Aufgaben:Aufgabe 3.5: Rekursive Filter für GF(2): Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(8 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
 
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
  
[[Datei:P_ID2647__KC_A_3_5.png|right|frame|Rekursive Filter]]
+
[[Datei:P_ID2647__KC_A_3_5.png|right|frame|Allgemeines rekursives Filter und betrachtete Realisierung]]
 
Die obere der beiden dargestellten Schaltungen zeigt ein rekursives Filter zweiter Ordnung in allgemeiner Form. Mit
 
Die obere der beiden dargestellten Schaltungen zeigt ein rekursives Filter zweiter Ordnung in allgemeiner Form. Mit
 
:$$A(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  a_0 + a_1 \cdot D + a_2 \cdot D^2  \hspace{0.05cm},$$
 
:$$A(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  a_0 + a_1 \cdot D + a_2 \cdot D^2  \hspace{0.05cm},$$
Zeile 9: Zeile 9:
 
:$$G(D) = \frac{A(D)}{B(D)} = \frac{a_0 + a_1 \cdot D + a_2 \cdot D^2}{1 + b_1 \cdot D + b_2 \cdot D^2} \hspace{0.05cm}.$$
 
:$$G(D) = \frac{A(D)}{B(D)} = \frac{a_0 + a_1 \cdot D + a_2 \cdot D^2}{1 + b_1 \cdot D + b_2 \cdot D^2} \hspace{0.05cm}.$$
  
Zu beachten ist, dass sich alle Rechenoperationen auf ${\rm GF(2)}$ beziehen. Damit sind auch die Filterkoeffizienten $a_0, a_1, a_2, b_1$ und $b_2$ binär (entweder $0$ oder $1$).
+
Zu beachten ist, dass sich alle Rechenoperationen auf  ${\rm GF(2)}$  beziehen. Damit sind auch die Filterkoeffizienten  $a_0, \ a_1, \ a_2, \ b_1$  und  $b_2$  binär $($entweder  $0$  oder  $1)$.
  
Die untere Grafik zeigt das für die vorliegende Aufgabe spezifische Filter. Ein Filterkoeffizient ergibt sich zu $a_i = 1$, wenn die Verbindung durchgeschaltet ist $(0 ≤ i ≤ 2)$. Andernfalls ist $a_i = 0$. Die gleiche Systematik gilt für die Koeffizienten $b_1$ und $b_2$.  
+
Die untere Grafik zeigt das für die vorliegende Aufgabe spezifische Filter:
 +
*Ein Filterkoeffizient ergibt sich zu  $a_i = 1$, wenn die Verbindung durchgeschaltet ist  $(0 ≤ i ≤ 2)$.  
 +
*Andernfalls ist  $a_i = 0$. Die gleiche Systematik gilt für die Koeffizienten  $b_1$  und  $b_2$.  
  
In den Teilaufgaben (1), ... , (3) sollen Sie für verschiedene Eingangssequenzen
 
* $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, ...)$,
 
* $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1, \, ...)$,
 
* $\underline{u} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, ...)$
 
  
 +
In den Teilaufgaben '''(1)''', ... , '''(3)''' sollen Sie für verschiedene Eingangssequenzen
 +
* $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$,
 +
* $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$,
 +
* $\underline{u} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$
  
die jeweilige Ausgangssequenz $\underline{x}$ anhand der vorgegebenen Schaltung ermitteln. Es ist zu berücksichtigen:  
+
 
* Besteht die Eingangssequenz $\underline{u}$ aus einer Eins gefolgt von lauter Nullen, so bezeichnet man diese spezifische Ausgangssequenz $\underline{x}$ als die <i>Impulsantwort</i> $\underline{g}$, und es gilt:
+
die jeweilige Ausgangssequenz&nbsp; $\underline{x}$&nbsp; anhand der vorgegebenen Schaltung ermitteln. Es ist zu berücksichtigen:  
 +
* Besteht die Eingangssequenz&nbsp; $\underline{u}$&nbsp; aus einer Eins gefolgt von lauter Nullen, so bezeichnet man diese spezifische Ausgangssequenz&nbsp; $\underline{x}$&nbsp; als die&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich#Impulsantwort|Impulsantwort]]&nbsp; $\underline{g}$, und es gilt:
 
:$$\underline{g} \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm}{G}(D)\hspace{0.05cm}. $$
 
:$$\underline{g} \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm}{G}(D)\hspace{0.05cm}. $$
* Andernfalls ergibt sich die Ausgangssequenz als das [[Signaldarstellung/Faltungssatz_und_Faltungsoperation| Faltungsprodukt]] zwischen Eingangssequenz und Impulsantwort:
+
* Andernfalls ergibt sich die Ausgangssequenz als das&nbsp; [[Signaldarstellung/Faltungssatz_und_Faltungsoperation| Faltungsprodukt]]&nbsp; zwischen Eingangssequenz und Impulsantwort:
 
:$$\underline{x} = \underline{u} * \underline{g} \hspace{0.05cm}.$$
 
:$$\underline{x} = \underline{u} * \underline{g} \hspace{0.05cm}.$$
* Die Faltungsoperation lässt sich mit dem Umweg über die [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#GF.282.29.E2.80.93Beschreibungsformen_eines_Digitalen_Filters| $D$&ndash;Transformation]] umgehen.  
+
* Die Faltungsoperation lässt sich mit dem Umweg über die&nbsp; [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#GF.282.29.E2.80.93Beschreibungsformen_eines_Digitalen_Filters| $D$&ndash;Transformation]]&nbsp; umgehen.  
 +
 
 +
 
 +
 
 +
 
 +
 
  
  
''Hinweis:''
+
''Hinweise:''
* Die Aufgabe bezieht sich auf die [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Filterstruktur_bei_gebrochen.E2.80.93rationaler_.C3.9Cbertragungsfunktion| letzte Seite]] des Kapitels Algebraische und polynomische Beschreibung.
+
* Die Aufgabe gehört zum  Kapitel&nbsp; [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung| Algebraische und polynomische Beschreibung]].
 +
* Bezug genommen wird insbesondere auf die Seite&nbsp;  [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Filterstruktur_bei_gebrochen.E2.80.93rationaler_.C3.9Cbertragungsfunktion| Filterstruktur bei gebrochen&ndash;rationaler Übertragungsfunktion]]
  
  
Zeile 34: Zeile 43:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen gelten für die Impulsantwort $\underline{g}$ des rekursiven Filters?
+
{Welche Aussagen gelten für die Impulsantwort&nbsp; $\underline{g}$&nbsp; des rekursiven Filters?
 
|type="[]"}
 
|type="[]"}
- Es gilt $\underline{g} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, ...)$.
+
- Es gilt&nbsp; $\underline{g} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$.
+ Es gilt $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, ...)$.
+
+ Es gilt&nbsp; $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$.
+ Die Impulsantwort $\underline{g}$ ist unendlich weit ausgedehnt.
+
+ Die Impulsantwort&nbsp; $\underline{g}$&nbsp; ist unendlich weit ausgedehnt.
  
{Es sei nun $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1)$. Welche Aussagen treffen zu?
+
{Es sei nun&nbsp; $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1)$. Welche Aussagen treffen zu?
 
|type="[]"}
 
|type="[]"}
+ Die Ausgangssequenz lautet: $\underline{x} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, ...)$.
+
+ Die Ausgangssequenz lautet:&nbsp; $\underline{x} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$.
- Die Ausgangssequenz lautet: $\underline{x} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, ...)$.
+
- Die Ausgangssequenz lautet:&nbsp; $\underline{x} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$.
+ Die Ausgangssequenz $\underline{x}$ reicht bis ins Unendliche.
+
+ Die Ausgangssequenz&nbsp; $\underline{x}$&nbsp; reicht bis ins Unendliche.
  
{Nun gelte $\underline{u} = (1, \, 1, \, 1)$. Welche Aussagen treffen zu?
+
{Nun gelte&nbsp; $\underline{u} = (1, \, 1, \, 1)$. Welche Aussagen treffen zu?
 
|type="[]"}
 
|type="[]"}
+ Die Ausgangssequenz $\underline{x}$ beginnt mit $(1, \, 0, \, 1)$.
+
+ Die Ausgangssequenz&nbsp; $\underline{x}$&nbsp; beginnt mit&nbsp; $(1, \, 0, \, 1)$.
- Die Ausgangssequenz $\underline{x}$ beginnt mit $(1, \, 1, \, 1)$.
+
- Die Ausgangssequenz&nbsp; $\underline{x}$&nbsp; beginnt mit&nbsp; $(1, \, 1, \, 1)$.
- Die Ausgangssequenz $\underline{x}$ reicht bis ins Unendliche.
+
- Die Ausgangssequenz&nbsp; $\underline{x}$&nbsp; reicht bis ins Unendliche.
  
{Welche Aussagen gelten für die Übertragungsfunktion $G(D)$?
+
{Welche Aussagen gelten für die Übertragungsfunktion&nbsp; $G(D)$?
 
|type="[]"}
 
|type="[]"}
+ Es gilt $G(D) = (1 + D^2)/(1 + D + D^2)$.
+
+ Es gilt&nbsp; $G(D) = (1 + D^2)/(1 + D + D^2)$.
- Es gilt $G(D) = (1 + D + D^2)/(1 + D^2)$.
+
- Es gilt&nbsp; $G(D) = (1 + D + D^2)/(1 + D^2)$.
+ Es gilt $G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \ ... \ $ .
+
+ Es gilt&nbsp; $G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}\hspace{0.05cm} $ .
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Impulsantwort $\underline{g}$ ist gleich der Ausgangssequenz $\underline{x}$ für die Eingangssequenz $\underline{u} = (1, \, 0, \, 0, \, ...)$. Anhand der Filterstruktur ergibt sich mit $w_0 = w_{&ndash;1} = 0$ sowie den Gleichungen
+
'''(1)'''&nbsp; Richtig sind die  <u>Lösungsvorschläge 2 und  3</u>:
 
+
[[Datei:P_ID2643__KC_A_3_5a.png|right|frame|Zur Berechnung der Impulsantwort $\underline{g}$]]
[[Datei:P_ID2643__KC_A_3_5a.png|right|frame|Impulsantwort $\underline{g}$]]
+
*Die Impulsantwort $\underline{g}$ ist gleich der Sequenz $\underline{x}$ für die Eingangssequenz $\underline{u} = (1, \, 0, \, 0, \, \text{...})$. Anhand der Filterstruktur ergibt sich mit $w_0 = w_{-1} = 0$ und den Gleichungen
 
 
 
:$$w_i \hspace{-0.2cm} \ = \ \hspace{-0.2cm} u_i + w_{i-1} + w_{i-2}  \hspace{0.05cm},$$
 
:$$w_i \hspace{-0.2cm} \ = \ \hspace{-0.2cm} u_i + w_{i-1} + w_{i-2}  \hspace{0.05cm},$$
 
:$$x_i \hspace{-0.2cm} \ = \ \hspace{-0.2cm} w_i + w_{i-2} $$
 
:$$x_i \hspace{-0.2cm} \ = \ \hspace{-0.2cm} w_i + w_{i-2} $$
  
das Ergebnis $\underline{g} = \underline{x} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, ...)$ entsprechend <u>Lösungsvorschlag 2</u>, wie nebenstehende Berechnung zeigt.
+
:das Ergebnis $\underline{g} = \underline{x} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, \text{...})$ entsprechend <u>Lösungsvorschlag 2</u>, wie nebenstehende Berechnung zeigt.
  
Man erkennt aus diesem Berechnungsschema weiter folgende Periodizitäten der Impulsantwort $\underline{g}$ (bis ins Unendliche) wegen jeweils gleicher Registerbelegung:
+
*Richtig ist aber zusätzlich auch noch der <u>Lösungsvorschlag 3</u>, da man aus diesem Berechnungsschema weiter folgende Periodizitäten der Impulsantwort $\underline{g}$ (bis ins Unendliche) wegen jeweils gleicher Registerbelegung erkennt:
:$$g_3 \hspace{-0.2cm} \ = \ \hspace{-0.2cm} g_6 = g_9 = \hspace{0.05cm}... \hspace{0.05cm}= 1 \hspace{0.05cm},$$
+
:$$g_4 \hspace{-0.2cm} \ = \ \hspace{-0.2cm} g_7 = g_{10} =\hspace{0.05cm} ... \hspace{0.05cm}= 0 \hspace{0.05cm},$$
+
:$$g_3 \hspace{-0.2cm} \ = \ \hspace{-0.2cm} g_6 = g_9 = \hspace{0.05cm}\text{...} \hspace{0.05cm}= 1 \hspace{0.05cm},$$
:$$g_5 \hspace{-0.2cm} \ = \ \hspace{-0.2cm} g_8 = g_{11} =\hspace{0.05cm} ... \hspace{0.05cm}= 1 \hspace{0.05cm}.$$
+
:$$g_4 \hspace{-0.2cm} \ = \ \hspace{-0.2cm} g_7 = g_{10} =\hspace{0.05cm} \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm},$$
 +
[[Datei:P_ID2644__KC_A_3_5b.png|right|frame|Zur Berechnung der Ausgangssequenz $\underline{x}$]]
 +
:$$g_5 \hspace{-0.2cm} \ = \ \hspace{-0.2cm} g_8 = g_{11} =\hspace{0.05cm} \text{...} \hspace{0.05cm}= 1 \hspace{0.05cm}.$$
  
Richtig ist also zusätzlich auch noch der <u>Lösungsvorschlag 3</u>.
+
<br><br><br><br><br>
 +
'''(2)'''&nbsp;Nach ähnlichen Berechnungen wie in Teilaufgabe (1) erkennt man die Richtigkeit der <u>Lösungsvorschläge 1 und 3</u>:
 +
*Auch die Ausgangssequenz $\underline{x}$ reicht bis ins Unendliche.
 +
*Es zeigen sich auch wieder Periodizitäten.
  
  
'''(2)'''&nbsp; [[Datei:P_ID2644__KC_A_3_5b.png|right|frame|Berechnung der Ausgangssequenz $\underline{x}$]] Nach ähnlichen Berechnungen wie in Teilaufgabe (1) erkennt man die Richtigkeit der <u>Lösungsvorschläge 1 und 3</u>. Auch die Ausgangssequenz $\underline{x}$ reicht bis ins Unendliche, und es zeigen sich wieder Periodizitäten.
 
  
Zum gleichen Ergebnis gelangt man, wenn man die um eine, drei, sechs bzw. sieben Positionen (nach rechts) verschobenen Impulsantworten $\underline{g} = (1, \, 0, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, ...)$ im Galoisfeld ${\rm GF(2)}$ addiert:
+
Zum gleichen Ergebnis gelangt man, wenn man die um eine, drei, sechs bzw. sieben Positionen (nach rechts) verschobenen Impulsantworten $\underline{g} = (1, \, 0, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, \text{...} \hspace{0.05cm})$ im Galoisfeld ${\rm GF(2)}$ addiert:
:$$\underline{x} \hspace{-0.2cm} \ = \ \hspace{-0.2cm} (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}  ...\hspace{0.05cm}) + $$
+
:$$\underline{x} = (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}  \text{...}\hspace{0.05cm}) \hspace{0.05cm} + \hspace{0.05cm} (0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}   \text{...}\hspace{0.05cm}) \hspace{0.05cm} + \hspace{0.05cm} (0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}   \text{...}\hspace{0.05cm}) \hspace{0.05cm} + \hspace{0.05cm} (0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}   \text{...}\hspace{0.05cm}) $$
:$$\ + \ \hspace{-0.2cm} (0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}   ...\hspace{0.05cm}) + $$
+
:$$\Rightarrow \hspace{0.3cm}\underline{x} = (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}    \text{...}\hspace{0.05cm})  \hspace{0.05cm}. $$
:$$\ + \ \hspace{-0.2cm} (0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}   ...\hspace{0.05cm}) + $$
 
:$$\ + \ \hspace{-0.2cm} (0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}   ...\hspace{0.05cm}) = $$
 
:$$\ = \ \hspace{-0.2cm} (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}    ...\hspace{0.05cm})  \hspace{0.05cm}. $$
 
  
 
Aufgrund der Linearität des betrachteten Systems ist dies erlaubt.
 
Aufgrund der Linearität des betrachteten Systems ist dies erlaubt.
Zeile 94: Zeile 103:
 
U(D) =  1+ D + D^2 \hspace{0.05cm}.$$
 
U(D) =  1+ D + D^2 \hspace{0.05cm}.$$
  
Mit der Übertragungsfunktion $G(D) = (1 + D^2)/(1 + D + D^2)$ erhält man somit für die $D$&ndash;Transformierte der Ausgangssequenz:
+
*Mit der Übertragungsfunktion $G(D) = (1 + D^2)/(1 + D + D^2)$ erhält man somit für die $D$&ndash;Transformierte der Ausgangssequenz:
:$$X(D) = {U(D)} \cdot G(D) = {1+D+D^2} \cdot \frac{1+D^2}{1+D+D^2} = 1+D^2 \hspace{0.05cm}$$
+
:$$X(D) = {U(D)} \cdot G(D) = {1+D+D^2} \cdot \frac{1+D^2}{1+D+D^2} = 1+D^2 \hspace{0.05cm}\hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm}\underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm} ) \hspace{0.05cm}.$$
+
\Rightarrow \hspace{0.3cm}\underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.01cm} \text{...}\hspace{0.05cm} \hspace{0.05cm} ) \hspace{0.05cm}.$$
 +
 
 +
*Richtig ist hier nur der <u>Lösungsvorschlag 1</u>: Trotz unendlich langer Impulsantwort $\underline{g}$ ist bei dieser Eingangssequenz $\underline{u}$ die Ausgangssequenz $\underline{x}$ auf drei Bit begrenzt.
  
Richtig ist demnach nur der <u>Lösungsvorschlag 1</u>: Trotz unendlich langer Impulsantwort $\underline{g}$ ist bei dieser Eingangssequenz $\underline{u}$ die Ausgangssequenz $\underline{x}$ auf drei Bit begrenzt. Zum gleichen Ergebnis kommt man wieder durch Addition verschobener Impulsantworten:
+
*Zum gleichen Ergebnis kommt man wieder durch Addition verschobener Impulsantworten:
:$$\underline{x} \hspace{-0.2cm} \ = \ \hspace{-0.2cm} (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}  ...\hspace{0.05cm}) + $$
+
:$$\underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}  \text{...}\hspace{0.05cm}) + (0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) + (0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}    \text{...}\hspace{0.05cm}) = (1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}    \text{...}\hspace{0.05cm})  \hspace{0.05cm}. $$
:$$\ + \ \hspace{-0.2cm} (0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}   ...\hspace{0.05cm}) + $$
 
:$$\ + \ \hspace{-0.2cm} (0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}    ...\hspace{0.05cm}) = $$
 
:$$\ = \ \hspace{-0.2cm} (1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}    ...\hspace{0.05cm})  \hspace{0.05cm}. $$
 
  
  
'''(4)'''&nbsp; Auf dem Angabenblatt ist die allgemeine Übertragungsfunktion eines rekursiven Filters 2. Ordnung wie folgt gegeben.  
+
[[Datei:P_ID2645__KC_A_3_5e.png|right|frame|$\rm GF(2)$–Polynomdivision $(1 + D^2)/(1 + D + D^2)$]]
 +
'''(4)'''&nbsp; Richtig sind die  <u>Lösungsvorschläge 1 und  3</u>:
 +
*Auf dem Angabenblatt ist die allgemeine Übertragungsfunktion eines rekursiven Filters zweiter Ordnung wie folgt gegeben.  
 
:$$G(D) =  \frac{a_0 + a_1 \cdot D + a_2 \cdot D^2}{1 + b_1 \cdot D + b_2 \cdot D^2} \hspace{0.05cm}.$$
 
:$$G(D) =  \frac{a_0 + a_1 \cdot D + a_2 \cdot D^2}{1 + b_1 \cdot D + b_2 \cdot D^2} \hspace{0.05cm}.$$
  
Das hier betrachtete Filter ist durch die Koeffizienten $a_0 = a_2 = b_1 = b_2 = 1$ und $a_1 = 0$ bestimmt. Somit erhält man das Ergebnis entsprechend dem <u>Lösungsvorschlag 1</u>:
+
*Das hier betrachtete Filter ist durch die Koeffizienten $a_0 = a_2 = b_1 = b_2 = 1$ und $a_1 = 0$ bestimmt. Somit erhält man das Ergebnis entsprechend dem <u>Lösungsvorschlag 1</u>:
 
:$$G(D) =  \frac{1 +  D^2}{1 +  D + D^2} \hspace{0.05cm}. $$
 
:$$G(D) =  \frac{1 +  D^2}{1 +  D + D^2} \hspace{0.05cm}. $$
 
+
*Gleichzeitig ist aber $G(D)$ auch die $D$&ndash;Transformierte der Impulsantwort:
Gleichzeitig ist aber $G(D)$ auch die $D$&ndash;Transformierte der Impulsantwort:
+
:$$\underline{g}= (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}0 ,\hspace{0.05cm} \text{ ...}\hspace{0.05cm}) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm}
:$$\underline{g}= (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}0 ,\hspace{0.05cm} ...\hspace{0.05cm}) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm}
+
{G}(D)$$
{G}(D)= 1 + D + D^2 + D^4+ D^5  +...  
+
:$$\Rightarrow\hspace{0.3cm}
 +
{G}(D)= 1 + D + D^2 + D^4+ D^5  +\text{...}
 
\hspace{0.1cm}. $$
 
\hspace{0.1cm}. $$
 
+
*Das bedeutet: Richtig ist auch der <u>Lösungsvorschlag 3</u>.  
[[Datei:P_ID2645__KC_A_3_5e.png|right|frame|$\rm GF(2)$–Polynomdivision]] Das bedeutet: Richtig ist auch der <u>Lösungsvorschlag 3</u>.  
+
*Zum gleichen Ergebnis wäre man durch Division der beiden Polynome $1 + D^2$ und $1 + D + D^2$ gekommen, wie die nebenstehende Rechnung zeigt.
 
 
Zum genau gleichen Ergebnis wäre man durch Division der beiden Polynome $1 + D^2$ und $1 + D + D^2$ gekommen, wie die Berechnung zeigt.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.2 Algebraische und polynomische Beschreibung^]]
+
[[Category:Aufgaben zu  Kanalcodierung|^3.2 Polynomische Beschreibung^]]

Aktuelle Version vom 6. Juni 2019, 18:42 Uhr

Allgemeines rekursives Filter und betrachtete Realisierung

Die obere der beiden dargestellten Schaltungen zeigt ein rekursives Filter zweiter Ordnung in allgemeiner Form. Mit

$$A(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} a_0 + a_1 \cdot D + a_2 \cdot D^2 \hspace{0.05cm},$$
$$B(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 + b_1 \cdot D + b_2 \cdot D^2 $$

erhält man für die Übertragungsfunktion

$$G(D) = \frac{A(D)}{B(D)} = \frac{a_0 + a_1 \cdot D + a_2 \cdot D^2}{1 + b_1 \cdot D + b_2 \cdot D^2} \hspace{0.05cm}.$$

Zu beachten ist, dass sich alle Rechenoperationen auf  ${\rm GF(2)}$  beziehen. Damit sind auch die Filterkoeffizienten  $a_0, \ a_1, \ a_2, \ b_1$  und  $b_2$  binär $($entweder  $0$  oder  $1)$.

Die untere Grafik zeigt das für die vorliegende Aufgabe spezifische Filter:

  • Ein Filterkoeffizient ergibt sich zu  $a_i = 1$, wenn die Verbindung durchgeschaltet ist  $(0 ≤ i ≤ 2)$.
  • Andernfalls ist  $a_i = 0$. Die gleiche Systematik gilt für die Koeffizienten  $b_1$  und  $b_2$.


In den Teilaufgaben (1), ... , (3) sollen Sie für verschiedene Eingangssequenzen

  • $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$,
  • $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$,
  • $\underline{u} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$


die jeweilige Ausgangssequenz  $\underline{x}$  anhand der vorgegebenen Schaltung ermitteln. Es ist zu berücksichtigen:

  • Besteht die Eingangssequenz  $\underline{u}$  aus einer Eins gefolgt von lauter Nullen, so bezeichnet man diese spezifische Ausgangssequenz  $\underline{x}$  als die  Impulsantwort  $\underline{g}$, und es gilt:
$$\underline{g} \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm}{G}(D)\hspace{0.05cm}. $$
  • Andernfalls ergibt sich die Ausgangssequenz als das  Faltungsprodukt  zwischen Eingangssequenz und Impulsantwort:
$$\underline{x} = \underline{u} * \underline{g} \hspace{0.05cm}.$$




Hinweise:


Fragebogen

1

Welche Aussagen gelten für die Impulsantwort  $\underline{g}$  des rekursiven Filters?

Es gilt  $\underline{g} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$.
Es gilt  $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$.
Die Impulsantwort  $\underline{g}$  ist unendlich weit ausgedehnt.

2

Es sei nun  $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1)$. Welche Aussagen treffen zu?

Die Ausgangssequenz lautet:  $\underline{x} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$.
Die Ausgangssequenz lautet:  $\underline{x} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$.
Die Ausgangssequenz  $\underline{x}$  reicht bis ins Unendliche.

3

Nun gelte  $\underline{u} = (1, \, 1, \, 1)$. Welche Aussagen treffen zu?

Die Ausgangssequenz  $\underline{x}$  beginnt mit  $(1, \, 0, \, 1)$.
Die Ausgangssequenz  $\underline{x}$  beginnt mit  $(1, \, 1, \, 1)$.
Die Ausgangssequenz  $\underline{x}$  reicht bis ins Unendliche.

4

Welche Aussagen gelten für die Übertragungsfunktion  $G(D)$?

Es gilt  $G(D) = (1 + D^2)/(1 + D + D^2)$.
Es gilt  $G(D) = (1 + D + D^2)/(1 + D^2)$.
Es gilt  $G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}\hspace{0.05cm} $ .


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 2 und 3:

Zur Berechnung der Impulsantwort $\underline{g}$
  • Die Impulsantwort $\underline{g}$ ist gleich der Sequenz $\underline{x}$ für die Eingangssequenz $\underline{u} = (1, \, 0, \, 0, \, \text{...})$. Anhand der Filterstruktur ergibt sich mit $w_0 = w_{-1} = 0$ und den Gleichungen
$$w_i \hspace{-0.2cm} \ = \ \hspace{-0.2cm} u_i + w_{i-1} + w_{i-2} \hspace{0.05cm},$$
$$x_i \hspace{-0.2cm} \ = \ \hspace{-0.2cm} w_i + w_{i-2} $$
das Ergebnis $\underline{g} = \underline{x} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, \text{...})$ entsprechend Lösungsvorschlag 2, wie nebenstehende Berechnung zeigt.
  • Richtig ist aber zusätzlich auch noch der Lösungsvorschlag 3, da man aus diesem Berechnungsschema weiter folgende Periodizitäten der Impulsantwort $\underline{g}$ (bis ins Unendliche) wegen jeweils gleicher Registerbelegung erkennt:
$$g_3 \hspace{-0.2cm} \ = \ \hspace{-0.2cm} g_6 = g_9 = \hspace{0.05cm}\text{...} \hspace{0.05cm}= 1 \hspace{0.05cm},$$
$$g_4 \hspace{-0.2cm} \ = \ \hspace{-0.2cm} g_7 = g_{10} =\hspace{0.05cm} \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm},$$
Zur Berechnung der Ausgangssequenz $\underline{x}$
$$g_5 \hspace{-0.2cm} \ = \ \hspace{-0.2cm} g_8 = g_{11} =\hspace{0.05cm} \text{...} \hspace{0.05cm}= 1 \hspace{0.05cm}.$$






(2) Nach ähnlichen Berechnungen wie in Teilaufgabe (1) erkennt man die Richtigkeit der Lösungsvorschläge 1 und 3:

  • Auch die Ausgangssequenz $\underline{x}$ reicht bis ins Unendliche.
  • Es zeigen sich auch wieder Periodizitäten.


Zum gleichen Ergebnis gelangt man, wenn man die um eine, drei, sechs bzw. sieben Positionen (nach rechts) verschobenen Impulsantworten $\underline{g} = (1, \, 0, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, \text{...} \hspace{0.05cm})$ im Galoisfeld ${\rm GF(2)}$ addiert:

$$\underline{x} = (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm} + \hspace{0.05cm} (0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm} + \hspace{0.05cm} (0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm} + \hspace{0.05cm} (0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) $$
$$\Rightarrow \hspace{0.3cm}\underline{x} = (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm}. $$

Aufgrund der Linearität des betrachteten Systems ist dies erlaubt.


(3)  Hier wählen wir den Weg über die $D$–Transformierten:

$$\underline{u}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = 1+ D + D^2 \hspace{0.05cm}.$$
  • Mit der Übertragungsfunktion $G(D) = (1 + D^2)/(1 + D + D^2)$ erhält man somit für die $D$–Transformierte der Ausgangssequenz:
$$X(D) = {U(D)} \cdot G(D) = {1+D+D^2} \cdot \frac{1+D^2}{1+D+D^2} = 1+D^2 \hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.01cm} \text{...}\hspace{0.05cm} \hspace{0.05cm} ) \hspace{0.05cm}.$$
  • Richtig ist hier nur der Lösungsvorschlag 1: Trotz unendlich langer Impulsantwort $\underline{g}$ ist bei dieser Eingangssequenz $\underline{u}$ die Ausgangssequenz $\underline{x}$ auf drei Bit begrenzt.
  • Zum gleichen Ergebnis kommt man wieder durch Addition verschobener Impulsantworten:
$$\underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) + (0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) + (0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) = (1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm}. $$


$\rm GF(2)$–Polynomdivision $(1 + D^2)/(1 + D + D^2)$

(4)  Richtig sind die Lösungsvorschläge 1 und 3:

  • Auf dem Angabenblatt ist die allgemeine Übertragungsfunktion eines rekursiven Filters zweiter Ordnung wie folgt gegeben.
$$G(D) = \frac{a_0 + a_1 \cdot D + a_2 \cdot D^2}{1 + b_1 \cdot D + b_2 \cdot D^2} \hspace{0.05cm}.$$
  • Das hier betrachtete Filter ist durch die Koeffizienten $a_0 = a_2 = b_1 = b_2 = 1$ und $a_1 = 0$ bestimmt. Somit erhält man das Ergebnis entsprechend dem Lösungsvorschlag 1:
$$G(D) = \frac{1 + D^2}{1 + D + D^2} \hspace{0.05cm}. $$
  • Gleichzeitig ist aber $G(D)$ auch die $D$–Transformierte der Impulsantwort:
$$\underline{g}= (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}0 ,\hspace{0.05cm} \text{ ...}\hspace{0.05cm}) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm} {G}(D)$$
$$\Rightarrow\hspace{0.3cm} {G}(D)= 1 + D + D^2 + D^4+ D^5 +\text{...} \hspace{0.1cm}. $$
  • Das bedeutet: Richtig ist auch der Lösungsvorschlag 3.
  • Zum gleichen Ergebnis wäre man durch Division der beiden Polynome $1 + D^2$ und $1 + D + D^2$ gekommen, wie die nebenstehende Rechnung zeigt.