Aufgabe 2.09: Reed–Solomon–Parameter

Aus LNTwww
Version vom 29. Mai 2018, 13:41 Uhr von Mwiki-lnt (Diskussion | Beiträge) (Textersetzung - „* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Wechseln zu:Navigation, Suche

Einige Reed–Solomon–Codes

Nebenstehend finden Sie eine unvollständige Liste möglicher Reed–Solomon–Codes, die bekanntlich auf einem Galoisfeld ${\rm GF}(q) = {\rm GF}(2^m)$ basieren. Der Parameter $m$ gibt an, mit wie vielen Bits ein RS–Codesymbol dargestellt wird. Es gilt:

  • $m = 4$ (rote Schrift),
  • $m = 5$ (blaue Schrift),
  • $m = 6$ (grüne Schrift).


Ein Reed–Solomon–Code wird wie folgt bezeichnet:   ${\rm RSC}\ (n, \ k, \ d_{\rm min})_q$.


Die Parameter haben folgende Bedeutung:

  • $n$ gibt die Anzahl der Symbole eines Codewortes $\underline{c}$ an   ⇒   Länge des Codes,
  • $k$ gibt die Anzahl der Symbole eines Informationsblocks $\underline{u}$ an   ⇒   Dimension des Codes,
  • $d_{\rm min}$ kennzeichnet die minimale Distanz zwischen zwei Codeworten (bei allen Reed–Solomon–Codes gleich $n-k+1$),
  • $q$ gibt einen Hinweis auf die Verwendung des Galoisfeldes ${\rm GF}(q)$.


Rechts daneben ist die Binärrepräsentation des gleichen Codes angegeben:

  • Bei dieser Realisierung eines RS–Codes wird jedes Informations– und Codesymbol durch $m$ Bit dargestellt.
  • Beispielsweise erkennt man aus der ersten Zeile, dass die minimale Distanz hinsichtlich der Bits ebenfalls $d_{\rm min} = 5$ ist, wenn in ${\rm GF}(2^m)$ die minimale Distanz $d_{\rm min} = 5$ beträgt.
  • Damit können bis zu $t = 2$ Bitfehler (oder Symbolfehler) korrigiert und bis zu $e = 4$ Bitfehler (oder Symbolfehler) erkannt werden.



Hinweise:



Fragebogen

1

Es gelte $c_i ∈ {\rm GF}(2^m)$. Welche RS–Codeparameter $n$ ergeben sich?

$m = 4 \text{:} \hspace{0.4cm} n \ = \ $

$m = 5 \text{:} \hspace{0.4cm} n \ = \ $

$m = 6 \text{:} \hspace{0.4cm} n \ = \ $

2

Im Folgenden werden zwei spezielle RS–Codes ${\rm RSC} \ 1 \ (m = 4, \ t = 4)$ und ${\rm RSC} \ 2 \ (m = 5, \ t = 8)$ betrachtet.
Mit welchem RS–Parameter $k$ lassen sich genau $t$ Symbolfehler korrigeren?

${\rm RSC} \ 1 \text{:} \hspace{0.4cm} k \ = \ $

${\rm RSC} \ 2 \text{:} \hspace{0.4cm} k \ = \ $

3

Welche Bezeichnungen sind für $\rm RSC 1$ bzw. $\rm RSC \ 2$ richtig?

$\rm RSC \ 1$ nennt man auch $\rm RSC \, (15, \, 7, \, 9)_{16}$.
$\rm RSC \ 1$ nennt man auch $\rm RSC \, (15, \, 7, \, 4)_4$.
$\rm RSC \ 2$ nennt man auch $\rm RSC \, (31, \, 17, \, 15)_{32}$.
$\rm RSC \ 2$ nennt man auch $\rm RSC \, (31, \, 15, \, 17)_{32}$.

4

Wieviele Symbolfehler $(e)$ können höchstens erkannt werden?

${\rm RSC} \ 1 \text{:} \hspace{0.4cm} e \ = \ $

${\rm RSC} \ 2 \text{:} \hspace{0.4cm}e \ = \ $

5

Wie lauten die betrachteten Codes in Binärschreibweise?

$\rm RSC \ 1$ entspricht dem Code $\rm RSC \, (60, \, 28, \, 36)_2$.
$\rm RSC \ 1$ entspricht dem Code $\rm RSC \, (60, \, 28, \, 9)_2$.
$\rm RSC \ 2$ entspricht dem Code $\rm RSC \, (155, \, 75, \, 17)_2$.
$\rm RSC \ 2$ entspricht dem Code $\rm RSC \, (124, \, 60, \, 17)_2$.


Musterlösung

(1)  Für die Codelänge der Reed–Solomon–Codes gilt allgemein.

$$n = q -1 = 2^m -1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 4 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 15} \hspace{0.05cm}, \hspace{0.4cm}m = 5 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 31} \hspace{0.05cm},\hspace{0.4cm} m = 6 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 63} \hspace{0.05cm}. $$

(2)  Um $t$ Symbolfehler korrigieren zu können, muss die minimale Distanz $d_{\rm min} = 2t + 1$ betragen. Der Reed–Solomon–Code ist ein sogenannter MDS–Code (Maximum Distance Separable). Für diese gilt:

$$d_{\rm min} = n-k+1 = 2t+1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}k = n -2t = 2^m - ( 2t+1) \hspace{0.05cm}. $$

Damit erhält man für den

  • $\rm RSC \ 1$ (mit $m = 4, \ t = 4) \text{:} \hspace{0.2cm} k = 2^4 - (2 \cdot 4 + 1) \ \underline{= 7}$,
  • $\rm RSC \ 2$ (mit $m = 5, \ t = 8) \text{:} \hspace{0.2cm} k = 2^5 - (2 \cdot 8 + 1) \ \underline{= 15}$.


(3)  Die Bezeichnung eines Reed–Solomon–Codes lautet ${\rm RSC} \, (n, \, k, \, d_{\rm min})_q$ mit $q = 2^m = n + 1$. Richtig sind die Lösungsvorschläge 1 und 4:

  • $\rm RSC \ 1 \Rightarrow RSC \, (15, \, 7, \, 9)_{16}$,
  • $\rm RSC \ 2 \Rightarrow RSC \, (31, \, 15, \, 17)_{32}$.


(4)  Bezeichnet $d_{\rm min}$ die minimale Distanz eines Blockcodes, so können damit $e = d_{\rm min} - 1$ Symbolfehler erkannt und $t = e/2$ Symbolfehler korrigiert werden:

  • ${\rm RSC} \ 1 \text{:} \hspace{0.2cm} d_{\rm min} = \ \ 9, \ t = 4, \ \underline{e = 8}$,
  • ${\rm RSC} \ 2 \text{:} \hspace{0.2cm} d_{\rm min} = 17, \ t = 8, \ \underline{e = 16}$.


(5)  Richtig sind die beiden mittleren Lösungsvorschläge 2 und 3:

  • Bei ${\rm RSC} \ 1 \, (m = 4)$ entsprechen $n = 15$ Codesymbolen aus $\rm GF(2^5)$ gleich $60$ Bit und $k = 7$ Informationssymbole genau $28$ Bit:
  • $\rm RSC \ 1 \Rightarrow RSC \, (15, \, 7, \, 9)_{16} \Rightarrow RSC \, (60, \, 28, \, 9)_2$,
  • $\rm RSC \ 2 \Rightarrow RSC \, (31, \, 15, \, 17)_{32} \Rightarrow RSC \, (155, \, 75, \, 17)_2$.
  • Für die minimale Distanz auf Bitebene   ⇒   $\rm GF(2)$ ergeben sich mit $d_{\rm min} = 9$ bzw. $d_{\rm min} = 17$ die gleichen Werte wie auf Symbolebene   ⇒   $\rm GF(2^4)$ bzw. $\rm GF(2^5)$ (siehe Theorieteil).