</sub> gibt die Verbreiterung an, die ein Diracimpuls durch den Kanal im statistischen Mittel erfährt. <i>T</i><sub>V</sub> ist definiert als die Standardabweichung (<i>&sigma;</i><sub>V</sub>) der Zufallsgröße <i>&tau;</i>:
+
$\text{Definition:}$&nbsp; Die&nbsp; '''Mehrwegeverbreiterung'''&nbsp; (englisch: &nbsp;"Time Delay Spread"&nbsp; oder&nbsp; "Multipath Spread")&nbsp; $T_{\rm V}$&nbsp; gibt die Verbreiterung an, die ein Diracimpuls durch den Kanal im statistischen Mittel erfährt.&nbsp; $T_{\rm V}$&nbsp; ist definiert als die Standardabweichung&nbsp; $(\sigma_{\rm V})$&nbsp; der Zufallsgröße&nbsp; $\tau$:
  
::<math>T_{\rm V} = \sigma_{\rm V} = \sqrt{{\rm E} \left [ \tau^2 \right ] - m_{\rm V}^2}
+
::<math>T_{\rm V} = \sigma_{\rm V} = \sqrt{ {\rm E} \big [ \tau^2 \big ] - m_{\rm V}^2}
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
:Der  Mittelwert <i>m</i><sub>V</sub> = <i>E</i>[<i>&tau;</i>] ist eine für alle Signalanteile <i>gleiche mittlere Laufzeit</i> (englisch: <i>Average Excess Delay</i>). <i>E</i>[<i>&tau;</i><sup>2</sup>] ist als quadratischer Mittelwert zu berechnen.
+
*Der  Mittelwert&nbsp; $m_{\rm V} = {\rm E}\big[\tau \big]$&nbsp; ist eine für alle Signalanteile &bdquo;gleiche mittlere Laufzeit&rdquo; (englisch: &nbsp; <i>Average Excess Delay</i>).  
 +
*${\rm E} \big [ \tau^2 \big ] $&nbsp; ist als quadratischer Mittelwert zu berechnen.}}
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; Die&nbsp; '''Kohärenzbandbreite'''&nbsp; $B_{\rm K}$&nbsp; (englisch: &nbsp; "Coherence Bandwidth")&nbsp; ist derjenige&nbsp; $\Delta f$&ndash;Wert, bei dem der Frequenz&ndash;Korrelationsfunktion betragsmäßig erstmals auf die Hälfte abgesunken ist.
 +
 
 +
::<math>\vert \varphi_{\rm F}(\Delta f = B_{\rm K})\vert  \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm F}(\Delta f = 0)\vert \hspace{0.05cm}.</math>
  
*Die Kohärenzbandbreite <i>B</i><sub>K</sub> (englisch: <i>Coherence Bandwidth</i>) ist derjenige &Delta;<i>f</i>&ndash;Wert, bei dem der Betrag der Frequenzkorrelationsfunktion erstmals auf die Hälfte abgesunken ist.
+
*$B_{\rm K}$&nbsp; ist ein Maß für die Frequenzdifferenz, um die sich zwei harmonische Schwingungen mindestens unterscheiden müssen, damit sie völlig andere Kanalübertragungseigenschaften vorfinden.
 +
*Ist die Signalbandbreite&nbsp; $B_{\rm S} <B_{\rm K}$, so werden alle Spektralanteile durch den Kanal annähernd gleich verändert. <br>Das heißt: &nbsp; Genau dann liegt nichtfrequenzselektives Fading vor.}}
  
::<math>|\varphi_{\rm F}(\Delta f = B_{\rm K})| \stackrel {!}{=} {1}/{2} \cdot |\varphi_{\rm F}(\Delta f = 0)| \hspace{0.05cm}.</math>
 
  
:<i>B</i><sub>K</sub> ist ein Maß für die Frequenzdifferenz, um die sich zwei Sinussignale unterscheiden müssen, damit sie vollständig andere Kanalübertragungseigenschaften vorfinden. Ist die Signalbandbreite <i>B</i><sub>S</sub> < <i>B</i><sub>K</sub>, so werden alle Spektralanteile durch den Kanal annähernd gleich verändert. Das heißt: Genau dann liegt nichtfrequenzselektives Fading vor.<br><br>
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp; In der Grafik links dargestellt ist die Verzögerungsleistungsdichte&nbsp; ${\it \Phi}_{\rm V}(\tau)$
 +
[[Datei:P ID2177 Mob T 2 3 S8 v3.png|right|frame|Mehrwegeverbreiterung und Kohärenzbandbreite|class=fit]]
 +
*mit&nbsp; $T_{\rm V} = 1 \ \rm &micro;s$&nbsp; (rote Kurve),  
 +
*mit&nbsp; $T_{\rm V} = 2 \ \rm &micro; s$&nbsp; (blaue Kurve).  
  
In der Grafik links dargestellt ist die Verzögerungsleistungsdichte <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) mit <i>T</i><sub>V</sub> = 1 &mu;s (rote Kurve) bzw. mit <i>T</i><sub>V</sub> = 2 &mu;s (blaue Kurve). Die zugehörigen Kohärenzbandbreiten <i>B</i><sub>K</sub> = 276 kHz bzw. <i>B</i><sub>K</sub> = 138 kHz sind in der <i>&phi;</i><sub>F</sub>(&Delta;<i>f</i>)&ndash;Darstellung eingezeichnet.<br>
 
  
[[Datei:P ID2177 Mob T 2 3 S8 v3.png|Mehrwegeverbreiterung und Kohärenzbandbreite|class=fit]]<br>
+
In der rechten&nbsp; $\varphi_{\rm F}(\Delta f)$&ndash;Darstellung sind die Kohärenzbandbreiten  eingezeichnet:
 +
*$B_{\rm K} = 276  \ \rm  kHz$&nbsp;  (rote Kurve),
 +
*$B_{\rm K} = 138  \ \rm  kHz$&nbsp;  (blaue Kurve).
  
Die aus <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) berechenbare Mehrwegeverbreiterung <i>T</i><sub>V</sub> steht mit der durch <i>&phi;</i><sub>F</sub>(&Delta;<i>f</i>) festgelegten Kohärenzbandbreite <i>B</i><sub>K</sub> in einem festen Verhältnis zueinander: <i>B</i><sub>K</sub> &asymp; 0.276/<i>T</i><sub>V</sub>. Die oft benutzte Näherung [http://www.lntwww.de/Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk#Koh.C3.A4renzbandbreite_in_Abh.C3.A4ngigkeit_von_M <i>B</i><sub>K</sub>' = 1/<i>T</i><sub>V</sub>] ist bei exponentiellem <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) sehr ungenau.
 
  
== Kenngrößen des GWSSUS–Modells (2) ==
+
Man erkennt aus diesen Zahlenwerten:
<br>
+
*Die aus&nbsp; ${\it \Phi}_{\rm V}(\tau)$&nbsp; berechenbare Mehrwegeverbreiterung&nbsp; $T_{\rm V}$&nbsp; steht mit der durch&nbsp; $\varphi_{\rm F}(\Delta f)$&nbsp; festgelegten Kohärenzbandbreite&nbsp; $B_{\rm K}$&nbsp; in einem festen Verhältnis zueinander: &nbsp; $B_{\rm K} \approx 0.276/T_{\rm V}$.
Betrachten wir nun die Kenngrößen der Zeitvarianz, die von der Zeitkorrelationsfunktion <i>&phi;</i><sub>Z</sub>(&Delta;<i>t</i>) bzw. vom Doppler&ndash;Leistungsdichtespektrum <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>) abgeleitet werden:
+
*Die oft&nbsp;  [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk#Koh.C3.A4renzbandbreite_in_Abh.C3.A4ngigkeit_von_M|benutzte Näherung]]&nbsp; $B_{\rm K}\hspace{0.02cm}' \approx 1/T_{\rm V}$&nbsp; ist hingegen bei exponentiellem&nbsp;  ${\it \Phi}_{\rm V}(\tau)$&nbsp; sehr ungenau.}}
*Die Korrelationsdauer <i>T</i><sub>D</sub> (englisch: <i>Coherence Time</i>) gibt die Zeit an, die im Mittel vergehen muss, bis der Kanal seine Übertragungseigenschaften aufgrund der Zeitvarianz völlig geändert hat. Die Definition ist vergleichbar mit der für die [http://www.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Kenngr.C3.B6.C3.9Fen_des_GWSSUS.E2.80.93Modells_.281.29 Kohärenzbandbreite]:
 
  
::<math>|\varphi_{\rm Z}(\Delta t = T_{\rm D})| \stackrel {!}{=} {1}/{2} \cdot |\varphi_{\rm Z}(\Delta t = 0)| \hspace{0.05cm}.</math>
 
  
*Die Dopplerverbreiterung <i>B</i><sub>D</sub> (oder &bdquo;Fading&ndash;Bandbreite&rdquo;, englisch: <i>Doppler Spread</i>) ist die mittlere Frequenzverbreiterung, die die einzelnen spektralen Signalanteile erfahren. Bei der Berechnung geht man ähnlich vor wie bei der [http://www.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Kenngr.C3.B6.C3.9Fen_des_GWSSUS.E2.80.93Modells_.281.29 Mehrwegeverbreiterung], indem man die Dopplerverbreiterung <i>B</i><sub>D</sub> als die Standardabweichung der Zufallsgröße <i>f</i><sub>D</sub> berechnet:
+
Betrachten wir nun die Zeitvarianz&ndash;Kenngrößen, die von der Zeit&ndash;Korrelationsfunktion&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; bzw. vom Doppler&ndash;Leistungsdichtespektrum&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; abgeleitet werden:
  
::<math>B_{\rm D} = \sigma_{\rm D} = \sqrt{{\rm E} \left [ f_{\rm D}^2 \right ] - m_{\rm D}^2}
+
{{BlaueBox|TEXT=
  \hspace{0.05cm}.</math>
+
$\text{Definition:}$&nbsp; Die&nbsp; '''Korrelationsdauer''' $T_{\rm D}$&nbsp; (englisch: &nbsp; "Coherence Time")&nbsp; gibt die Zeit an, die im Mittel vergehen muss, bis der Kanal seine Übertragungseigenschaften aufgrund der Zeitvarianz völlig geändert hat.&nbsp; Deren Definition ist ähnlich wie die Definition der Kohärenzbandbreite:
  
:Zunächst ist aus <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>) durch Flächennormierung auf 1 die Doppler&ndash;WDF zu ermitteln, und daraus die mittlere Dopplerverschiebung <i>m</i><sub>D</sub> = <i>E</i>[<i>f</i><sub>D</sub>] und die Standardabweichung <i>&sigma;</i><sub>D</sub>.<br><br>
+
::<math>\vert \varphi_{\rm Z}(\Delta t = T_{\rm D})\vert  \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm Z}(\Delta t = 0)\vert  \hspace{0.05cm}.</math>}}
  
Die Grafik gilt für einen zeitvarianten Kanal ohne Direktkomponente. Links dargestellt ist das [http://www.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading Jakes&ndash;Spektrum] <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>). Daraus kann die Dopplerverbreiterung ermittelt werden:
 
  
:<math>f_{\rm D,\hspace{0.05cm}max} \hspace{-0.15cm} =  \hspace{-0.15cm}50\,{\rm Hz}\hspace{-0.1cm}: \hspace{-0.1cm}\hspace{0.45cm} B_{\rm D} \approx 35\,{\rm Hz}  \hspace{0.05cm},</math>
+
{{BlaueBox|TEXT=   
:<math>f_{\rm D,\hspace{0.05cm}max} \hspace{-0.15cm} = \hspace{-0.15cm}100\,{\rm Hz}\hspace{-0.1cm}:  \hspace{-0.1cm}\hspace{0.2cm} B_{\rm D} \approx 70\,{\rm Hz} \hspace{0.05cm}.</math>
+
$\text{Definition:}$&nbsp; Die&nbsp; '''Dopplerverbreiterung'''&nbsp; $B_{\rm D}$&nbsp; (oder &bdquo;Fading&ndash;Bandbreite&rdquo;, englisch: &nbsp; "Doppler Spread")&nbsp; ist die mittlere Frequenzverbreiterung, die die einzelnen spektralen Signalanteile erfahren.&nbsp; Bei der Berechnung geht man ähnlich vor wie bei der Mehrwegeverbreiterung, indem man die Dopplerverbreiterung&nbsp; $B_{\rm D}$&nbsp; als die Standardabweichung der Zufallsgröße&nbsp; $f_{\rm D}$&nbsp; berechnet:
  
[[Datei:P ID2181 Mob T 2 3 S8b v1.png|Dopplerverbreiterung und Korrelationsdauer|class=fit]]<br>
+
::<math>B_{\rm D} = \sigma_{\rm D} = \sqrt{ {\rm E} \left [ f_{\rm D}^2 \right ] - m_{\rm D}^2}
 +
  \hspace{0.05cm}.</math>
  
Die rechte Skizze zeigt die Zeitkorrelationsfunktion <i>&phi;</i><sub>Z</sub>(&Delta;<i>t</i>) als die Fourierrücktransformierte von <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>). Bei den hier gegebenen Randbedingungen lautet diese mit der Besselfunktion:
+
*Zunächst ist aus&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; durch Flächennormierung auf&nbsp; $1$&nbsp; die Doppler&ndash;WDF zu ermitteln.
 +
*Daraus ergeben sich die mittlere Dopplerverschiebung&nbsp; $m_{\rm D} = {\rm E}[f_{\rm D}]$&nbsp; und die Standardabweichung&nbsp; $\sigma_{\rm D}$.}}<br>
  
:<math>\varphi_{\rm Z}(\Delta t = T_{\rm D}) =  {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \Delta t ) \hspace{0.05cm}.</math>
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 3:}$&nbsp; Die Grafik gilt für einen zeitvarianten Kanal ohne Direktkomponente. Links dargestellt ist das&nbsp; [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading|Jakes&ndash;Spektrum]]&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$.
 +
[[Datei:P ID2181 Mob T 2 3 S8b v1.png|right|frame|Dopplerverbreiterung und Korrelationsdauer|class=fit]]
 +
Die Dopplerverbreiterung&nbsp; $B_{\rm D}$&nbsp; lässt sich daraus ermitteln:
 +
::<math>f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}\hspace{-0.1cm}: \hspace{-0.1cm}\hspace{0.45cm} B_{\rm D} \approx 35\,{\rm Hz}  \hspace{0.05cm},</math>
 +
::<math>f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}\hspace{-0.1cm}:  \hspace{-0.1cm}\hspace{0.2cm} B_{\rm D} \approx 70\,{\rm Hz}  \hspace{0.05cm}.</math>
  
Die Korrelationsdauer der blauen Kurve ist <i>T</i><sub>D</sub> = 4.84 ms. Für <i>f</i><sub>D, max</sub> = 100 Hz (rote Kurven) ist die Korrelationsdauer nur halb so groß. Allgemein gilt im vorliegenden Fall: <i>B</i><sub>D</sub> &middot; <i>T</i><sub>D</sub> &asymp; 0.17.<br>
+
Die Zeitkorrelationsfunktion&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; als die Fourierrücktransformierte von&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; ist rechts skizziert.  
  
 +
Bei den gegebenen Randbedingungen lautet diese mit der Besselfunktion:
 +
::<math>\varphi_{\rm Z}(\Delta t \hspace{-0.05cm} = \hspace{-0.05cm}T_{\rm D}) \hspace{-0.05cm}= \hspace{-0.05cm} {\rm J}_0(2 \pi \hspace{-0.05cm} \cdot \hspace{-0.05cm} f_{\rm D,\hspace{0.05cm}max} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\Delta t ).</math>
 +
 +
*Die Korrelationsdauer der blauen Kurve ist&nbsp; $T_{\rm D} = 4.84 \ \rm ms$.
 +
*Für&nbsp; $f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}$&nbsp; ist die Korrelationsdauer nur halb so groß.
 +
*Allgemein gilt im vorliegenden Fall: &nbsp; $B_{\rm D} \cdot T_{\rm D}\approx 0.17$.}}
 +
<br clear=all>
 
== Simulation gemäß dem GWSSUS–Modell ==
 
== Simulation gemäß dem GWSSUS–Modell ==
 
<br>
 
<br>
Das abschließend in aller Kürze dargelegte <i>Monte&ndash;Carlo&ndash;Verfahren</i> zur Simulation eines GWSSUS&ndash;Mobilfunkkanals basiert auf Arbeiten von Rice [Ric44]<ref>Rice, S.O.: ''Mathematical Analysis of Random Noise.'' BSTJ–23, pp. 282–232 und BSTJ–24, pp. 45–156, 1945.</ref> und Höher [Höh90]<ref>Höher, P.: ''Empfang trelliscodierter PSK–Signale auf frequenzselektiven Mobilfunkkanälen – Entzerrung, Decodierung und Kanalschätzung.'' Düsseldorf: VDI–Verlag, Fortschrittsberichte, Reihe 10, Nr. 147, 1990.</ref>.
+
Das abschließend nur kurz dargelegte <i>Monte&ndash;Carlo&ndash;Verfahren</i> zur Simulation eines GWSSUS&ndash;Mobilfunkkanals basiert auf Arbeiten von Rice [Ric44]<ref name='Ric44'>Rice, S.O.:&nbsp; Mathematical Analysis of Random Noise.&nbsp; BSTJ–23, pp. 282–232 und BSTJ–24, pp. 45–156, 1945.</ref> und Höher [Höh90]<ref name='Höh90'>Höher, P.:&nbsp; Empfang trelliscodierter PSK–Signale auf frequenzselektiven Mobilfunkkanälen – Entzerrung, Decodierung und Kanalschätzung.&nbsp; <br>Düsseldorf: VDI–Verlag, Fortschrittsberichte, Reihe 10, Nr. 147, 1990.</ref>.
  
*Die 2D&ndash;Impulsantwort wird durch eine Summe aus <i>M</i> komplexen Exponentialfunktionen dargestellt, wobei <i>M</i> als die Anzahl unterschiedlicher Pfade interpretiert werden kann:
+
*Die 2D&ndash;Impulsantwort wird durch eine Summe aus $M$ komplexen Exponentialfunktionen dargestellt.&nbsp; $M$&nbsp; ist als die Anzahl unterschiedlicher Pfade interpretierbar:
  
::<math>h(\tau, t)= \frac{1}{\sqrt {M}} \cdot \sum_{m=1}^{M}  \alpha_m  \cdot \delta (t - \tau_m) \cdot {\rm exp}({\rm j} \hspace{0.05cm}  \phi_{m}) \cdot {\rm exp}({\rm j} \hspace{0.05cm}2 \pi f_{{\rm D},\hspace{0.05cm} m}      t)
+
::<math>h(\tau,\ t)= \frac{1}{\sqrt {M}} \cdot \sum_{m=1}^{M}  \alpha_m  \cdot \delta (t - \tau_m) \cdot {\rm e}^{{\rm j} \hspace{0.05cm}  \phi_{m} }\cdot {\rm e}^{ {\rm j} \hspace{0.05cm}2 \pi f_{{\rm D},\hspace{0.05cm} m}      t}
 
  \hspace{0.05cm}. </math>
 
  \hspace{0.05cm}. </math>
  
*Vor Beginn werden die Verzögerungen <i>&tau;<sub>m</sub></i>, die Dämpfungsfaktoren <i>&alpha;<sub>m</sub></i>, die gleichverteilten Phasen <i>&#981;<sub>m</sub></i> und die Dopplerfrequenzen <i>f</i><sub>D,<i>m</i></sub> nach den GWSSUS&ndash;Vorgaben &bdquo;ausgewürfelt&rdquo;.<br>
+
*Vor Beginn werden die Verzögerungen&nbsp; $\tau_m$,&nbsp; die Dämpfungsfaktoren&nbsp; $\alpha_m$,&nbsp; die gleichverteilten Phasen&nbsp; $\phi_m$&nbsp; und die Dopplerfrequenzen&nbsp; $f_{{\rm D},\hspace{0.05cm} m}$&nbsp; nach den GWSSUS&ndash;Vorgaben &bdquo;ausgewürfelt&rdquo;.&nbsp; Grundlage für das Auswürfeln der Dopplerfrequenzen&nbsp; $f_{{\rm D},\hspace{0.05cm} m}$&nbsp; ist das&nbsp; [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading |Jakes&ndash;Spektrum]]&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$,&nbsp; das&nbsp; &ndash; geeignet normiert &ndash;&nbsp; gleichzeitig die WDF der Dopplerfrequenzen angibt.<br>
  
*Grundlage für das Auswürfeln der Dopplerfrequenzen <i>f</i><sub>D,<i>m</i></sub> ist das [http://www.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading Jakes&ndash;Spektrum] <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>), das &ndash; geeignet normiert &ndash; gleichzeitig die WDF der Dopplerfrequenzen angibt.<br>
+
*Wegen&nbsp; ${\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; ist für alle&nbsp; $m$&nbsp; die Verzögerungszeit&nbsp; $\tau_m$&nbsp; unabhängig von der Dopplerfrequenz&nbsp; $f_{{\rm D},\hspace{0.05cm} m}$.&nbsp; Für den terrestrischen Landmobilfunk gilt dies mit guter Näherung.&nbsp; Für das Auswürfeln der Parameter&nbsp; $\alpha_m$&nbsp; und&nbsp; $\tau_m$,&nbsp; die das Verzögerungs&ndash;Leistungsdichtespektrum &nbsp;$ {\it \Phi}_{\rm V}(\tau)$&nbsp; bestimmen,  stehen die&nbsp; [[Mobile_Kommunikation/Das_GWSSUS–Kanalmodell#AKF_und_LDS_der_zeitvarianten_Impulsantwort|COST&ndash;Profile]]&nbsp; $\rm RA$&nbsp; (<i>Rural Area</i>),&nbsp; $\rm TU$&nbsp; (<i>Typical Urban</i>),&nbsp; $\rm BU$&nbsp; (<i>Bad Urban</i>)&nbsp; und&nbsp; $\rm HT$&nbsp; (<i>Hilly Terrain</i>) zur Verfügung.<br>
  
*Wegen <i>&Phi;</i><sub>VD</sub>(<i>&tau;</i>, <i>f</i><sub>D</sub>) = <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) &middot; <i>&Phi;</i><sub>D</sub>(<i>f</i><sub>D</sub>) ist für alle <i>m</i> die Verzögerungszeit <i>&tau;<sub>m</sub></i> unabhängig von der Dopplerfrequenz <i>f</i><sub>D,<i>m</i></sub>. Für den terrestrischen Landmobilfunk gilt dies mit guter Näherung.<br>
+
*Je größer bei der Simulation die Anzahl&nbsp; $M$&nbsp; unterschiedlicher Pfade gewählt wird, um so besser wird eine reale Impulsantwort durch obige Gleichung angenähert.&nbsp; Die höhere Simulationsgenauigkeit geht allerdings auf Kosten der Simulationsdauer.&nbsp; In der Literatur werden für&nbsp; $M$&nbsp; günstige Werte zwischen&nbsp; $100$&nbsp; und&nbsp; $600$&nbsp; angegeben.<br>
  
*Für das Auswürfeln der Parameter <i>&alpha;<sub>m</sub></i> und <i>&tau;<sub>m</sub></i> &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i>&Phi;</i><sub>V</sub>(<i>&tau;</i>) stehen die [http://www.lntwww.de/Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell#Verz.C3.B6gerungsmodelle_nach_COST_207 COST&ndash;Profile] RA (<i>Rural Area</i>), TU (<i>Typical Urban</i>), BU (<i>Bad Urban</i>) und HT (<i>Hilly Terrain</i>) zur Verfügung.<br>
 
  
*Je größer bei der Simulation die Anzahl <i>M</i> unterschiedlicher Pfade gewählt wird, um so besser wird eine reale Impulsantwort durch obige Gleichung angenähert.<br>
+
[[Datei:P ID2183 Mob T 2 3 S9a.png|right|frame|Zeitvariante Übertragungsfunktion<br>$($Betragsquadrat,&nbsp; simuliert$)$]]
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 4:}$&nbsp; Die Grafik aus  [Hin08]<ref name='Hin08'>Hindelang, T.:&nbsp; Mobile Communications.&nbsp;
 +
Vorlesungsmanuskript.&nbsp; Lehrstuhl für Nachrichtentechnik,&nbsp; TU München, 2008.</ref> zeigt ein Simulationsergebnis: &nbsp; Als 2D&ndash;Plot ist&nbsp;  $20 \cdot  \lg \vert H(f, \hspace{0.1cm}t)\vert$&nbsp; dargestellt, wobei die zeitvariante Übertragungsfunktion&nbsp;  $H(f, \hspace{0.1cm}t)$&nbsp; in diesem Tutorial auch mit&nbsp; $\eta_{\rm FZ}(f, \hspace{0.1cm}t)$&nbsp; bezeichnet wird.<br>
  
*Die höhere Simulationsgenauigkeit geht allerdings auf Kosten der Simulationsdauer. In der Literatur werden für <i>M</i> günstige Werte zwischen 100 und 600 angegeben.<br>
+
Der Simulation liegen folgende Parameter zugrunde:
 
+
*Die Zeitvarianz entsteht durch eine Bewegung mit&nbsp; $v = 3 \ \rm  km/h$.
[[Datei:P ID2183 Mob T 2 3 S9a.png|Simulierte zeitvariante Übertragungsfunktion (Betragsquadrat)|rechts|rahmenlos]]
+
 +
*Die Trägerfrequenz ist&nbsp; $f_{\rm T} = 2 \ \rm  GHz$.<br>
  
Der Bildschirmabzug zeigt ein Simulationsergebnis. Als 2D&ndash;Plot ist  20 &middot; lg |<i>H</i>(<i>f</i>, <i>t</i>)| dargestellt, wobei die zeitvariante Übertragungsfunktion  <i>H</i>(<i>f</i>, <i>t</i>) in diesem Tutorial auch mit <i>&eta;</i><sub>FZ</sub>(<i>f</i>, <i>t</i>) bezeichnet wurde.<br>
+
*Die maximale Verzögerungszeit beträgt&nbsp; $\tau_{\rm max} \approx 0.4 \ \rm &micro; s$.
  
Der Simulation liegen folgende Parameter zugrunde:
+
* Daraus ergibt sich nach der Näherung für die Kohärenzbandbreite&nbsp; $B_{\rm K}\hspace{0.02cm}' \approx 2.5 \ \rm MHz$.<br>
*Die <i>maximale Verzögerungszeit</i> beträgt <i>&tau;</i><sub>max</sub> &asymp; 0.4 &mu;s, woraus sich nach der Näherung für die <i>Kohärenzbandbreite</i> <i>B</i><sub>K</sub>' &asymp; 2.5 MHz ergibt.<br>
 
  
*Die <i>Zeitvarianz</i> entsteht durch eine Bewegung mit <i>&upsilon;</i> = 3 km/h. Die Trägerfrequenz ist 2 GHz.<br>
+
*Die maximale Dopplerfrequenz ist&nbsp; $f_\text{D, max} \approx 5.5 \ \rm Hz$.
  
*Die maximale Dopplerfrequenz ist  <i>f</i><sub>D,max</sub> &asymp; 5.5 Hz, die Dopplerverbreiterung <i>B</i><sub>D</sub> = 4 Hz.<br>
+
* Die Dopplerverbreiterung ergibt sich zu&nbsp; $B_{\rm D} \approx 4 \ \rm Hz$.}}
 +
<br clear=all>
  
==Aufgaben==
+
==Aufgaben zum Kapitel==
 
<br>
 
<br>
[[Aufgaben:2.5 Scatter-Funktion|A2.5 Scatter-Funktion]]
+
[[Aufgaben:Aufgabe_2.5:_Scatter-Funktion|Aufgabe 2.5Scatter-Funktion]]
  
[[Zusatzaufgaben:2.5 Mehrwege-Szenario]]
+
[[Aufgaben:Aufgabe_2.5Z:_Mehrwege-Szenario|Aufgabe 2.5Z:  Mehrwege-Szenario]]
  
[[Aufgaben:2.6 Einheiten bei GWSSUS|A2.6 Einheiten bei GWSSUS]]
+
[[Aufgaben:Aufgabe_2.6:_Einheiten_bei_GWSSUS|Aufgabe 2.6Einheiten bei GWSSUS]]
  
[[Aufgaben:2.7 Kohärenzbandbreite|A2.7 Kohärenzbandbreite]]
+
[[Aufgaben:Aufgabe_2.7:_Kohärenzbandbreite|Aufgabe 2.7: Kohärenzbandbreite]]
  
[[Zusatzaufgaben:2.7 BK für den LZI–Zweiwegekanal]]
+
[[Aufgaben:Aufgabe_2.7Z:_Kohärenzbandbreite_des_LZI–Zweiwegekanals|Aufgabe 2.7Z:  Kohärenzbandbreite des LZI–Zweiwegekanals]]
  
[[Aufgaben:2.8 COST-Verzögerungsmodelle|A2.8 COST-Verzögerungsmodelle]]
+
[[Aufgaben:Aufgabe_2.8:_COST-Verzögerungsmodelle|Aufgabe 2.8: COST-Verzögerungsmodelle]]
  
[[Aufgaben:2.9 Korrelationsdauer|A2.9 Korrelationsdauer]]
+
[[Aufgaben:Aufgabe_2.9:_Korrelationsdauer|Aufgabe 2.9: Korrelationsdauer]]
  
 
==Quellenverzeichnis==
 
==Quellenverzeichnis==

Aktuelle Version vom 15. Februar 2021, 19:40 Uhr

Verallgemeinerte Systemfunktionen zeitvarianter Systeme


Während es bei linearen zeitinvarianten Systemen  $\rm (LZI)$  mit der Übertragungsfunktion  $H(f)$  und der Impulsantwort  $h(t)$ – nach Umbenennung  $h(\tau)$ – nur zwei das System vollständig beschreibende Systemfunktionen gibt, sind bei zeitvarianten Systemen  $\rm (LZV)$  vier verschiedene Funktionen möglich.  Eine formale Untersscheidung dieser Funktionen hinsichtlich Zeit– und Frequenzbereichsdarstellung durch Klein– und Großbuchstaben ist damit ausgeschlossen.

Deshalb nehmen wir nun eine Nomenklaturänderung vor, die sich wie folgt formalisieren lässt:

  • Die vier möglichen Systemfunktionen werden einheitlich mit  $\boldsymbol{\eta}_{12}$  bezeichnet.
  • Der erste Index ist entweder ein  $\boldsymbol{\rm V}$  $($Verzögerungszeit  $\tau)$  oder ein  $\boldsymbol{\rm F}$  $($Frequenz  $f)$.
  • Als zweiter Index ist entweder ein  $\boldsymbol{\rm Z}$  $($Zeit  $t)$  oder ein  $\boldsymbol{\rm D}$  $($Dopplerfrequenz  $f_{\rm D})$  möglich.
Zusammenhang zwischen den vier Systemfunktionen


Da beim Mobilfunk im Gegensatz zur leitungsgebundenen Übertragung die Systemfunktionen nicht deterministisch beschrieben werden können, sondern statistische Größen sind, müssen später noch entsprechende Korrelationsfunktionen betrachtet werden. 

Diese bezeichnen wir im Folgenden einheitlich mit  $\boldsymbol{\varphi}_{12}$,  und verwenden gleiche Indizes wie für die Systemfunktionen  $\boldsymbol{\eta}_{12}$.

Diese formalisierten Bezeichnungen sind in der Grafik in blauer Schrift eingetragen.

  • Zusätzlich sind die in anderen Kapiteln oder der Literatur verwendeten Bezeichnungen angegeben  (graue Schrift).
  • In den weiteren Kapiteln werden diese teilweise ebenfalls benutzt.


  • Oben erkennt man die  zeitvariante Impulsantwort  ${\eta}_{\rm VZ}(\tau,\hspace{0.05cm} t) \equiv h(\tau,\hspace{0.05cm} t)$  im "Verzögerungs–Zeit–Bereich".  Die zugehörige Autokorrelationsfunktion (AKF) ist
\[\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \big [ \eta_{\rm VZ}(\tau_1,\hspace{0.05cm} t_1) \cdot \eta_{\rm VZ}^{\star}(\tau_2, t_2) \big ]\hspace{0.05cm}. \]
  • Zur  "Frequenz–Zeit–Darstellung"  kommt man durch Fouriertransformation bezüglich der Verzögerung  $\tau$.  Man erhält so die  zeitvariante Übertragungsfunktion  ${\eta}_{\rm FZ}(f,\hspace{0.05cm} t) \equiv H(f,\hspace{0.05cm} t)$.  Die Fouriertransformation hinsichtlich  $\tau$  ist in der Grafik durch  ${\rm F}_\tau\hspace{0.05cm}[ \cdot ]$  angedeutet.  Ausgeschrieben lautet das Fourierintegral:
\[\eta_{\rm FZ}(f, \hspace{0.05cm} t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau,\hspace{0.05cm} t) \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau}\hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}, \hspace{0.3cm} \text{kurz:} \hspace{0.2cm} \eta_{\rm FZ}(f, t) \hspace{0.2cm} \stackrel{f, \hspace{0.05cm} \tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t) \hspace{0.05cm}.\]
Die AKF dieser zeitvarianten Übertragungsfunktion lautet allgemein:
\[\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \big [ \eta_{\rm FZ}(f_1, t_1) \cdot \eta_{\rm FZ}^{\star}(f_2, t_2) \big ]\hspace{0.05cm}.\]
  • Die  Scatter–Funktion  ${\eta}_{\rm VD}(\tau,\hspace{0.05cm} f_{\rm D}) \equiv s(\tau,\hspace{0.05cm} f_{\rm D})$  entsprechend dem linken Block beschreibt den Mobilfunkkanal im  "Verzögerungs–Doppler–Bereich".  Der Funktionsparameter  $f_{\rm D}$  bezeichnet hierbei die  Dopplerfrequenz.  Die Scatter–Funktion ergibt sich aus der zeitvarianten Impulsantwort  ${\eta}_{\rm VZ}(\tau,\hspace{0.05cm} t)$  durch Fouriertransformation bezüglich des zweiten Parameters  $t$:
\[ \eta_{\rm VD}(\tau, f_{\rm D}) \hspace{0.2cm} \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm VD}(\tau_1, f_{\rm D_1}) \cdot \eta_{\rm VD}^{\star}(\tau_2, f_{\rm D_2}) \right ] \hspace{0.05cm}.\]
  • Abschließend betrachten wir noch die so genannte  frequenzvariante Übertragungsfunktion, also die  "Frequenz–Doppler–Darstellung".  Entsprechend der Grafik gelangt man zu dieser auf zwei Wege:
\[\eta_{\rm FD}(f, f_{\rm D}) \hspace{0.2cm} \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm FZ}(f, t)\hspace{0.05cm},\]
\[\eta_{\rm FD}(f, f_{\rm D}) \hspace{0.2cm} \stackrel{f, \hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.\]

$\text{Hinweise:}$ 

  • Die angegebenen Fourier–Zusammenhänge zwischen den Systemfunktionen in der Grafik sind durch die äußeren, dunkelgrünen Pfeile veranschaulicht und mit   ${\rm F}_p\hspace{0.05cm}[\hspace{0.05cm} \cdot \hspace{0.05cm}]$   bezeichnet.  $p$  gibt an, auf welchen Parameter  $\tau$,  $f$,  $t$  oder  $f_{\rm D}$  sich die Fouriertransformation bezieht.
  • Die inneren  (helleren)  Pfeile kennzeichnen jeweils die Verknüpfungen über die  inverse Fouriertransformation  (Fourierrücktransformation).  Hierfür verwenden wir die Notation  ${ {\rm F}_p}^{-1}\hspace{0.05cm}[ \hspace{0.05cm} \cdot \hspace{0.05cm} ]$.
  • Das Applet  Impulse und Spektren verdeutlicht den Zusammenhang zwischen Zeit– und Frequenzbereich, formelmäßig beschreibbar durch Fouriertransformation und Fourierrücktransformation.


Vereinfachungen aufgrund der GWSSUS–Voraussetzungen


Der allgemeine Zusammenhang zwischen den vier Systemfunktionen ist aufgrund nichtstationärer Effekte sehr kompliziert.

Zusammenhänge zwischen den Beschreibungsfunktionen des GWSSUS–Modells

Gegenüber dem allgemeinen Modell müssen einige Einschränkungen getroffen werden, um zu einem geeigneten Modell für den Mobilfunkkanal zu gelangen, aus dem sich relevante Aussagen für praktische Anwendungen ableiten lassen.

Durch folgende Festlegungen kommt man zum  $\rm GWSSUS$–Modell 
$( \rm G$aussian  $\rm W$ide  $\rm S$ense  $\rm S$tationary  $\rm U$ncorrelated  $\rm S$cattering$)$:

  • Der Zufallsprozess der Kanalimpulsantwort  $h(\tau,\hspace{0.1cm} t) = {\eta}_{\rm VZ}(\tau,\hspace{0.1cm} t)$  wird allgemein als komplex  (also Beschreibung im äquivalenten Tiefpassbereich),  gaußisch  $($Kennung  $\rm G)$  sowie als mittelwertfrei  (Rayleigh, nicht Rice, also keine Sichtverbindung)  angenommen.
  • Der Zufallsprozess sei schwach stationär  ⇒   seine Kenngrößen ändern sich mit der Zeit nur geringfügig, und die AKF  $ {\varphi}_{\rm VZ}(\tau_1,\hspace{0.05cm} t_1,\hspace{0.05cm}\tau_2,\hspace{0.05cm} t_2)$  der zeitvarianten Impulsantwort hängt nicht von den absoluten Zeiten  $t_1$  und  $t_2$  ab, sondern nur von der Zeitdifferenz  $\Delta t = t_2 - t_1$.  Darauf weist die Kennung  $\rm WSS$  hin   ⇒   $\rm W$ide $\rm S$ense $\rm S$tationary.
  • Die einzelnen Echos durch Mehrwegeausbreitung sind unkorreliert, was die Kennung  $\rm US$   ⇒   $\rm U$ncorrelated $\rm S$cattering ausdrückt.


Der Mobilfunkkanal lässt sich gemäß dieser Grafik vollständig beschreiben.  Auf die einzelnen Leistungsdichtespektren  (blau beschriftet)  und die Korrelationsfunktion  (mit roter Schrift)  wird auf den nächsten Seiten im Detail eingegangen.

Autokorrelationsfunktion der zeitvarianten Impulsantwort


Wir betrachten nun die  Autokorrelationsfunktion  $\rm (AKF)$  der zeitvarianten Impulsantwort   ⇒   $h(\tau,\hspace{0.1cm} t) = {\eta}_{\rm VZ}(\tau,\hspace{0.1cm} t)$  genauer.  Es zeigt sich:

  • Aufgrund der  $\rm WSS$–Eigenschaft lässt sich mit  $\Delta t = t_2 - t_1$  für die Autokorrelationsfunktion schreiben:
\[\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = \varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t)\hspace{0.05cm}.\]
  • Da die Echos als unabhängig voneinander vorausgesetzt wurden  $\rm (US$–Eigenschaft$)$, kann man die Impulsantwort bezüglich den Verzögerungen  $\tau_1$  und  $\tau_2$  als unkorreliert annehmen.  Dann gilt:
\[\varphi_{\rm VZ}(\tau_1, \tau_2, \Delta t) = 0 \hspace{0.35cm}{\rm f\ddot{u}r}\hspace{0.35cm} \tau_1 \ne \tau_2\hspace{0.05cm}. \]
  • Ersetzt man nun  $\tau_1$  durch  $\tau$  und  $\tau_2$  durch  $\tau + \Delta \tau$, so lässt sich diese Autokorrelationsfunktion in folgender Weise darstellen:
\[\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}. \]
  • Wegen der Ausblendeigenschaft der Diracfunktion verschwindet die AKF für  $\tau_1 \ne \tau_2$   ⇒   $\Delta \tau \ne 0$.


  • $ {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.1cm}$  ist das  "Verzögerungs–Zeit–Kreuzleistungsdichtespektrum", das von der Verzögerung  $\tau \ (= \tau_1 =\tau_2)$  und von der Zeitdifferenz  $\Delta t = t_2 - t_1$  abhängt.

$\text{Bitte beachten Sie:}$ 

  • Bei dieser Betrachtungsweise hängen Autokorrelationsfunktion  $\varphi_{\rm VZ}(\Delta \tau, \Delta t)$  und Leistungsdichtespektrum  ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $  nicht wie sonst üblich über die Fouriertransformation zusammen, sondern sind über eine Diracfunktion verknüpft:
\[\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}. \]
  • Nicht alle Symmetrieeigenschaften, die aus dem  Wiener–Chintchine–Theorem  folgen, sind somit auch hier gegeben. Insbesondere ist es durchaus möglich und sogar sehr wahrscheinlich, dass ein solches Leistungsdichtespektrum eine ungerade Funktion ist.


In der Übersicht auf der letzten Seite ist das  Verzögerungs–Zeit–Kreuzleistungsdichtespektrum  ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $  oben in der Mitte zu erkennen.

  • Da  $\eta_{\rm VZ}(\tau, t) $  wie jede beliebige  Impulsantwort  die Einheit  $\rm [1/s]$  aufweist, hat die Autokorrelationsfunktion die Einheit  $\rm [1/s^2]$:
\[\varphi_{\rm VZ}(\Delta \tau, \Delta t) = {\rm E} \left [ \eta_{\rm VZ}(\tau, t) \cdot \eta_{\rm VZ}^{\star}(\tau + \Delta \tau, t + \Delta t) \right ].\]
  • Da aber auch die Diracfunktion mit Zeitargument, also  $\delta(\Delta \tau)$, die Einheit  $\rm [1/s]$  hat, besitzt das Verzögerungs–Zeit–Kreuzleistungsdichtespektrum  ${\it \Phi}_{\rm VZ}(\tau, \Delta t) $  ebenfalls die Einheit $\rm [1/s]$:
\[\varphi_{\rm VZ}(\Delta \tau, \Delta t) = \delta(\Delta \tau) \cdot {\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.05cm}.\]

Leistungsdichtespektrum der zeitvarianten Impulsantwort


Verzögerungs–Leistungsdichtespektrum

Zum  Verzögerungs–Leistungsdichtespektrum  ${\it \Phi}_{\rm V}(\Delta \tau)$  kommt man, indem man in der Funktion  ${\it \Phi}_{\rm VZ}(\Delta \tau, \Delta t)$  den zweiten Parameter  $\Delta t = 0$  setzt.  Die Grafik zeigt einen beispielhaften Verlauf.

Das Verzögerungs–Leistungsdichtespektrum ist eine zentrale Größe für die Beschreibung des Mobilfunkkanals.  Diese weist folgende Eigenschaften auf:

  • ${\it \Phi}_{\rm V}(\Delta \tau_0)$  ist ein Maß für die „Leistung” derjenigen Signalanteile, die um  $\tau_0$  verzögert werden.  Es wird hierfür implizit eine Mittelung über alle Dopplerfrequenzen  $(f_{\rm D})$  vorgenommen.
  • Das Verzögerungs–Leistungsdichtespektrum  ${\it \Phi}_{\rm V}(\Delta \tau)$  hat wie  ${\it \Phi}_{\rm VZ}(\Delta \tau, \Delta t)$  die Einheit  $\rm [1/s]$.  Es charakterisiert die Leistungsverteilung über alle möglichen Verzögerungszeiten  $\tau$.
  • In der Grafik farblich markiert ist die Leistung  $ P_0 \approx {\it \Phi}_{\rm V}(\Delta \tau_0)\cdot \Delta \tau$  solcher Signalanteile, die beim Empfänger über beliebige Pfade mit einer Verzögerung zwischen  $\tau_0 \pm \Delta \tau/2$  eintreffen.
  • Normiert man das Leistungsdichtespektrum  ${\it \Phi}_{\rm V}(\Delta \tau)$  derart, dass sich die Fläche  $1$  ergibt, so erhält man die  "Wahrscheinlichkeitsdichtefunktion"  $\rm (WDF)$ der Verzögerungszeit:
\[{\rm WDF}_{\rm V}(\tau) = \frac{{\it \Phi}_{\rm V}(\tau)}{\int_{0 }^{\infty}{\it \Phi}_{\rm V}(\tau)\hspace{0.15cm}{\rm d}\tau} \hspace{0.05cm}.\]

Anmerkung zur Nomenklatur:

  • Im Buch „Stochastische Signaltheorie” hätten wir diese  Wahrscheinlichkeitsdichtefunktion  mit  $f_\tau(\tau)$  bezeichnet.
  • Um den Zusammenhang zwischen  ${\it \Phi}_{\rm V}(\Delta \tau)$  und WDF zu verdeutlichen und Verwechslungen mit der Frequenz  $f$  zu vermeiden, verwenden wir diese Nomenklatur.


$\text{Beispiel 1: Verzögerungsmodelle nach COST 207}$

In den 1990er Jahren gründete die Europäische Union die Arbeitsgruppe COST 207 mit dem Ziel, standardisierte Kanalmodelle für den zellularen Mobilfunk bereitzustellen.  Hierbei steht „COST” für  European Cooperation in Science and Technology.

In diesem internationalen Gremium wurden Profile für die Verzögerungszeit  $\tau$  entwickelt, basierend auf Messungen und gültig für verschiedene Anwendungsszenarien.  Im Folgenden werden vier verschiedene Verzögerungs–Leistungsdichtespektren angegeben, wobei stets der Normierungsfaktor  ${\it \Phi}_0 = {\it \Phi}_{\rm V}(\tau = 0)$  verwendet wird.  Die Grafik zeigt die Verzögerungs–Leistungsdichte dieser Profile in logarithmischer Darstellung:

Verzögerungs–Leistungsdichte nach COST

(1)  Profil $\rm RA$ (englisch "Rural Area")   ⇒   ländliches Gebiet:

\[{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0} \hspace{0.3cm}{\rm im \hspace{0.15cm}Bereich}\hspace{0.3cm} 0 < \tau < 0.7\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.109\,{\rm µ s}\hspace{0.05cm}.\]

(2)  Profil $\rm TU$ (englisch "Typical Urban")   ⇒   Städte und Vororte:

\[{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = {\rm e}^{ -\tau / \tau_0} \hspace{0.3cm}{\rm im \hspace{0.15cm}Bereich}\hspace{0.3cm} 0 < \tau < 7\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s}\hspace{0.05cm}.\]

(3)  Profil $\rm BU$ (englisch "Bad Urban")   ⇒   ungünstige Bedingungen in Städten:

\[{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\ 0.5 \cdot {\rm e}^{ (5\,{\rm µ s}-\tau) / \tau_0} \end{array} \right.\quad \begin{array}{*{1}l} \hspace{0.1cm} {\rm für}\hspace{0.3cm} 0 < \tau < 5\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s}\hspace{0.05cm}, \\ \hspace{0.1cm} {\rm für}\hspace{0.3cm} 5\,{\rm µ s} < \tau < 10\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s} \hspace{0.05cm}. \\ \end{array}\]

(4)  Profil $\rm HT$ (englisch "Hilly Terrain")   ⇒   hügeliges Gebiet und Bergland:

\[{\it \Phi}_{\rm V}(\tau)/{\it \Phi}_{\rm 0} = \left\{ \begin{array}{c} {\rm e}^{ -\tau / \tau_0}\\ 0.04 \cdot {\rm e}^{ (15\,{\rm µ s}-\tau) / \tau_0} \end{array} \right.\quad \begin{array}{*{1}l} \hspace{-0.25cm} {\rm für}\hspace{0.3cm} 0 < \tau < 2\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 0.286\,{\rm µ s}\hspace{0.05cm}, \\ \hspace{-0.25cm} {\rm für}\hspace{0.3cm} 15\,{\rm µ s} < \tau < 20\,{\rm µ s}\hspace{0.05cm},\hspace{0.15cm}\tau_0 = 1\,{\rm µ s} \hspace{0.05cm}. \\ \end{array}\]

Man erkennt aus den Grafiken:

  • Aus den Exponentialfunktionen bei linearer Darstellung werden nun geradlinige Verläufe.
  • Bei logarithmischer Darstellung kann man den LDS–Parameter  $\tau_0$  bei  $\rm 10 \cdot lg \ (1/e) = -4.34 \ dB$  ablesen, wie in der Grafik für das  $\rm TU$-Profil eingezeichnet.
  • Auf diese vier COST–Profile wird in der  Aufgabe 2.8  noch genauer eingegangen.


AKF und LDS der frequenzvarianten Übertragungsfunktion


Die in der  Übersicht auf der ersten Seite dieses Kapitels  unten dargestellte Systemfunktion  $\eta_{\rm FD}(f, f_{\rm D})$  wird auch  frequenzvariante Übertragungsfunktion  genannt, wobei sich das Adjektiv „frequenzvariant” auf die Dopplerfrequenz bezieht.

Die dazugehörige AKF ist wie folgt definiert:

\[\varphi_{\rm FD}(f_1, f_{\rm D_1}, f_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm FD}(f_1, f_{\rm D_1}) \cdot \eta_{\rm FZ}^{\star}(f_2, f_{\rm D_2}) \right ]\hspace{0.05cm}. \]

Durch ähnliche Überlegungen wie auf der  vorletzten Seite  kann man diese Autokorrelationsfunktion unter GWSSUS–Bedingungen wie folgt darstellen:

\[\varphi_{\rm FD}(\Delta f, \Delta f_{\rm D}) = \delta(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \hspace{0.05cm}.\]

Dabei gilt:

  • ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  ist das so genannte  Frequenz–Doppler–Kreuzleistungsdichtespektrum, das in der Grafik am Seitenende durch gelbe Hinterlegung hervorgehoben ist.
  • Das erste Argument  $\Delta f = f_2 - f_1$  berücksichtigt, dass AKF und LDS aufgrund der Stationarität nur von der Frequenzdifferenz abhängen.
  • Der Faktor  $\delta (\Delta f_{\rm D})$  mit  $\Delta f_{\rm D} = f_{\rm D_2} - f_{\rm D_1}$  drückt die Unkorreliertheit der AKF bezüglich der Dopplerverschiebung aus.
  • Man kommt von  ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  zum  Doppler–Leistungsdichtespektrum  ${\it \Phi}_{\rm D}(f_{\rm D})$, wenn man  $\Delta f= 0$  setzt.
  • Das Doppler–Leistungsdichtespektrum  ${\it \Phi}_{\rm D}(f_{\rm D})$  gibt an, mit welcher Leistung einzelne Dopplerfrequenzen auftreten.
  • Die Wahrscheinlichkeitsdichte der Dopplerfrequenz ergibt sich aus  ${\it \Phi}_{\rm D}(f_{\rm D})$  durch geeignete Flächennormierung.  Die WDF weist wie  ${\it \Phi}_{\rm D}(f_{\rm D})$  die Einheit  $\rm [1/Hz]$  auf:
Zur Berechnung des Doppler–Leistungsdichtespektrums
\[{\rm WDF}_{\rm D}(f_{\rm D}) = \frac{{\it \Phi}_{\rm D}(f_{\rm D})}{\int_{-\infty }^{+\infty}{\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.15cm}{\rm d}f_{\rm D}} \hspace{0.05cm}.\]
  • Oft, so zum Beispiel für eine vertikale Monopulsantenne im isotrop gestreuten Feld, ist  ${\it \Phi}_{\rm D}(f_{\rm D})$  durch das  Jakes–Spektrum  gegeben.


Das Frequenz–Doppler–Kreuzleistungsdichtespektrum  ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  ist gelb hinterlegt.

  • Eingezeichnet sind auch die Fourierzusammenhänge zu den benachbarten GWSSUS–Systembeschreibungsfunktionen.


AKF und LDS der Verzögerungs–Doppler–Funktion


Die in der  Übersicht auf der ersten Seite dieses Kapitels  links dargestellte Systemfunktion wurde mit  $\eta_{\rm VD}(\tau, f_{\rm D})$  bezeichnet.  Die AKF dieser Verzögerungs–Doppler–Funktion kann unter Berücksichtigung der GWSSUS–Eigenschaften mit  $\Delta \tau = \tau_2 - \tau_1$  und  $\Delta f_{\rm D} = f_{\rm D2} - f_{\rm D1}$  wie folgt geschrieben werden:

\[\varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = \varphi_{\rm VD}(\Delta \tau, \Delta f_{\rm D}) = \delta(\Delta \tau) \cdot {\rm \delta}(\Delta f_{\rm D}) \cdot {\it \Phi}_{\rm VD}(\tau, f_{\rm D}) \hspace{0.05cm}.\]

Zu dieser Gleichung ist anzumerken:

  • Die erste Diracfunktion  $\delta (\Delta \tau)$  berücksichtigt, dass die Verzögerungen unkorreliert sind („Uncorrelated Scattering”).
  • Die zweite Diracfunktion  $\delta (\Delta f_{\rm D})$  folgt aus der Stationarität („Wide Sense Stationary”).
  • Das Verzögerungs–Doppler–Leistungsdichtespektrum  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$  – auch  Scatter–LDS  genannt – kann aus  ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$  bzw.  ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  berechnet werden:
\[{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) ={\rm F}_{\Delta t} \big [ {\it \Phi}_{\rm VZ}(\tau, \Delta t) \big ] = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm VZ}(\tau, \Delta t) \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm D} \hspace{0.05cm}\cdot \hspace{0.05cm}\Delta t}\hspace{0.15cm}{\rm d}\Delta t \hspace{0.05cm},\]
\[{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\rm F}_{f_{\rm D}}^{-1} \big [ {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \big ] = \int_{-\infty}^{+\infty} {\it \Phi}_{\rm FD}(\Delta f, f_{\rm D}) \cdot {\rm e}^{+{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \tau \hspace{0.05cm}\cdot \hspace{0.05cm} \Delta f}\hspace{0.15cm}{\rm d}\Delta f \hspace{0.05cm}. \]
  • Sowohl die Systemfunktion  $\eta_{\rm VD}(\tau, f_{\rm D})$  als auch die abgeleiteten Funktionen  $\varphi _{\rm VD}(\Delta \tau, \Delta f_{\rm D})$  und  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$  sind dimensionslos.  Nähere Angaben hierüber finden Sie in der Angabe zu  Aufgabe 2.6.
  • Weiterhin ist bei Erfüllung der GWSSUS–Voraussetzungen die Scatterfunktion gleich dem Produkt aus Verzögerungs– und Doppler–Leistungsdichtespektrum:
\[{\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.\]
Eindimensionale Beschreibungsfunktionen des GWSSUS–Modells

$\text{Fazit:}$  Die Abbildung fasst die bisherigen Ergebnisse dieses Kapitels zusammen.

Festzuhalten ist:

(1)   Der Einfluss der Verzögerungszeit (Laufzeit)  $\tau$  und der Dopplerfrequenz  $f_{\rm D}$  lässt sich separieren

  • in das blaue Leistungsdichtespektrum ${\it \Phi}_{\rm V}(\tau)$, und
  • das rote Leistungsdichtespektrum ${\it \Phi}_{\rm D}(f_{\rm D})$.


(2)   Das 2D–Verzögerungs–Doppler–Leistungsdichtespektrum  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$  ist gleich dem Produkt aus diesen beiden Anteilen.


AKF und LDS der zeitvarianten Übertragungsfunktion


Die folgende Grafik zeigt alle Zusammenhänge zwischen den einzelnen Leistungsdichtespektren nochmals in kompakter Form.

Kompakte Zusammenstellung aller GWSSUS–Beschreibungsgrößen

Auf den letzten Seiten wurden dabei bereits behandelt:

$${\it \Phi}_{\rm VZ}(\tau, \Delta t)\hspace{0.55cm}\Rightarrow \hspace{0.3cm}\text{mit} \hspace{0.2cm}\Delta t = 0\text{:} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau),$$
$${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{mit} \hspace{0.2cm}\Delta f = 0\text{:} \hspace{0.2cm} {\it \Phi}_{\rm D}( f_{\rm D}),$$
$${\it \Phi}_{\rm VD}(\tau, f_{\rm D})= {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.$$


Bisher noch nicht betrachtet wurde die  Frequenz–Zeit–Korrelationsfunktion
(in nebenstehender Grafik gelb markiert):

\[\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \left [ \eta_{\rm FZ}(f_1, t_1) \cdot \eta_{\rm FZ}^{\star}(f_2, t_2) \right ]\hspace{0.05cm}.\]

Berücksichtigt man wieder die GWSSUS–Vereinfachungen sowie die Identität  $\eta_{\rm FZ}(f, \hspace{0.05cm}t) = H(f, \hspace{0.05cm}t)$, so lässt sich die AKF mit  $\Delta f = f_2 - f_1$  und  $\Delta t = t_2 - t_1$  auch wie folgt schreiben:

\[\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\varphi_{\rm FZ}(\Delta f, \Delta t) = {\rm E} \big [ H(f, t) \cdot H^{\star}(f + \Delta f, t + \Delta t) \big ]\hspace{0.05cm}.\]

Hierzu ist anzumerken:

  • Schon an der Namensgebung ist zu erkennen, dass  $\varphi_{\rm FZ}(\Delta f, \Delta t)$  eine Korrelationsfunktion ist und kein Leistungsdichtespektrum wie die Funktionen  ${\it \Phi}_{\rm VZ}(\tau, \Delta t)$,  ${\it \Phi}_{\rm FD}(\Delta f, f_{\rm D})$  und  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D})$.
  • Die Fourierzusammenhänge mit den benachbarten Funktionen lauten:
\[{\it \Phi}_{\rm VZ}(\tau, \Delta t) \hspace{0.2cm} \stackrel{\tau, \hspace{0.05cm}\Delta f}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} \varphi_{\rm FZ}(\Delta f, \hspace{0.05cm}\Delta t) \hspace{0.2cm} \stackrel{\Delta t,\hspace{0.05cm} f_{\rm D}}{\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} {\it \Phi}_{\rm FD}(\Delta f,\hspace{0.05cm} f_{\rm D}) \hspace{0.05cm}.\]
  • Setzt man in dieser 2D– Funktion die Parameter  $\Delta t = 0$  bzw.  $\Delta f = 0$, so ergeben sich die separaten Korrelationsfunktionen für den Frequenz– bzw. den Zeitbereich:
\[\varphi_{\rm F}(\Delta f) = \varphi_{\rm FZ}(\Delta f, \Delta t = 0) \hspace{0.05cm},\]
\[\varphi_{\rm Z}(\Delta t) = \varphi_{\rm FZ}(\Delta f = 0, \Delta t ) \hspace{0.05cm}.\]
  • Aus obiger Grafik wird auch deutlich, dass diese Korrelationsfunktionen mit den hergeleiteten Leistungsdichtespektren über die Fouriertransformation korrespondieren:
\[\varphi_{\rm F}(\Delta f) \hspace{0.2cm} {\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} {\it \Phi}_{\rm V}(\tau)\hspace{0.05cm}, \hspace{0.4cm}\varphi_{\rm Z}(\Delta t) \hspace{0.2cm} {\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet} \hspace{0.2cm} {\it \Phi}_{\rm D}(f_{\rm D})\hspace{0.05cm}.\]

Kenngrößen des GWSSUS–Modells


Entsprechend den Ergebnissen der letzten Seite wird der Mobilfunkkanal durch

  • das Verzögerungs–Leistungsdichtespektrum  ${\it \Phi}_{\rm V}(\tau)$  und
  • das Doppler–Leistungsdichtespektrum  ${\it \Phi}_{\rm D}(f_{\rm D})$

vollständig beschrieben.  Durch geeignete Normierung auf die jeweilige Fläche  $1$  ergeben sich daraus die Dichtefunktionen bezüglich der Verzögerungszeit  $\tau$  bzw. der Dopplerfrequenz  $f_{\rm D}$.

Aus den Leistungsdichtespektren bzw. den zugehörigen Korrelationsfunktionen können Kenngrößen abgeleitet werden.  Die wichtigsten sind hier zusammengestellt:

$\text{Definition:}$  Die  Mehrwegeverbreiterung  (englisch:  "Time Delay Spread"  oder  "Multipath Spread")  $T_{\rm V}$  gibt die Verbreiterung an, die ein Diracimpuls durch den Kanal im statistischen Mittel erfährt.  $T_{\rm V}$  ist definiert als die Standardabweichung  $(\sigma_{\rm V})$  der Zufallsgröße  $\tau$:

\[T_{\rm V} = \sigma_{\rm V} = \sqrt{ {\rm E} \big [ \tau^2 \big ] - m_{\rm V}^2} \hspace{0.05cm}.\]
  • Der Mittelwert  $m_{\rm V} = {\rm E}\big[\tau \big]$  ist eine für alle Signalanteile „gleiche mittlere Laufzeit” (englisch:   Average Excess Delay).
  • ${\rm E} \big [ \tau^2 \big ] $  ist als quadratischer Mittelwert zu berechnen.


$\text{Definition:}$  Die  Kohärenzbandbreite  $B_{\rm K}$  (englisch:   "Coherence Bandwidth")  ist derjenige  $\Delta f$–Wert, bei dem der Frequenz–Korrelationsfunktion betragsmäßig erstmals auf die Hälfte abgesunken ist.

\[\vert \varphi_{\rm F}(\Delta f = B_{\rm K})\vert \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm F}(\Delta f = 0)\vert \hspace{0.05cm}.\]
  • $B_{\rm K}$  ist ein Maß für die Frequenzdifferenz, um die sich zwei harmonische Schwingungen mindestens unterscheiden müssen, damit sie völlig andere Kanalübertragungseigenschaften vorfinden.
  • Ist die Signalbandbreite  $B_{\rm S} <B_{\rm K}$, so werden alle Spektralanteile durch den Kanal annähernd gleich verändert.
    Das heißt:   Genau dann liegt nichtfrequenzselektives Fading vor.


$\text{Beispiel 2:}$  In der Grafik links dargestellt ist die Verzögerungsleistungsdichte  ${\it \Phi}_{\rm V}(\tau)$

Mehrwegeverbreiterung und Kohärenzbandbreite
  • mit  $T_{\rm V} = 1 \ \rm µs$  (rote Kurve),
  • mit  $T_{\rm V} = 2 \ \rm µ s$  (blaue Kurve).


In der rechten  $\varphi_{\rm F}(\Delta f)$–Darstellung sind die Kohärenzbandbreiten eingezeichnet:

  • $B_{\rm K} = 276 \ \rm kHz$  (rote Kurve),
  • $B_{\rm K} = 138 \ \rm kHz$  (blaue Kurve).


Man erkennt aus diesen Zahlenwerten:

  • Die aus  ${\it \Phi}_{\rm V}(\tau)$  berechenbare Mehrwegeverbreiterung  $T_{\rm V}$  steht mit der durch  $\varphi_{\rm F}(\Delta f)$  festgelegten Kohärenzbandbreite  $B_{\rm K}$  in einem festen Verhältnis zueinander:   $B_{\rm K} \approx 0.276/T_{\rm V}$.
  • Die oft  benutzte Näherung  $B_{\rm K}\hspace{0.02cm}' \approx 1/T_{\rm V}$  ist hingegen bei exponentiellem  ${\it \Phi}_{\rm V}(\tau)$  sehr ungenau.


Betrachten wir nun die Zeitvarianz–Kenngrößen, die von der Zeit–Korrelationsfunktion  $\varphi_{\rm Z}(\Delta t)$  bzw. vom Doppler–Leistungsdichtespektrum  ${\it \Phi}_{\rm D}(f_{\rm D})$  abgeleitet werden:

$\text{Definition:}$  Die  Korrelationsdauer $T_{\rm D}$  (englisch:   "Coherence Time")  gibt die Zeit an, die im Mittel vergehen muss, bis der Kanal seine Übertragungseigenschaften aufgrund der Zeitvarianz völlig geändert hat.  Deren Definition ist ähnlich wie die Definition der Kohärenzbandbreite:

\[\vert \varphi_{\rm Z}(\Delta t = T_{\rm D})\vert \stackrel {!}{=} {1}/{2} \cdot \vert \varphi_{\rm Z}(\Delta t = 0)\vert \hspace{0.05cm}.\]


$\text{Definition:}$  Die  Dopplerverbreiterung  $B_{\rm D}$  (oder „Fading–Bandbreite”, englisch:   "Doppler Spread")  ist die mittlere Frequenzverbreiterung, die die einzelnen spektralen Signalanteile erfahren.  Bei der Berechnung geht man ähnlich vor wie bei der Mehrwegeverbreiterung, indem man die Dopplerverbreiterung  $B_{\rm D}$  als die Standardabweichung der Zufallsgröße  $f_{\rm D}$  berechnet:

\[B_{\rm D} = \sigma_{\rm D} = \sqrt{ {\rm E} \left [ f_{\rm D}^2 \right ] - m_{\rm D}^2} \hspace{0.05cm}.\]
  • Zunächst ist aus  ${\it \Phi}_{\rm D}(f_{\rm D})$  durch Flächennormierung auf  $1$  die Doppler–WDF zu ermitteln.
  • Daraus ergeben sich die mittlere Dopplerverschiebung  $m_{\rm D} = {\rm E}[f_{\rm D}]$  und die Standardabweichung  $\sigma_{\rm D}$.


$\text{Beispiel 3:}$  Die Grafik gilt für einen zeitvarianten Kanal ohne Direktkomponente. Links dargestellt ist das  Jakes–Spektrum  ${\it \Phi}_{\rm D}(f_{\rm D})$.

Dopplerverbreiterung und Korrelationsdauer

Die Dopplerverbreiterung  $B_{\rm D}$  lässt sich daraus ermitteln:

\[f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}\hspace{-0.1cm}: \hspace{-0.1cm}\hspace{0.45cm} B_{\rm D} \approx 35\,{\rm Hz} \hspace{0.05cm},\]
\[f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}\hspace{-0.1cm}: \hspace{-0.1cm}\hspace{0.2cm} B_{\rm D} \approx 70\,{\rm Hz} \hspace{0.05cm}.\]

Die Zeitkorrelationsfunktion  $\varphi_{\rm Z}(\Delta t)$  als die Fourierrücktransformierte von  ${\it \Phi}_{\rm D}(f_{\rm D})$  ist rechts skizziert.

Bei den gegebenen Randbedingungen lautet diese mit der Besselfunktion:

\[\varphi_{\rm Z}(\Delta t \hspace{-0.05cm} = \hspace{-0.05cm}T_{\rm D}) \hspace{-0.05cm}= \hspace{-0.05cm} {\rm J}_0(2 \pi \hspace{-0.05cm} \cdot \hspace{-0.05cm} f_{\rm D,\hspace{0.05cm}max} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\Delta t ).\]
  • Die Korrelationsdauer der blauen Kurve ist  $T_{\rm D} = 4.84 \ \rm ms$.
  • Für  $f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}$  ist die Korrelationsdauer nur halb so groß.
  • Allgemein gilt im vorliegenden Fall:   $B_{\rm D} \cdot T_{\rm D}\approx 0.17$.


Simulation gemäß dem GWSSUS–Modell


Das abschließend nur kurz dargelegte Monte–Carlo–Verfahren zur Simulation eines GWSSUS–Mobilfunkkanals basiert auf Arbeiten von Rice [Ric44][1] und Höher [Höh90][2].

  • Die 2D–Impulsantwort wird durch eine Summe aus $M$ komplexen Exponentialfunktionen dargestellt.  $M$  ist als die Anzahl unterschiedlicher Pfade interpretierbar:
\[h(\tau,\ t)= \frac{1}{\sqrt {M}} \cdot \sum_{m=1}^{M} \alpha_m \cdot \delta (t - \tau_m) \cdot {\rm e}^{{\rm j} \hspace{0.05cm} \phi_{m} }\cdot {\rm e}^{ {\rm j} \hspace{0.05cm}2 \pi f_{{\rm D},\hspace{0.05cm} m} t} \hspace{0.05cm}. \]
  • Vor Beginn werden die Verzögerungen  $\tau_m$,  die Dämpfungsfaktoren  $\alpha_m$,  die gleichverteilten Phasen  $\phi_m$  und die Dopplerfrequenzen  $f_{{\rm D},\hspace{0.05cm} m}$  nach den GWSSUS–Vorgaben „ausgewürfelt”.  Grundlage für das Auswürfeln der Dopplerfrequenzen  $f_{{\rm D},\hspace{0.05cm} m}$  ist das  Jakes–Spektrum  ${\it \Phi}_{\rm D}(f_{\rm D})$,  das  – geeignet normiert –  gleichzeitig die WDF der Dopplerfrequenzen angibt.
  • Wegen  ${\it \Phi}_{\rm VD}(\tau, f_{\rm D}) = {\it \Phi}_{\rm V}(\tau) \cdot {\it \Phi}_{\rm D}(f_{\rm D})$  ist für alle  $m$  die Verzögerungszeit  $\tau_m$  unabhängig von der Dopplerfrequenz  $f_{{\rm D},\hspace{0.05cm} m}$.  Für den terrestrischen Landmobilfunk gilt dies mit guter Näherung.  Für das Auswürfeln der Parameter  $\alpha_m$  und  $\tau_m$,  die das Verzögerungs–Leistungsdichtespektrum  $ {\it \Phi}_{\rm V}(\tau)$  bestimmen, stehen die  COST–Profile  $\rm RA$  (Rural Area),  $\rm TU$  (Typical Urban),  $\rm BU$  (Bad Urban)  und  $\rm HT$  (Hilly Terrain) zur Verfügung.
  • Je größer bei der Simulation die Anzahl  $M$  unterschiedlicher Pfade gewählt wird, um so besser wird eine reale Impulsantwort durch obige Gleichung angenähert.  Die höhere Simulationsgenauigkeit geht allerdings auf Kosten der Simulationsdauer.  In der Literatur werden für  $M$  günstige Werte zwischen  $100$  und  $600$  angegeben.


Zeitvariante Übertragungsfunktion
$($Betragsquadrat,  simuliert$)$

$\text{Beispiel 4:}$  Die Grafik aus [Hin08][3] zeigt ein Simulationsergebnis:   Als 2D–Plot ist  $20 \cdot \lg \vert H(f, \hspace{0.1cm}t)\vert$  dargestellt, wobei die zeitvariante Übertragungsfunktion  $H(f, \hspace{0.1cm}t)$  in diesem Tutorial auch mit  $\eta_{\rm FZ}(f, \hspace{0.1cm}t)$  bezeichnet wird.

Der Simulation liegen folgende Parameter zugrunde:

  • Die Zeitvarianz entsteht durch eine Bewegung mit  $v = 3 \ \rm km/h$.
  • Die Trägerfrequenz ist  $f_{\rm T} = 2 \ \rm GHz$.
  • Die maximale Verzögerungszeit beträgt  $\tau_{\rm max} \approx 0.4 \ \rm µ s$.
  • Daraus ergibt sich nach der Näherung für die Kohärenzbandbreite  $B_{\rm K}\hspace{0.02cm}' \approx 2.5 \ \rm MHz$.
  • Die maximale Dopplerfrequenz ist  $f_\text{D, max} \approx 5.5 \ \rm Hz$.
  • Die Dopplerverbreiterung ergibt sich zu  $B_{\rm D} \approx 4 \ \rm Hz$.


Aufgaben zum Kapitel


Aufgabe 2.5: Scatter-Funktion

Aufgabe 2.5Z: Mehrwege-Szenario

Aufgabe 2.6: Einheiten bei GWSSUS

Aufgabe 2.7: Kohärenzbandbreite

Aufgabe 2.7Z: Kohärenzbandbreite des LZI–Zweiwegekanals

Aufgabe 2.8: COST-Verzögerungsmodelle

Aufgabe 2.9: Korrelationsdauer

Quellenverzeichnis

  1. Rice, S.O.:  Mathematical Analysis of Random Noise.  BSTJ–23, pp. 282–232 und BSTJ–24, pp. 45–156, 1945.
  2. Höher, P.:  Empfang trelliscodierter PSK–Signale auf frequenzselektiven Mobilfunkkanälen – Entzerrung, Decodierung und Kanalschätzung. 
    Düsseldorf: VDI–Verlag, Fortschrittsberichte, Reihe 10, Nr. 147, 1990.
  3. Hindelang, T.:  Mobile Communications.  Vorlesungsmanuskript.  Lehrstuhl für Nachrichtentechnik,  TU München, 2008.