Aufgaben:Aufgabe 5.4: Sinusgenerator: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Stochastische Signaltheorie/Digitale Filter }} right| :Die Grafik zeigt ein digitales Filter zweiter…“)
 
 
(14 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID622__Sto_A_5_4.png|right|]]
+
[[Datei:P_ID622__Sto_A_5_4.png|right|frame|Vorgeschlagene Filterstruktur]]
:Die Grafik zeigt ein digitales Filter zweiter Ordnung, das zum Beispiel zur Erzeugung einer zeitdiskreten Sinusfunktion auf einem digitalen Signalprozessor (DSP) geeignet ist:
+
Die Grafik zeigt ein digitales Filter zweiter Ordnung,  das zum Beispiel zur Erzeugung einer zeitdiskreten Sinusfunktion auf einem digitalen Signalprozessor  $\rm (DSP)$  geeignet ist:
:$$\left\langle {y_\nu  } \right\rangle  = \left\langle {\, \sin ( {\nu T  \omega _0  } )\, }\right\rangle .$$
+
:$$\left\langle \hspace{0.05cm}{y_\nu  }\hspace{0.05cm} \right\rangle  = \left\langle {\, \sin ( {\nu T \cdot \omega _0  } )\, }\right\rangle .$$
 +
*Vorausgesetzt wird,  dass die Eingangsfolge  $\left\langle \hspace{0.05cm} {x_\nu  } \hspace{0.05cm}\right\rangle$  eine  (zeitdiskrete)  Diracfunktion beschreibt.  Damit sind gleichzeitig alle Ausgangswerte  $y_\nu$  für Zeiten  $\nu\lt 0$  identisch Null.
 +
*Die insgesamt fünf Filterkoeffizienten ergeben sich aus der  [https://de.wikipedia.org/wiki/Z-Transformation $Z$-Transformation]:
 +
:$$Z \{ {\sin ( {\nu T \omega _0 } )} \} = \frac{{z \cdot \sin \left( {\omega _0  T} \right)}}{{z^2 - 2 \cdot z \cdot \cos \left( {\omega _0   T} \right) + 1}}.$$
 +
*Setzt man diese Gleichung durch ein rekursives Filter zweiter Ordnung  $(M = 2)$  um,  so erhält man die folgenden Filterkoeffizienten:
 +
:$$a_0 = 0,\quad a_1 = \sin \left( {\omega _0  T} \right),\quad a_2  = 0, \quad b_1  = 2 \cdot \cos \left( {\omega _0  T} \right),\quad b_2  =  - 1.$$
  
:Vorausgesetzt wird, dass die Eingangsfolge &#9001;<i>x<sub>&nu;</sub></i>&#9002; eine (zeitdiskrete) Diracfunktion beschreibt. Damit sind gleichzeitig alle Ausgangswerte <i>y<sub>&nu;</sub></i> für Zeiten <i>&nu;</i> &lt; 0 identisch 0.
+
In der Grafik ist bereits durch die hellere Umrandung markiert,&nbsp; dass auf die Filterkoeffizienten&nbsp; $a_0$&nbsp; und&nbsp; $a_2$&nbsp; verzichtet werden kann.
  
:Die insgesamt fünf Filterkoeffizienten ergeben sich aus der <i>z</i>-Transformation, die im Buch &bdquo;Lineare zeitvariante Systeme&rdquo; behandelt wird: <br />
 
:$$z \{ {\sin ( {\nu T \omega _0 } )} \} = \frac{{z \cdot \sin \left( {\omega _0  T} \right)}}{{z^2  - 2 \cdot z \cdot \cos \left( {\omega _0  T} \right) + 1}}.$$
 
  
:Setzt man diese Gleichung durch ein rekursives Filter zweiter Ordnung (<i>M</i> = 2) um, so erhält man die folgenden Filterkoeffizienten:
 
:$$a_0 = 0,\quad a_1  = \sin \left( {\omega _0  T} \right),\quad a_2  = 0,\\b_1  = 2 \cdot \cos \left( {\omega _0  T} \right),\quad b_2  =  - 1.$$
 
  
:Im Bild ist bereits markiert, dass auf die Filterkoeffizienten <i>a</i><sub>0</sub> und <i>a</i><sub>2</sub> verzichtet werden kann.
 
  
:<b>Hinweis:</b> Die Aufgabe bezieht sich auf den Theorieteil von Kapitel 5.2, wobei zur Vereinfachung der Gleichungen <i>T</i> anstelle der Laufzeit <i>T</i><sub>0</sub> benutzt wird. Für die Teilaufgaben (1) bis (3) gelte:
+
 
 +
Hinweise:  
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Digitale_Filter|Digitale Filter]]&nbsp; im vorliegenden Buch.
 +
*Das Applet&nbsp; [[Applets:Zur_Verdeutlichung_digitaler_Filter|"Digitale Filter"]]&nbsp; verdeutlicht den Themenkomplex dieses Kapitels.  
 +
*Für die Teilaufgaben&nbsp; '''(1)'''&nbsp; bis&nbsp; '''(3)'''&nbsp; gelte:
 
:$$a_1  = 0.5,\quad b_1  = \sqrt 3 .$$
 
:$$a_1  = 0.5,\quad b_1  = \sqrt 3 .$$
  
Zeile 24: Zeile 28:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Es gelte <i>a</i><sub>1</sub> = 0.5 und <i>b</i><sub>1 </sub>= 3<sup>1/2</sup>. Berechnen Sie die Ausgangswerte <i>y<sub>&nu;</sub></i> zu den Zeitpunkten <i>&nu;</i> = 0, <i>&nu;</i> = 1 und <i>&nu;</i> = 2.
+
{Es gelte&nbsp; $a_1  = 0.5$&nbsp; und&nbsp; $b_1  = \sqrt 3 $.&nbsp; Berechnen Sie die Ausgangswerte&nbsp; $y_\nu$&nbsp; zu den Zeitpunkten&nbsp; $\nu = 0$,&nbsp; $\nu = 1$&nbsp; und&nbsp; $\nu = 2$.
 
|type="{}"}
 
|type="{}"}
$y_0$ = { 0 3% }
+
$y_0 \ = \ $ { 0. }
$y_1$ = { 0.5 3% }
+
$y_1 \ = \  $ { 0.5 3% }
$y_2$ = { 0.866 3% }
+
$y_2 \ = \  $ { 0.866 3% }
  
  
{Wie lautet der Ausgangswert <i>y<sub>&nu;</sub></i> für <i>&nu;</i> &#8805; 2 allgemein? Berechnen Sie die Werte <i>y</i><sub>3</sub>, ... , <i>y</i><sub>7</sub> und geben Sie zur Kontrolle <i>y</i><sub>7</sub> ein.
+
{Wie lautet der Ausgangswert &nbsp;$y_\nu$&nbsp; für &nbsp;$\nu \ge 2$&nbsp; allgemein?&nbsp; Berechnen Sie die Werte &nbsp;$y_3$, ... , $y_7$&nbsp; und geben Sie zur Kontrolle &nbsp;$y_7$&nbsp; ein.
 
|type="{}"}
 
|type="{}"}
$y_7$ = - { 0.5 3% }
+
$y_7 \ =  \ $ { -0.515--0.485 }
  
  
{Wie viele Stützstellen (<i>T</i><sub>0</sub>/<i>T</i>) stellen eine Periodendauer (<i>T</i><sub>0</sub>) dar?
+
{Wie viele Stützstellen&nbsp; $(T_0/T)$&nbsp; stellen eine Periodendauer&nbsp; $(T_0)$&nbsp; dar?
 
|type="{}"}
 
|type="{}"}
$T_0/T$ = { 12 3% }
+
$T_0/T\ =  \ $ { 12 3% }
  
  
{Es gelte nun <i>T</i> = 1 &mu;s. Wie müssen die Koeffizienten <i>a</i><sub>1</sub> und <i>b</i><sub>1</sub> gewählt werden, damit eine 10 kHz&ndash;Sinusschwingung erzeugt wird?
+
{Es gelte nun&nbsp; $T = 1 \hspace{0.05cm} \rm &micro; s$.&nbsp; Wie müssen die Koeffizienten&nbsp; $a_1$&nbsp; und&nbsp; $b_1$&nbsp; gewählt werden,&nbsp; damit eine&nbsp; $\text{10 kHz}$&ndash;Sinusschwingung erzeugt wird?
 
|type="{}"}
 
|type="{}"}
$a_1$ = { 0.062 3% }
+
$a_1 \ =  \ $ { 0.062 3% }
$b_1$ = { 1.996 3% }
+
$b_1 \ =  \ $ { 1.996 3% }
  
  
Zeile 52: Zeile 56:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Die &bdquo;1&rdquo; am Eingang wirkt sich am Ausgang erst zum Zeitpunkt <i>&nu;</i> = 1 aus (wegen <i>a</i><sub>0</sub> = 0):
+
'''(1)'''&nbsp; Die &bdquo;$1$&rdquo; am Eingang wirkt sich&nbsp;  $($wegen&nbsp; $a_0= 0)$&nbsp; am Ausgang erst zum Zeitpunkt&nbsp; $\nu = 1$&nbsp; aus:
 
:$$y_0  \hspace{0.15cm} \underline{= 0},\quad y_1  \hspace{0.15cm} \underline{ = 0.5}.$$
 
:$$y_0  \hspace{0.15cm} \underline{= 0},\quad y_1  \hspace{0.15cm} \underline{ = 0.5}.$$
  
:Bei <i>&nu;</i> = 2 wird auch der rekursive Teil des Filters wirksam:
+
*Bei&nbsp; $\nu = 2$&nbsp; wird auch der rekursive Teil des Filters wirksam:
 
:$$y_2  = b_1  \cdot y_1  - y_0  = {\sqrt 3 }/{2} \hspace{0.15cm} \underline{ \approx 0.866}.$$
 
:$$y_2  = b_1  \cdot y_1  - y_0  = {\sqrt 3 }/{2} \hspace{0.15cm} \underline{ \approx 0.866}.$$
  
:<b>2.</b>&nbsp;&nbsp; Für <i>&nu;</i> &#8805; 2 ist das Filter rein rekursiv:
+
 
 +
 
 +
'''(2)'''&nbsp; Für&nbsp; $\nu \ge 2$&nbsp; ist das Filter rein rekursiv:
 
:$$y_\nu  = b_1  \cdot y_{\nu  - 1}  - y_{\nu  - 2} .$$
 
:$$y_\nu  = b_1  \cdot y_{\nu  - 1}  - y_{\nu  - 2} .$$
  
:Insbesondere erhält man
+
*Insbesondere erhält man
 
:$$y_3  = \sqrt 3  \cdot y_2  - y_1  = \sqrt 3  \cdot {\sqrt 3 }/{2} - {1}/{2} = 1;$$
 
:$$y_3  = \sqrt 3  \cdot y_2  - y_1  = \sqrt 3  \cdot {\sqrt 3 }/{2} - {1}/{2} = 1;$$
 
:$$y_4  = \sqrt 3  \cdot y_3  - y_2  = \sqrt 3  \cdot 1 - {\sqrt 3 }/{2} = {\sqrt 3 }/{2};$$
 
:$$y_4  = \sqrt 3  \cdot y_3  - y_2  = \sqrt 3  \cdot 1 - {\sqrt 3 }/{2} = {\sqrt 3 }/{2};$$
 
:$$y_5  = \sqrt 3  \cdot y_4  - y_3  = \sqrt 3  \cdot {\sqrt 3 }/{2} - 1 = {1}/{2};$$
 
:$$y_5  = \sqrt 3  \cdot y_4  - y_3  = \sqrt 3  \cdot {\sqrt 3 }/{2} - 1 = {1}/{2};$$
 
:$$y_6  = \sqrt 3  \cdot y_5  - y_4  = \sqrt 3  \cdot {1}/{2} - {\sqrt 3 }/{2} = 0;$$
 
:$$y_6  = \sqrt 3  \cdot y_5  - y_4  = \sqrt 3  \cdot {1}/{2} - {\sqrt 3 }/{2} = 0;$$
:$$y_7  = \sqrt 3  \cdot y_6  - y_5  = \sqrt 3  \cdot 0 - {1}/{2}  \hspace{0.15cm} \underline{=  - {1}/{2}}.$$
+
:$$y_7  = \sqrt 3  \cdot y_6  - y_5  = \sqrt 3  \cdot 0 - {1}/{2}  \hspace{0.15cm} \underline{=  - 0.5}.$$
 +
 
  
:<b>3.</b>&nbsp;&nbsp; Durch Fortsetzung des rekursiven Algorithmuses aus (b) erhält man für große <i>&nu;</i>-Werte:
+
 
 +
'''(3)'''&nbsp; Durch Fortsetzung des rekursiven Algorithmuses der Teilaufgabe&nbsp; '''(2)'''&nbsp; erhält man für große&nbsp; $\nu$&ndash;Werte: &nbsp;
 
:$$y_\nu  = y_{\nu  - 12} .$$
 
:$$y_\nu  = y_{\nu  - 12} .$$
 +
*Daraus folgt&nbsp; $T_0/T\hspace{0.15cm} \underline{= 12}$.&nbsp; Zum gleichen Ergebnis kommt man durch folgende Überlegungen:
 +
:$$a_1  = \sin \left( {\omega _0  \cdot T} \right) = \sin \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right)\mathop  = \limits^! {1}/{2} = \sin \left( {{{\rm{\pi }}}/{6}} \right) \;\;{\rm \Rightarrow} \;\;{2T}/{T_0 } = {1}/{6}\quad  \Rightarrow \;\;{T_0 }/{T} = 12.$$
 +
 +
*Die Überprüfung des Koeffizienten&nbsp; $b_1$&nbsp; bestätigt die Rechnung:
 +
:$$b_1  = 2 \cdot \cos \left( {{{\rm{\pi }}}/{6}} \right) = 2 \cdot {\sqrt 3 }/{2} = \sqrt 3 .$$
  
:Daraus folgt <i>T</i><sub>0</sub>/<i>T</i> <u>= 12</u>. Zum gleichen Ergebnis kommt man durch folgende Überlegungen:
 
:$$a_1  = \sin \left( {\omega _0  \cdot T} \right) = \sin \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right)\mathop  = \limits^! {1}/{2} = \sin \left( {{{\rm{\pi }}}/{6}} \right).$$
 
:$${\rm \Rightarrow} \;\;{2T}/{T_0 } = {1}/{6}\quad  \Rightarrow \;\;{T_0 }/{T} = 12.$$
 
  
:Die Überprüfung des Koeffizienten <i>b</i><sub>1</sub> bestätigt die Rechnung:
 
:$$b_1  = 2 \cdot \cos \left( {{{\rm{\pi }}}/{6}} \right) = 2 \cdot c{\sqrt 3 }/{2} = \sqrt 3 .$$
 
  
:<b>4.</b>&nbsp;&nbsp;Aus <i>f</i><sub>0</sub> = 10 kHz folgt <i>T</i><sub>0</sub> = 100 &mu;s bzw. <i>T</i><sub>0</sub>/<i>T</i> = 100. Damit ergibt sich:
+
'''(4)'''&nbsp; Aus &nbsp;$f_0 = 10 \hspace{0.15cm} \rm kHz$&nbsp; folgt &nbsp;$T_0 = 100 \hspace{0.05cm} \rm &micro; s$&nbsp; bzw. &nbsp;$T_0/T = 100$&nbsp;. Damit erhält man:
 
:$$a_1  = \sin \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right) = \sin \left( {3.6^ \circ  } \right) \hspace{0.15cm} \underline{\approx 0.062},$$
 
:$$a_1  = \sin \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right) = \sin \left( {3.6^ \circ  } \right) \hspace{0.15cm} \underline{\approx 0.062},$$
 
:$$b_1  = 2 \cdot \cos \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right) = 2 \cdot \cos \left( {3.6^ \circ  } \right) \hspace{0.15cm} \underline{\approx 1.996}.$$
 
:$$b_1  = 2 \cdot \cos \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right) = 2 \cdot \cos \left( {3.6^ \circ  } \right) \hspace{0.15cm} \underline{\approx 1.996}.$$

Aktuelle Version vom 10. Februar 2022, 19:52 Uhr

Vorgeschlagene Filterstruktur

Die Grafik zeigt ein digitales Filter zweiter Ordnung,  das zum Beispiel zur Erzeugung einer zeitdiskreten Sinusfunktion auf einem digitalen Signalprozessor  $\rm (DSP)$  geeignet ist:

$$\left\langle \hspace{0.05cm}{y_\nu }\hspace{0.05cm} \right\rangle = \left\langle {\, \sin ( {\nu T \cdot \omega _0 } )\, }\right\rangle .$$
  • Vorausgesetzt wird,  dass die Eingangsfolge  $\left\langle \hspace{0.05cm} {x_\nu } \hspace{0.05cm}\right\rangle$  eine  (zeitdiskrete)  Diracfunktion beschreibt.  Damit sind gleichzeitig alle Ausgangswerte  $y_\nu$  für Zeiten  $\nu\lt 0$  identisch Null.
  • Die insgesamt fünf Filterkoeffizienten ergeben sich aus der  $Z$-Transformation:
$$Z \{ {\sin ( {\nu T \omega _0 } )} \} = \frac{{z \cdot \sin \left( {\omega _0 T} \right)}}{{z^2 - 2 \cdot z \cdot \cos \left( {\omega _0 T} \right) + 1}}.$$
  • Setzt man diese Gleichung durch ein rekursives Filter zweiter Ordnung  $(M = 2)$  um,  so erhält man die folgenden Filterkoeffizienten:
$$a_0 = 0,\quad a_1 = \sin \left( {\omega _0 T} \right),\quad a_2 = 0, \quad b_1 = 2 \cdot \cos \left( {\omega _0 T} \right),\quad b_2 = - 1.$$

In der Grafik ist bereits durch die hellere Umrandung markiert,  dass auf die Filterkoeffizienten  $a_0$  und  $a_2$  verzichtet werden kann.



Hinweise:

  • Die Aufgabe gehört zum Kapitel  Digitale Filter  im vorliegenden Buch.
  • Das Applet  "Digitale Filter"  verdeutlicht den Themenkomplex dieses Kapitels.
  • Für die Teilaufgaben  (1)  bis  (3)  gelte:
$$a_1 = 0.5,\quad b_1 = \sqrt 3 .$$


Fragebogen

1

Es gelte  $a_1 = 0.5$  und  $b_1 = \sqrt 3 $.  Berechnen Sie die Ausgangswerte  $y_\nu$  zu den Zeitpunkten  $\nu = 0$,  $\nu = 1$  und  $\nu = 2$.

$y_0 \ = \ $

$y_1 \ = \ $

$y_2 \ = \ $

2

Wie lautet der Ausgangswert  $y_\nu$  für  $\nu \ge 2$  allgemein?  Berechnen Sie die Werte  $y_3$, ... , $y_7$  und geben Sie zur Kontrolle  $y_7$  ein.

$y_7 \ = \ $

3

Wie viele Stützstellen  $(T_0/T)$  stellen eine Periodendauer  $(T_0)$  dar?

$T_0/T\ = \ $

4

Es gelte nun  $T = 1 \hspace{0.05cm} \rm µ s$.  Wie müssen die Koeffizienten  $a_1$  und  $b_1$  gewählt werden,  damit eine  $\text{10 kHz}$–Sinusschwingung erzeugt wird?

$a_1 \ = \ $

$b_1 \ = \ $


Musterlösung

(1)  Die „$1$” am Eingang wirkt sich  $($wegen  $a_0= 0)$  am Ausgang erst zum Zeitpunkt  $\nu = 1$  aus:

$$y_0 \hspace{0.15cm} \underline{= 0},\quad y_1 \hspace{0.15cm} \underline{ = 0.5}.$$
  • Bei  $\nu = 2$  wird auch der rekursive Teil des Filters wirksam:
$$y_2 = b_1 \cdot y_1 - y_0 = {\sqrt 3 }/{2} \hspace{0.15cm} \underline{ \approx 0.866}.$$


(2)  Für  $\nu \ge 2$  ist das Filter rein rekursiv:

$$y_\nu = b_1 \cdot y_{\nu - 1} - y_{\nu - 2} .$$
  • Insbesondere erhält man
$$y_3 = \sqrt 3 \cdot y_2 - y_1 = \sqrt 3 \cdot {\sqrt 3 }/{2} - {1}/{2} = 1;$$
$$y_4 = \sqrt 3 \cdot y_3 - y_2 = \sqrt 3 \cdot 1 - {\sqrt 3 }/{2} = {\sqrt 3 }/{2};$$
$$y_5 = \sqrt 3 \cdot y_4 - y_3 = \sqrt 3 \cdot {\sqrt 3 }/{2} - 1 = {1}/{2};$$
$$y_6 = \sqrt 3 \cdot y_5 - y_4 = \sqrt 3 \cdot {1}/{2} - {\sqrt 3 }/{2} = 0;$$
$$y_7 = \sqrt 3 \cdot y_6 - y_5 = \sqrt 3 \cdot 0 - {1}/{2} \hspace{0.15cm} \underline{= - 0.5}.$$


(3)  Durch Fortsetzung des rekursiven Algorithmuses der Teilaufgabe  (2)  erhält man für große  $\nu$–Werte:  

$$y_\nu = y_{\nu - 12} .$$
  • Daraus folgt  $T_0/T\hspace{0.15cm} \underline{= 12}$.  Zum gleichen Ergebnis kommt man durch folgende Überlegungen:
$$a_1 = \sin \left( {\omega _0 \cdot T} \right) = \sin \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right)\mathop = \limits^! {1}/{2} = \sin \left( {{{\rm{\pi }}}/{6}} \right) \;\;{\rm \Rightarrow} \;\;{2T}/{T_0 } = {1}/{6}\quad \Rightarrow \;\;{T_0 }/{T} = 12.$$
  • Die Überprüfung des Koeffizienten  $b_1$  bestätigt die Rechnung:
$$b_1 = 2 \cdot \cos \left( {{{\rm{\pi }}}/{6}} \right) = 2 \cdot {\sqrt 3 }/{2} = \sqrt 3 .$$


(4)  Aus  $f_0 = 10 \hspace{0.15cm} \rm kHz$  folgt  $T_0 = 100 \hspace{0.05cm} \rm µ s$  bzw.  $T_0/T = 100$ . Damit erhält man:

$$a_1 = \sin \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right) = \sin \left( {3.6^ \circ } \right) \hspace{0.15cm} \underline{\approx 0.062},$$
$$b_1 = 2 \cdot \cos \left( {2{\rm{\pi }}\cdot{T}/{T_0 }} \right) = 2 \cdot \cos \left( {3.6^ \circ } \right) \hspace{0.15cm} \underline{\approx 1.996}.$$