Aufgabe 4.10: Turbocoder für UMTS und LTE

Aus LNTwww
Wechseln zu:Navigation, Suche

UMTS/LTE–Turbocoder

Die Mobilfunkstandards UMTS und LTE verwenden jeweils einen Turbocode, der weitgehend identisch ist mit dem in Kapitel 4.3 beschriebenen Coder.

  • Der $1/n$–Faltungscode ist systematisch, das heißt, dass die Codesequenz $\underline{x}$ die Informationssequenz $\underline{u}$ als Komponente beinhaltet.
  • Die Sequenzen $\underline{p}_1$ und $\underline{p}_2$ basieren auf der gleichen Übertragungsfunktion: $G_1(D) = G_2(D) = G(D)$.
  • Die Paritysequenzen $\underline{p}_1$ und $\underline{p}_2$ verwenden unterschiedliche Eingangssequenzen $\underline{u}$ bzw. $\underline{u}_{\pi}$. Hierbei kennzeichnet ${\rm \Pi}$ den Interleaver, bei UMTS und LTE meist ein $S$–Random–Interleaver.


Der wesentliche Unterschied gegenüber der bisherigen Beschreibung im Theorieteil ergibt sich durch eine andere Übertragungsfunktion $G(D)$, die durch die folgende rekursive Filterstruktur gegeben ist:

Gegebene Filterstruktur

Hinweise:

  • Die Aufgabe gehört zum Themengebiet des Kapitels Grundlegendes zu den Turbocodes.
  • Erwartet werden Kenntnisse über
    • die algebraische und polynomische Beschreibung von Faltungscodes  ⇒  Kapitel 3.2,
    • die Zustandsbeschreibung mit Zustands– und Trellisdiagramm  ⇒  Kapitel 3.3.
  • Weitere Hinweise zur Vorgehensweise finden Sie in Aufgabe A4.8 und Aufgabe A4.9.
  • Die Informationssequenz $\underline{u}$ wird zur einfacheren Beschreibung in den Teilaufgaben teilweise durch deren $D$–Transformierte angegeben. Beispielsweise gilt:
$$\underline{u}= (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}\hspace{0.05cm} ...\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = D+ D^2\hspace{0.05cm},$$
$$\underline{u}= (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}\hspace{0.05cm} ...\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = D+ D^8\hspace{0.05cm}.$$
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Wie lauten die Kenngrößen des betrachteten Turbocodes?

${\rm Rate} \ R \ = \ $

${\rm Gedächtnis} \ m \ = \ $

${\rm Einflusslänge} \ \nu \ = \ $

2

Wie lauten die Übertragungsfunktionen $G_1(D) = G_2(D) = G(D)$?

Es gilt $G(D) = (1 + D + D^3)/(1 + D^2 + D^3)$.
Es gilt $G(D) = (1 + D^2 + D^3)/(1 + D + D^3)$.

3

Wie lautet die Impulsantwort $\underline{g}$?

Es gilt: $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, ...)$
Es gilt: $\underline{g} = (1, \, 1, \, 1, \, 1, \, 0, \, 0, \, 1, \, 0, \, 1, \, 1, \, 1, \, 0, \, 0, \, 1, \, 0, \, ...)$.
$\underline{g}$ setzt sich bis ins Unendliche fort.

4

Gibt es periodische Anteile innerhalb der Impulsantwort $\underline{g}$?

Ja, mit Periodendauer $P = 7$.
Ja, mit Periodendauer $P = 8$.
Nein.

5

Es sei nun $U(D) = D + D^2$. Welche Aussagen stimmen?

Die Ausgangsfolge $underline{p}$ beinhaltet einen periodischen Anteil.
Die Periode $P$ ist gegenüber $\undeline{g}$ unverändert.
Das Hamming–Gewicht der Eingangssequenz ist $w_{\rm H}(\underline{u}) = 2$.
Das Hamming–Gewicht der Ausgangsseqenz ist $w_{\rm H}(\underline{p}) = 6$.

6

Welche Aussagen treffen für $U(D) = D + D^8$ zu?

Die Ausgangsfolge $\underline{p}$ beinhaltet einen periodischen Anteil.
Die Periode $P$ ist gegenüber $\underline{g}$ unverändert.
Das Hamming–Gewicht der Eingangssequenz ist $w_{\rm H}(\underline{u}) = 2$.
Das Hamming–Gewicht der Ausgangssequenz ist $w_{\rm H}(\underline{p}) = 6$.


Musterlösung

(1)  (2)  (3)  (4)  (5)