Zur Verdeutlichung des Matched-Filters

Aus LNTwww
Wechseln zu:Navigation, Suche

Applet in neuem Tab öffnen

Programmbeschreibung


Das Applet soll die Eigenschaften des so genannten „Matched-Filters”  $({\rm MF})$  verdeutlichen.  Dieses dient zur optimalen Bestimmung des Vorhandenseins (Detektion) der Amplitude und/oder der Lage einer bekannten Signalform in einer stark verrauschten Umgebung.  Oder allgemeiner gesprochen:  Das Matched-Filter – manchmal auch als „Optimalfilter”  oder als „Korrelationsfilter”  bezeichnet – dient dem Nachweis der Signalexistenz. 

Blockschaltbild des Matched-Filter-Empfängers

Die Grafik zeigt den so genannten  Matched-Filter-Empfänger:

  • Dieser kann mit größtmöglicher Sicherheit – anders ausgedrückt:   mit maximalem Signal–zu–Rausch–Verhältnis  $($englisch:  signal–to–noise–ratio,  $\rm SNR)$  – entscheiden, ob ein durch additives Rauschen  $n(t)$  gestörtes impulsförmiges Nutzsignal  $g(t)$  vorhanden ist oder nicht.
  • Eine Anwendung ist die Radartechnik, bei der man zwar die Impulsform  $g(t)$  kennt, nicht aber, wann der Impuls gesendet wurde und mit welcher Stärke und Verzögerung dieser ankommt.
  • Das Matched-Filter wird aber auch als Empfangsfilter in digitalen Übertragungssystemen (oder zumindest als Teil davon) eingesetzt, um die Fehlerwahrscheinlichkeit des Systems zu minimieren.

XXX Es fehlt noch: Impulse, Filter, alle ausgegebenen Größen YYY

Theoretischer Hintergrund


Detailbeschreibung des zugrunde liegenden Modells

Für die einzelnen Komponenten des obigen Blockschaltbild gelten folgende Voraussetzungen:

  • Der Nutzanteil  $g(t)$  des Empfangssignals  $r(t)=g(t)+n(t)$  sei impulsförmig und somit  energiebegrenzt.  Das heißt:   Das Integral über  $ [g(t) ]^2$  von  $–∞$  bis  $+∞$  liefert den endlichen Wert  $E_g$.
  • Das Störsignal  $n(t)$  sei  Weißes Gaußsches Rauschen  mit der Rauschleistungsdichte  $N_0$.
  • Das Filterausgangssignal  $d(t)= d_{\rm S}(t) + d_{\rm N}(t)$  besteht additiv aus zwei Anteilen.  Der Anteil  $d_{\rm S}(t)$  geht auf das  $\rm S\hspace{0.04cm}$ignal  $g(t)$  zurück,   $d_{\rm N}(t)$  auf das  $\rm N\hspace{0.04cm}$oise  $n(t)$.
  • Der Empfänger, bestehend aus einem linearen Filter   ⇒   Frequenzgang  $H_{\rm MF}(f)$  und dem Entscheider, ist so zu dimensionieren, dass das momentane S/N-Verhältnis am Ausgang maximal wird:
$$\rho _d ( {T_{\rm D} } ) = \frac{ {d_{\rm S} ^2 ( {T_{\rm D} } )} }{ {\sigma_d^2 } }\mathop = \limits^{\rm{!} }\hspace{0.1cm} {\rm{Maximum} }.$$
  • Hierbei bezeichnen  ${σ_d}^2$  die  Varianz  (Leistung) von $d_{\rm N}(t)$ und  $T_{\rm D}$  den (geeignet gewählten)  Detektionszeitpunkt.


Matched-Filter-Optimierung

Gegeben sei ein energiebegrenztes Nutzsignal  $g(t)$  mit dem zugehörigen Spektrum  $G(f)$.  Damit kann das Filterausgangssignal zum Detektionszeitpunkt  $T_{\rm D}$  für jedes beliebige Filter mit Impulsantwort  $h(t)$  und Frequenzgang  $H(f) =\mathcal{ F}\{h(t)\}$ geschrieben werden  (ohne Berücksichtigung des Rauschens   ⇒   Index  $\rm S$  für „Signal”):

$$d_{\rm S} ( {T_{\rm D} } ) = g(t) * h(t) = \int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e}}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }\hspace{0.1cm} {\rm{d}}f} .$$

Der  „Rauschanteil”  $d_{\rm N}(t)$  des Filterausgangssignals  (Index  $\rm N$  für „Noise”) rührt allein vom Weißen Rauschen  $n(t)$  am Eingang des Empfängers her.  Für seine Varianz (Leistung) gilt unabhängig vom Detektionszeitpunkt  $T_{\rm D}$:

$$\sigma _d ^2 = \frac{ {N_0 } }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} .$$

Damit lautet das hier vorliegende Optimierungsproblem:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left| {\int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e} }^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }\hspace{0.1cm} {\rm{d} }f} } \right|^2 } }{ {N_0 /2 \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } } \stackrel{!}{=} {\rm{Maximum} }.$$

Dieser Quotient wird für den folgenden Frequenzgang  $H(f)$  am größten wird:

$$H(f) = H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } . $$
  • Damit erhält man für das Signal–zu–Rauschleistungsverhältnis am Matched–Filter–Ausgang  $($unabhängig von der dimensionsbehafteten Konstante  $K_{\rm MF})$:
$$\rho _d ( {T_{\rm D} } ) = { {2 \cdot E_g } }/{ {N_0 } } \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \rho _{\rm MF}.$$
  • $E_g$ bezeichnet die Energie des Eingangsimpulses, die man nach dem  Satz von Parseval  sowohl im Zeit– als auch im Frequenzbereich berechnen kann:
$$E_g = \int_{ - \infty }^{ + \infty } {g^2 (t)\hspace{0.1cm}{\rm{d} }t} = \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right\vert ^{\rm{2} }\hspace{0.1cm} {\rm d}f} .$$


$\text{Herleitung des Matched–Filter–Kriteriums:}$ 

$(1)$  Die Schwarzsche Ungleichung lautet mit den beiden (im allgemeinen komplexen) Funktionen  $A(f)$  und  $B(f)$:

$$\left \vert {\int_a^b {A(f) \cdot B(f)\hspace{0.1cm}{\rm{d} }f} } \right \vert ^2 \le \int_a^b {\left \vert {A(f)} \right \vert^{\rm{2} } \hspace{0.1cm}{\rm{d} }f} \cdot \int_a^b {\left\vert {B(f)} \right \vert^{\rm{2} } \hspace{0.1cm}{\rm{d} }f} .$$

$(2)$  Wir wenden nun diese Gleichung auf das Signal–zu–Rauschverhältnis an:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left \vert {\int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e} }^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } \hspace{0.1cm}{\rm{d} }f} } \right \vert^2 } }{ {N_0 /2 \cdot \int_{ - \infty }^{ + \infty } {\left \vert {H(f)} \right \vert^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } }.$$

$(3)$  Mit  $A(f) = G(f)$  und  $B(f) = H(f) · {\rm e}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }$  ergibt sich somit die folgende Schranke:

$$\rho_d ( {T_{\rm D} } ) \le \frac{1}{ {N_0 /2} } \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert^{\rm{2} } }\hspace{0.1cm}{\rm{d} }f .$$

$(4)$  Wir setzen für den Filterfrequenzgang nun versuchsweise ein:

$$H(f) = H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm{e} }^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }.$$

$(5)$  Dann erhält man aus der obigen Gleichung  $(2)$  folgendes Ergebnis:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left \vert K_{\rm MF}\cdot {\int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } \right \vert ^2 } }{ {N_0 /2 \cdot K_{\rm MF} ^2 \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } } = \frac{1}{ {N_0 /2} } \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} .$$

$\text{Das heißt:}$

  • Mit dem Ansatz  $(4)$  für das Matched–Filter $H_{\rm MF}(f)$ wird in obiger Abschätzung tatsächlich der maximal mögliche Wert erreicht.
  • Mit keinem anderen Filter  $H(f) ≠ H_{\rm MF}(f)$  kann man ein höheres Signal–zu–Rauschleistungsverhältnis erzielen.
  • Das Matched–Filter ist in Bezug auf das ihm zugrunde gelegte Maximierungskriterium optimal.
q.e.d.


$\text{Beispiel 1:}$   Ein rechteckförmiger Impuls  $g(t)$  mit Amplitude  $\rm 1\hspace{0.05cm}V$,  Dauer  $0.5\hspace{0.05cm} \rm ms$  und unbekannter Lage soll in einer verrauschten Umgebung aufgefunden werden.

  • Somit ist die Impulsenergie  $E_g = \rm 5 · 10^{–4} \hspace{0.05cm}V^2s$.
  • Die Rauschleistungsdichte sei  $N_0 = \rm 10^{–6} \hspace{0.05cm}V^2/Hz$.


Das beste Ergebnis   ⇒   das  maximale S/N–Verhältnis  erzielt man mit dem Matched-Filter:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {2 \cdot E_g } }{ {N_0 } } = \frac{ {2 \cdot 5 \cdot 10^{-4}\, {\rm V^2\,s} } }{ {10^{-6}\, {\rm V^2/Hz} } } = 1000 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}\rho _d ( {T_{\rm D} } ) = 30\,{\rm dB}.$$


Das oben angegebene Matched–Filter–Kriterium wird nun schrittweise hergeleitet.  Wenn Sie daran nicht interessiert sind, so springen Sie bitte zur Fortsetzungsseite  Interpretation des Matched–Filters.

Interpretation des Matched-Filters


Auf der letzten Seite wurde der Frequenzgang des Matched-Filters wie folgt hergeleitet:

$$H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm{e} }^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } .$$

Durch  Fourierrücktransformation  erhält man die dazugehörige Impulsantwort:

$$h_{\rm MF} (t) = K_{\rm MF} \cdot g(T_{\rm D} - t).$$

Diese beiden Funktionen lassen sich wie folgt interpretieren:

  • Das  Matched-Filter  ist durch den Term  $G^{\star}(f)$  an das Spektrum des aufzufindenden Impulses  $g(t)$  angepasst – daher sein Name (englisch: to match ≡ anpassen).
  • Die  Konstante  $K_{\rm MF}$  ist aus Dimensionsgründen notwendig.
  • Ist  $g(t)$  ein Spannungsimpuls, so hat diese Konstante die Einheit „Hz/V”.  Der Frequenzgang ist somit dimensionslos.
  • Die  Impulsantwort  $h_{\rm MF}(t)$  ergibt sich aus dem Nutzsignal  $g(t)$  durch Spiegelung   ⇒   aus $g(t)$ wird $g(–t)$     sowie einer Verschiebung um  $T_{\rm D}$  nach rechts.
  • Der  früheste Detektionszeitpunkt  $T_{\rm D}$  folgt für realisierbare Systeme aus der Bedingung  $h_{\rm MF}(t < 0)\equiv 0$   $($„Kausalität”,  siehe Buch Lineare zeitinvariante Systeme$)$.
  • Der  Nutzanteil  $d_{\rm S} (t)$  des Filterausgangssignals ist formgleich mit der  Energie-AKF   $\varphi^{^{\bullet} }_{g} (t )$  und gegenüber dieser um  $T_{\rm D}$  verschoben. Es gilt:
$$d_{\rm S} (t) = g(t) * h_{\rm MF} (t) = K_{\rm MF} \cdot g(t) * g(T_{\rm D} - t) = K_{\rm MF} \cdot \varphi^{^{\bullet} }_{g} (t - T_{\rm D} ).$$

$\text{Bitte beachten Sie:}$  Bei einem energiebegrenzten Signal  $g(t)$  kann man nur die  Energie–AKF  angeben:

$$\varphi^{^{\bullet} }_g (\tau ) = \int_{ - \infty }^{ + \infty } {g(t) \cdot g(t + \tau )\,{\rm{d} }t} .$$

Gegenüber der AKF-Definition eines leistungsbegrenzten Signals  $x(t)$, nämlich

$$\varphi _x (\tau ) = \mathop {\lim }_{T_{\rm M} \to \infty } \frac{1}{ {T_{\rm M} } }\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} {x(t) \cdot x(t + \tau )\hspace{0.1cm}\,{\rm{d} }t} ,$$

wird bei der Berechnung der Energie-AKF auf die Division durch die Messdauer  $T_{\rm M}$  sowie auf den Grenzübergang  $T_{\rm M} → ∞$  verzichtet.


$\text{Beispiel 2:}$  Wir gehen davon aus, dass der Rechteckimpuls zwischen  $\rm 2\hspace{0.08cm}ms$  und  $\rm 2.5\hspace{0.08cm}ms$  liegt und der Detektionszeitpunkt  $T_{\rm D} =\rm 2\hspace{0.08cm}ms$  gewünscht wird.

Unter diesen Voraussetzungen gilt:

  • Die Matched–Filter–Impulsantwort  $h_{\rm MF}(t)$  muss im Bereich von  $t_1 (= 4 - 2.5) =\rm 1.5\hspace{0.08cm}ms$  bis  $t_2 (= 4 - 2) =\rm 2\hspace{0.08cm}ms$  konstant sein.
  • Für  $t < t_1$  sowie für  $t > t_2$  darf sie keine Anteile besitzen.
  • Der Betragsfrequenzgang  $\vert H_{\rm MF}(f)\vert$  ist hier  $\rm si$–förmig.
  • Die Höhe der Impulsantwort  $h_{\rm MF}(t)$  spielt für das S/N–Verhältnis keine Rolle, da dieses unabhängig von  $K_{\rm MF}$  ist.


Versuchsdurchführung


Aufgaben 2D-Gauss.png

Überarbeiten

  • Wählen Sie zunächst die Nummer  (1, ... , 10)  der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Musterlösung”.
  • Die Nummer  0  entspricht einem „Reset”:  Gleiche Einstellung wie beim Programmstart.
  • Alle Signalwerte sind normiert auf  $\pm 1$  zu verstehen.  Auch die ausgegebenen Leistungen sind normierte Größen.

Alles normiert

Für (1) soll voreingestellt sein, ohne dass es in der Aufgabenstellung erwähnt wird: Spalt-TP, $A_h=0.5,\ \Delta t_h=1.6,\ \tau_h=0.8, \ T_D = 2$

(1)  Der Eingangsimpuls sei gaußförmig mit  $A_g=1,\ \Delta t_g=1,\ \tau_g=1$.  Welche Einstellung führt zum „Matched–Filter”?  Wie groß ist  $10 \cdot \lg \ \rho_{\rm MF}$  mit  $N_0=0.01$?

  •  Das Matched–Filter muss ebenfalls einen gaußförmigen Verlauf haben und es muss gelten:  $\Delta t_h=\Delta t_g=1,\ \tau_h =\tau_g=1$   ⇒   $T_{\rm D} = \tau_h +\tau_g=2$.
  •  Das (momentane) Signal–zu–Rauschleistungsverhältnis am Filterausgang ist  $\rho _{\rm MF} = { {2 \cdot E_g } }/{ {N_0 } } \approx 141.4$  ⇒   $10 \cdot \lg \ \rho _{\rm MF} \approx 21.5$  dB.
  •  Mit keinem anderen Filter als dem Matched–Filter ist dieses  $\rm SNR$  (oder ein noch besseres)  zu erreichen.

(2)  Das Matched–Filter bei rechteckförmigen Eingangsimpuls mit  $A_g=1,\ \Delta t_g=1,\ \tau_g=0$  ist ein Spalt–Tiefpass   ⇒   rechteckförmige Impulsantwort.
            Wie groß ist hier   $10 \cdot \lg \ \rho_{\rm MF}$  mit  $N_0=0.01$? Interpretieren Sie alle dargestellten Grafiken und die numerischen Ergebnisse auf verschiedene Art und Weise.

  •  Die eingestellten Filterparameter sind  $A_h=A_g=1, \ \Delta t_h=\Delta t_g=1,\ \tau_h =\tau_g=0$   ⇒   $T_{\rm D} = \tau_h +\tau_g=0$   ⇒   $\rho _{\rm MF} = 200$   ⇒   $10 \cdot \lg \ \rho _{\rm MF} \approx 23$  dB.
  •  Die Impulsenergie ist als das Integral über $g(t)^2$ berechenbar   ⇒   $E_g = A_g^2 \cdot \Delta t_g=1$   ⇒   $\rho _{\rm MF} = 2 \cdot E_g /N_0 =200$.  $T_{\text{D, opt} }=0$  ist hier implizit berücksichtigt.
  •  Eine andere Gleichung lautet:  $\rho_d (T_{\rm D}) =d_{\rm S}^2 (T_{\rm D})/\sigma_d^2$.  Die Rauschvarianz kann z. B. als Integral über  $h(t)^2$  berechnet werden:  $\sigma_d^2= N_0 \cdot \Delta t_h/2 = 0.005$.
  •  Das Nutzsignal  $d_{\rm S} (t)= g(t) * h(t)$  hat einen dreieckförmigen Verlauf mit dem Maximum  $d_{\rm S} (T_{\rm D, \ opt} = 0 )= 1$   ⇒   $\rho_d (T_{\rm D, \ opt} = 0 ) = 200= \rho _{\rm MF}$.

(3)  Es gelten weiter die Einstellungen von  (2)  mit Ausnahme von  $N_0=0.01 $  ⇒   $N_0=0.02$.  Welche Veränderungen sind erkennbar?

  •  Der einzige Unterschied ist die doppelt so große Rauschvarianz  $\sigma_d^2= 0.01$   ⇒   $\rho_d (T_{\rm D, \ opt} = 0 ) = 100= \rho _{\rm MF}$   ⇒   $10 \cdot \lg \rho_{\rm MF} =20$  dB.

(4)  Es gelten weiter die Einstellungen von  (3)  mit Ausnahme von  $T_{\rm D, \ opt} = 0 $  ⇒   $T_{\rm D} = 0.1$.  Wie wirkt sich dieser nichtoptimale Detektionszeitpunkt aus?

  •  Nun ist der Nutzabtastwert  $d_{\rm S} (T_{\rm D} = 0.1 )= 0.9$  kleiner   ⇒   $\rho_d (T_{\rm D} = 0.1 ) =0.9^2/0.01= 81< \rho _{\rm MF}$.  Es ergibt sich eine Verschlechterung um knapp ein dB.
  •  Für die weiteren Aufgaben wird vom optimalen Detektionszeitpunkt  $T_{\rm D, \ opt}$  ausgegangen, wenn nicht explizit etwas anderes angegeben wird.

(5)  Es gelten wieder die Einstellungen von  (3)  mit Ausnahme einer niedrigeren Impulsantwort  $A_h = 1 $  ⇒   $A_h = 0.8$.  Interpretieren Sie die Veränderungen.

  •  Es handelt sich auch mit  $A_h \ne = A_g$  um ein Matched-Filter, solange  $h(t)$  formgleich mit  $g(t)$  ist   ⇒   $\rho _{\rm MF} = { {2 \cdot E_g } }/{ {N_0 } } =100$   ⇒   $10 \cdot \lg \rho_{\rm MF} =20$  dB.
  •  Die Gleichung  $\rho_d (T_{\rm D}=0) =d_{\rm S}^2 (T_{\rm D}=0)/\sigma_d^2$  führt zum gleichen Ergebnis, da  ${d_{\rm S}}^2 (T_{\rm D})$  und  $\sigma_d^2$  gegenüber  (3)  jeweils um den Faktor  $0.8^2$  vermindert wird.

(6)  Gegenüber  (5)  wird nun die Höhe des Eingangsimpulses  $g(t)$  von  $A_g = 1$  auf  $A_g = 1.25$  erhöht.  Beschreibt hier  $h(t)$  ein Matched-Filter?  Wie groß ist  $\rho_{\rm MF}$?

  •  Auch hier liegt ein Matched-Filter vor, da  $h(t)$  und  $g(t)$  formgleich sind.  Mit  $E_g = 1.25^2$:     $\rho _{\rm MF} = { {2 \cdot 1.25^2 } }/{ 0.02 } =156.25$  ⇒  $10 \cdot \lg \rho_{\rm MF} =21.94$  dB.
  •  Der Gewinn von  $21.94$  dB gegenüber  (5)  lässt sich dadurch erklären, dass bei gleicher Rauschvarianz  $\sigma_d^2= 0.0064$  der Nutzabtastwert wieder  ${d_{\rm S}} (T_{\rm D}) = 1$  ist.

(7)  Wir gehen weiter von der Rechteck–Rechteck–Komination aus mit  $A_h=A_g=1,\ \Delta t_h=\Delta t_g=1,\ \tau_h=\tau_g=0,\ N_0 =0.2,\ T_{\rm D}=0$. 
            Interpretieren Sie die Ergebnisse nach Variation der äquivalenten Impulsdauer  $\Delta t_h$  von  $h(t)$  im Bereich  $0.6$ ... $1.4$.  Nutzen Sie die Grafikdarstellung über  $\Delta t_h$.

  •  Das Optimum ergibt sich erwartungsgemäß für die äquivalente Impulsdauer  $\Delta t_h=\Delta t_g=1$. Dann ist  $10 \cdot \lg \ \rho_d (T_{\rm D, \ opt} = 0 ) =20$   dB  $\big(= 10 \cdot \lg \rho_{\rm MF}\big)$.
  •  Ist  $\Delta t_h<\Delta t_g=1$, so ist das Nutzsignal trapezförmig.  Für  $\Delta t_h=0.6$:   $d_{\rm S}^2 (T_{\rm D}=0)= 0.36$ und  $\sigma_d^2\approx0.006$   ⇒   $10 \cdot \lg \ \rho_d (T_{\rm D, \ opt} = 0 ) =17.8$  dB.
  •  Auch für  $\Delta t_h>1$  ist das Nutzsignal trapezförmig, aber trotzdem  $d_{\rm S}^2 (T_{\rm D}=0)= 1$.  Die Rauschvarianz  $\sigma_d^2$  nimmt kontinuierlich mit  $\Delta t_h$  zu.
  •  Für  $\Delta t_h=1.4$  ist  $\sigma_d^2=0.118$   ⇒   $10 \cdot \lg \ \rho_d (T_{\rm D, \ opt} = 0 ) =18.5$  dB.  Gegenüber dem Matched–Filter  $(\Delta t_h=1)$  beträgt die Verschlechterung  $1.5$  dB.

(8)  Interpretieren Sie nun die Ergebnisse für verschiedene  $\Delta t_g$  des Eingangsimpulses  $g(t)$  im Bereich  $0.6$ ... $1.4$.  Nutzen Sie die Grafikdarstellung über  $\Delta t_g$.

  •  Die Grafikdarstellung geschieht nach folgender Aufspaltung:  $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )$  (blau)  $=20\cdot \lg \ \big [{K \cdot d_{\rm S}} (T_{\rm D,\ opt}) \big ]$   (violett)  Minus  $10\cdot \lg \ \big [K \cdot \sigma_d^2 \big ]$  (grün).
  •  Beim betrachteten Parametersatz und  $K=10$  ist der grüne Term  $10\cdot \lg \ \big [K \cdot \sigma_d^2 \big ] = 0$ dB  für alle  $\Delta t_g$   ⇒   die blaue und die violette Kurve sind identisch.
  •  Die blaue Kurve  $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )$  steigt von  $15.6$  dB  $($für  $\Delta t_g = 0.6)$  bis  $20$  dB  $($für  $\Delta t_g = 1)$  kontinuierlich an und bleibt für  $\Delta t_g > 1$  dann konstant.
  •  Die Einstellung  $\Delta t_g = 1.4,\ \Delta t_h = 1$  ergibt aber kein Matched-Filter.  Vielmehr gilt mit  $\Delta t_h = \Delta t_g = 1.4$:    $10 \cdot \lg \ \rho_{\rm MF}=10 \cdot \lg \ (2 \cdot E_g/N_0) \approx 21.5$  dB.


Zur Handhabung des Applets


Anleitung abtast.png





    (A)     Auswahl eines von vier Quellensignalen

    (B)     Parameterwahl für Quellensignal  $1$  (Amplitude, Frequenz, Phase)

    (C)     Ausgabe der verwendeten Programmparameter

    (D)     Parameterwahl für Abtastung  $(f_{\rm G})$  und
                Signalrekonstruktion  $(f_{\rm A},\ r)$

    (E)     Skizze des Empfänger–Frequenzgangs  $H_{\rm E}(f)$

    (F)     Numerische Ausgabe  $(P_x, \ P_{\rm \varepsilon}, \ 10 \cdot \lg(P_x/ P_{\rm \varepsilon})$

    (G)     Darstellungsauswahl für Zeitbereich

    (H)     Grafikbereich für Zeitbereich

    ( I )     Darstellungsauswahl für Frequenzbereich

    (J)     Grafikbereich für Frequenzbereich

    (K)     Bereich für Übungen:  Aufgabenauswahl, Fragen, Musterlösung

Über die Autoren

Dieses interaktive Berechnungstool wurde am  Lehrstuhl für Nachrichtentechnik  der  Technischen Universität München  konzipiert und realisiert.

  • Die erste Version wurde 2006 von  Markus Elsberger  im Rahmen seiner Diplomarbeit (LB) mit „FlashMX–Actionscript” erstellt (Betreuer:  Günter Söder).
  • 2020 wurde das Programm von  Carolin Mirschina  im Rahmen einer Werkstudententätigkeit auf „HTML5” umgesetzt und neu gestaltet (Betreuer:  Tasnád Kernetzky).


Die Umsetzung dieses Applets auf HTML 5 wurde durch die  Exzellenzinitiative  der TU München finanziell unterstützt. Wir bedanken uns.



Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen