Zur Verdeutlichung des Matched-Filters

Aus LNTwww
Wechseln zu:Navigation, Suche

Applet in neuem Tab öffnen

Programmbeschreibung


Das Applet soll die Eigenschaften des so genannten „Matched-Filters”  $({\rm MF})$  verdeutlichen.  Dieses dient zur optimalen Bestimmung des Vorhandenseins (Detektion) der Amplitude und/oder der Lage einer bekannten Signalform in einer stark verrauschten Umgebung.  Oder allgemeiner gesprochen:  Das Matched-Filter – manchmal auch als „Optimalfilter”  oder als „Korrelationsfilter”  bezeichnet – dient dem Nachweis der Signalexistenz. 

Blockschaltbild des Matched-Filter-Empfängers

Die Grafik zeigt den so genannten  Matched-Filter-Empfänger:

  • Dieser kann mit größtmöglicher Sicherheit – anders ausgedrückt:   mit maximalem Signal–zu–Rausch–Verhältnis  $($englisch:  signal–to–noise–ratio,  $\rm SNR)$  – entscheiden, ob ein durch additives Rauschen  $n(t)$  gestörtes impulsförmiges Nutzsignal  $g(t)$  vorhanden ist oder nicht.
  • Eine Anwendung ist die Radartechnik, bei der man zwar die Impulsform  $g(t)$  kennt, nicht aber, wann der Impuls gesendet wurde und mit welcher Stärke und Verzögerung dieser ankommt.
  • Das Matched-Filter wird aber auch als Empfangsfilter in digitalen Übertragungssystemen (oder zumindest als Teil davon) eingesetzt, um die Fehlerwahrscheinlichkeit des Systems zu minimieren.

XXX

Theoretischer Hintergrund


Detailbeschreibung des zugrunde liegenden Modells

Für die einzelnen Komponenten des obigen Blockschaltbild gelten folgende Voraussetzungen:

  • Der Nutzanteil  $g(t)$  des Empfangssignals  $r(t)=g(t)+n(t)$  sei impulsförmig und somit  energiebegrenzt.  Das heißt:   Das Integral über  $ [g(t) ]^2$  von  $–∞$  bis  $+∞$  liefert den endlichen Wert  $E_g$.
  • Das Störsignal  $n(t)$  sei  Weißes Gaußsches Rauschen  mit der Rauschleistungsdichte  $N_0$.
  • Das Filterausgangssignal  $d(t)$  setzt sich additiv aus zwei Anteilen zusammen.  Der Anteil  $d_{\rm S}(t)$  geht auf das  $\rm S\hspace{0.04cm}$ignal  $g(t)$  zurück, der Anteil  $d_{\rm N}(t)$  auf das  $\rm N\hspace{0.04cm}$oise  $n(t)$.
  • Der Empfänger, bestehend aus einem linearen Filter   ⇒   Frequenzgang  $H_{\rm MF}(f)$  und dem Entscheider, ist so zu dimensionieren, dass das momentane S/N-Verhältnis am Ausgang maximal wird:
$$\rho _d ( {T_{\rm D} } ) = \frac{ {d_{\rm S} ^2 ( {T_{\rm D} } )} }{ {\sigma_d^2 } }\mathop = \limits^{\rm{!} }\hspace{0.1cm} {\rm{Maximum} }.$$
  • Hierbei bezeichnen  ${σ_d}^2$  die  Varianz  (Leistung) von $d_{\rm N}(t)$ und  $T_{\rm D}$  den (geeignet gewählten)  Detektionszeitpunkt.


Matched-Filter-Optimierung

Gegeben sei ein energiebegrenztes Nutzsignal  $g(t)$  mit dem zugehörigen Spektrum  $G(f)$.  Damit kann das Filterausgangssignal zum Detektionszeitpunkt  $T_{\rm D}$  für jedes beliebige Filter mit Impulsantwort  $h(t)$  und Frequenzgang  $H(f) =\mathcal{ F}\{h(t)\}$ wie folgt geschrieben werden  (ohne Berücksichtigung des Rauschens   ⇒   Index  $\rm S$  für „Signal”):

$$d_{\rm S} ( {T_{\rm D} } ) = g(t) * h(t) = \int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e}}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }\hspace{0.1cm} {\rm{d}}f} .$$

Der  „Rauschanteil”  $d_{\rm N}(t)$  des Filterausgangssignals  (Index  $\rm N$  für „Noise”) rührt allein vom Weißen Rauschen  $n(t)$  am Eingang des Empfängers her.  Für seine Varianz (Leistung) gilt unabhängig vom Detektionszeitpunkt  $T_{\rm D}$:

$$\sigma _d ^2 = \frac{ {N_0 } }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} .$$

Damit lautet das hier vorliegende Optimierungsproblem:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left| {\int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e} }^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }\hspace{0.1cm} {\rm{d} }f} } \right|^2 } }{ {N_0 /2 \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } } \stackrel{!}{=} {\rm{Maximum} }.$$

$\text{Hier zunächst ohne Beweis:}$    Man kann zeigen, dass dieser Quotient für den folgenden Frequenzgang  $H(f)$  am größten wird:

$$H(f) = H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } . $$
  • Damit erhält man für das Signal–zu–Rauschleistungsverhältnis am Matched–Filter–Ausgang  $($unabhängig von der dimensionsbehafteten Konstante  $K_{\rm MF})$:
$$\rho _d ( {T_{\rm D} } ) = { {2 \cdot E_g } }/{ {N_0 } }.$$
  • $E_g$ bezeichnet die Energie des Eingangsimpulses, die man nach dem  Satz von Parseval  sowohl im Zeit– als auch im Frequenzbereich berechnen kann:
$$E_g = \int_{ - \infty }^{ + \infty } {g^2 (t)\hspace{0.1cm}{\rm{d} }t} = \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right\vert ^{\rm{2} }\hspace{0.1cm} {\rm d}f} .$$


$\text{Beispiel 1:}$   Ein rechteckförmiger Impuls  $g(t)$  mit Amplitude  $\rm 1\hspace{0.05cm}V$,  Dauer  $0.5\hspace{0.05cm} \rm ms$  und unbekannter Lage soll in einer verrauschten Umgebung aufgefunden werden.

  • Somit ist die Impulsenergie  $E_g = \rm 5 · 10^{–4} \hspace{0.05cm}V^2s$.
  • Die Rauschleistungsdichte sei  $N_0 = \rm 10^{–6} \hspace{0.05cm}V^2/Hz$.


Das beste Ergebnis   ⇒   das  maximale S/N–Verhältnis  erzielt man mit dem Matched-Filter:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {2 \cdot E_g } }{ {N_0 } } = \frac{ {2 \cdot 5 \cdot 10^{-4}\, {\rm V^2\,s} } }{ {10^{-6}\, {\rm V^2/Hz} } } = 1000 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}\rho _d ( {T_{\rm D} } ) = 30\,{\rm dB}.$$


Das oben angegebene Matched–Filter–Kriterium wird nun schrittweise hergeleitet.  Wenn Sie daran nicht interessiert sind, so springen Sie bitte zur Fortsetzungsseite  Interpretation des Matched–Filters.

$\text{Herleitung des Matched–Filter–Kriteriums:}$ 

$(1)$  Die Schwarzsche Ungleichung lautet mit den beiden (im allgemeinen komplexen) Funktionen  $A(f)$  und  $B(f)$:

$$\left \vert {\int_a^b {A(f) \cdot B(f)\hspace{0.1cm}{\rm{d} }f} } \right \vert ^2 \le \int_a^b {\left \vert {A(f)} \right \vert^{\rm{2} } \hspace{0.1cm}{\rm{d} }f} \cdot \int_a^b {\left\vert {B(f)} \right \vert^{\rm{2} } \hspace{0.1cm}{\rm{d} }f} .$$

$(2)$  Wir wenden nun diese Gleichung auf das Signal–zu–Rauschverhältnis an:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left \vert {\int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e} }^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } \hspace{0.1cm}{\rm{d} }f} } \right \vert^2 } }{ {N_0 /2 \cdot \int_{ - \infty }^{ + \infty } {\left \vert {H(f)} \right \vert^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } }.$$

$(3)$  Mit  $A(f) = G(f)$  und  $B(f) = H(f) · {\rm e}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }$  ergibt sich somit die folgende Schranke:

$$\rho_d ( {T_{\rm D} } ) \le \frac{1}{ {N_0 /2} } \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert^{\rm{2} } }\hspace{0.1cm}{\rm{d} }f .$$

$(4)$  Wir setzen für den Filterfrequenzgang nun versuchsweise ein:

$$H(f) = H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm{e} }^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }.$$

$(5)$  Dann erhält man aus der obigen Gleichung  $(2)$  folgendes Ergebnis:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left \vert K_{\rm MF}\cdot {\int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } \right \vert ^2 } }{ {N_0 /2 \cdot K_{\rm MF} ^2 \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } } = \frac{1}{ {N_0 /2} } \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} .$$

$\text{Das heißt:}$

  • Mit dem Ansatz  $(4)$  für das Matched–Filter $H_{\rm MF}(f)$ wird in obiger Abschätzung tatsächlich der maximal mögliche Wert erreicht.
  • Mit keinem anderen Filter  $H(f) ≠ H_{\rm MF}(f)$  kann man ein höheres Signal–zu–Rauschleistungsverhältnis erzielen.
  • Das Matched–Filter ist in Bezug auf das ihm zugrunde gelegte Maximierungskriterium optimal.
q.e.d.

Interpretation des Matched-Filters


Auf der letzten Seite wurde der Frequenzgang des Matched-Filters wie folgt hergeleitet:

$$H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm{e} }^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } .$$

Durch  Fourierrücktransformation  erhält man die dazugehörige Impulsantwort:

$$h_{\rm MF} (t) = K_{\rm MF} \cdot g(T_{\rm D} - t).$$

Diese beiden Funktionen lassen sich wie folgt interpretieren:

  • Das  Matched-Filter  ist durch den Term  $G^{\star}(f)$  an das Spektrum des aufzufindenden Impulses  $g(t)$  angepasst – daher sein Name (englisch: to match ≡ anpassen).
  • Die  Konstante  $K_{\rm MF}$  ist aus Dimensionsgründen notwendig.
  • Ist  $g(t)$  ein Spannungsimpuls, so hat diese Konstante die Einheit „Hz/V”.  Der Frequenzgang ist somit dimensionslos.
  • Die  Impulsantwort  $h_{\rm MF}(t)$  ergibt sich aus dem Nutzsignal  $g(t)$  durch Spiegelung   ⇒   aus $g(t)$ wird $g(–t)$     sowie einer Verschiebung um  $T_{\rm D}$  nach rechts.
  • Der  früheste Detektionszeitpunkt  $T_{\rm D}$  folgt für realisierbare Systeme aus der Bedingung  $h_{\rm MF}(t < 0)\equiv 0$   $($„Kausalität”,  siehe Buch Lineare zeitinvariante Systeme$)$.
  • Der  Nutzanteil  $d_{\rm S} (t)$  des Filterausgangssignals ist formgleich mit der  Energie-AKF   $\varphi^{^{\bullet} }_{g} (t )$  und gegenüber dieser um  $T_{\rm D}$  verschoben. Es gilt:
$$d_{\rm S} (t) = g(t) * h_{\rm MF} (t) = K_{\rm MF} \cdot g(t) * g(T_{\rm D} - t) = K_{\rm MF} \cdot \varphi^{^{\bullet} }_{g} (t - T_{\rm D} ).$$

$\text{Bitte beachten Sie:}$  Bei einem energiebegrenzten Signal  $g(t)$  kann man nur die  Energie–AKF  angeben:

$$\varphi^{^{\bullet} }_g (\tau ) = \int_{ - \infty }^{ + \infty } {g(t) \cdot g(t + \tau )\,{\rm{d} }t} .$$

Gegenüber der AKF-Definition eines leistungsbegrenzten Signals  $x(t)$, nämlich

$$\varphi _x (\tau ) = \mathop {\lim }_{T_{\rm M} \to \infty } \frac{1}{ {T_{\rm M} } }\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} {x(t) \cdot x(t + \tau )\hspace{0.1cm}\,{\rm{d} }t} ,$$

wird bei der Berechnung der Energie-AKF auf die Division durch die Messdauer  $T_{\rm M}$  sowie auf den Grenzübergang  $T_{\rm M} → ∞$  verzichtet.


$\text{Beispiel 2:}$  Wir gehen davon aus, dass der Rechteckimpuls zwischen  $\rm 2\hspace{0.08cm}ms$  und  $\rm 2.5\hspace{0.08cm}ms$  liegt und der Detektionszeitpunkt  $T_{\rm D} =\rm 2\hspace{0.08cm}ms$  gewünscht wird.

Unter diesen Voraussetzungen gilt:

  • Die Matched–Filter–Impulsantwort  $h_{\rm MF}(t)$  muss im Bereich von  $t_1 (= 4 - 2.5) =\rm 1.5\hspace{0.08cm}ms$  bis  $t_2 (= 4 - 2) =\rm 2\hspace{0.08cm}ms$  konstant sein.
  • Für  $t < t_1$  sowie für  $t > t_2$  darf sie keine Anteile besitzen.
  • Der Betragsfrequenzgang  $\vert H_{\rm MF}(f)\vert$  ist hier  $\rm si$–förmig.
  • Die Höhe der Impulsantwort  $h_{\rm MF}(t)$  spielt für das S/N–Verhältnis keine Rolle, da dieses unabhängig von  $K_{\rm MF}$  ist.


Versuchsdurchführung


Aufgaben 2D-Gauss.png

Überarbeiten

  • Wählen Sie zunächst die Nummer  (1, ... , 10)  der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Musterlösung”.
  • Die Nummer  0  entspricht einem „Reset”:  Gleiche Einstellung wie beim Programmstart.
  • Alle Signalwerte sind normiert auf  $\pm 1$  zu verstehen.  Auch die ausgegebenen Leistungen sind normierte Größen.

Alles normiert

Für (1) soll voreingestellt sein, ohne dass es in der Aufgabenstellung erwähnt wird: Spalt-TP, $A_h=0.5,\ \Delta t_h=1.6,\ \tau_h=0.8, \ T_D = 2$

(1)  Der Eingangsimpuls sei gaußförmig mit  $A_g=1,\ \Delta t_g=1,\ \tau_g=1$.  Welche Einstellung führt zum „Matched–Filter”?  Wie groß ist  $10 \cdot \lg \ \rho_{\rm MF}$  mit  $N_0=0.01$?

  •  Das Matched–Filter muss ebenfalls einen gaußförmigen Verlauf haben und es muss gelten:  $\Delta t_h=\Delta t_g=1,\ \tau_h =\tau_g=1$   ⇒   $T_{\rm D} = \tau_h +\tau_g=2$.
  •  Das (momentane) Signal–zu–Rauschleistungsverhältnis am Filterausgang ist  $\rho _{\rm MF} = { {2 \cdot E_g } }/{ {N_0 } } \approx 141.4$  ⇒   $10 \cdot \lg \ \rho _{\rm MF} \approx 21.5$  dB.
  •  Mit keinem anderen Filter als dem Matched–Filter ist dieses  $\rm SNR$  (oder ein noch besseres)  zu erreichen.

(2)  Das Matched–Filter bei rechteckförmigen Eingangsimpuls mit  $A_g=1,\ \Delta t_g=1,\ \tau_g=0$  ist ein Spalt–Tiefpass   ⇒   rechteckförmige Impulsantwort.
            Wie groß ist hier   $10 \cdot \lg \ \rho_{\rm MF}$  mit  $N_0=0.01$? Interpretieren Sie alle dargestellten Grafiken und die numerischen Ergebnisse auf verschiedene Art und Weise.

  •  Die eingestellten Filterparameter sind  $A_h=A_g=1, \ \Delta t_h=\Delta t_g=1,\ \tau_h =\tau_g=0$   ⇒   $T_{\rm D} = \tau_h +\tau_g=0$   ⇒   $\rho _{\rm MF} = 200$   ⇒   $10 \cdot \lg \ \rho _{\rm MF} \approx 23$  dB.
  •  Die Impulsenergie ist als das Integral über $g(t)^2$ berechenbar   ⇒   $E_g = A_g^2 \cdot \Delta t_g=1$   ⇒   $\rho _{\rm MF} = 2 \cdot E_g /N_0 =200$.  $T_{\text{D, opt} }=0$  ist hier implizit berücksichtigt.
  •  Eine andere Gleichung lautet:  $\rho_d (T_{\rm D}) =d_{\rm S}^2 (T_{\rm D})/\sigma_d^2$.  Die Rauschvarianz kann z. B. als Integral über  $h(t)^2$  berechnet werden:  $\sigma_d^2= N_0 \cdot \Delta t_h/2 = 0.005$.
  •  Das Nutzsignal  $d_{\rm S} (t)= g(t) * h(t)$  hat einen dreieckförmigen Verlauf mit dem Maximum  $d_{\rm S} (T_{\rm D, \ opt} = 0 )= 1$   ⇒   $\rho_d (T_{\rm D, \ opt} = 0 ) = 200= \rho _{\rm MF}$.

(3)  Es gelten weiter die Einstellungen von  (2)  mit Ausnahme von  $N_0=0.01 $  ⇒   $N_0=0.02$.  Welche Veränderungen sind erkennbar?

  •  Der einzige Unterschied ist die doppelt so große Rauschvarianz  $\sigma_d^2= 0.01$   ⇒   $\rho_d (T_{\rm D, \ opt} = 0 ) = 100= \rho _{\rm MF}$   ⇒   $10 \cdot \lg \rho_{\rm MF} =20$  dB.

(4)  Es gelten weiter die Einstellungen von  (3)  mit Ausnahme von  $T_{\rm D, \ opt} = 0 $  ⇒   $T_{\rm D} = 0.1$.  Wie wirkt sich dieser nichtoptimale Detektionszeitpunkt aus?

  •  Nun ist der Nutzabtastwert  $d_{\rm S} (T_{\rm D} = 0.1 )= 0.9$  kleiner   ⇒   $\rho_d (T_{\rm D} = 0.1 ) =0.9^2/0.01= 81< \rho _{\rm MF}$.  Es ergibt sich eine Verschlechterung um knapp ein dB.
  •  Für die weiteren Aufgaben wird vom optimalen Detektionszeitpunkt  $T_{\rm D, \ opt}$  ausgegangen, wenn nicht explizit etwas anderes angegeben wird.

(5)  Es gelten wieder die Einstellungen von  (3)  mit Ausnahme einer niedrigeren Impulsantwort  $A_h = 1 $  ⇒   $A_h = 0.8$.  Interpretieren Sie die Veränderungen.

  •  Es handelt sich auch mit  $A_h \ne = A_g$  um ein Matched-Filter, solange  $h(t)$  formgleich mit  $g(t)$  ist   ⇒   $\rho _{\rm MF} = { {2 \cdot E_g } }/{ {N_0 } } =100$   ⇒   $10 \cdot \lg \rho_{\rm MF} =20$  dB.
  •  Die Gleichung  $\rho_d (T_{\rm D}=0) =d_{\rm S}^2 (T_{\rm D}=0)/\sigma_d^2$  führt zum gleichen Ergebnis, da  ${d_{\rm S}}^2 (T_{\rm D})$  und  $\sigma_d^2$  gegenüber  (3)  jeweils um den Faktor  $0.8^2$  vermindert wird.

(6)  Gegenüber  (5)  wird nun die Höhe des Eingangsimpulses  $g(t)$  von  $A_g = 1$  auf  $A_g = 1.25$  erhöht.  Beschreibt hier  $h(t)$  ein Matched-Filter?  Wie groß ist  $\rho_{\rm MF}$?

  •  Auch hier liegt ein Matched-Filter vor, da  $h(t)$  und  $g(t)$  formgleich sind.  Mit  $E_g = 1.25^2$:     $\rho _{\rm MF} = { {2 \cdot 1.25^2 } }/{ 0.02 } =156.25$  ⇒  $10 \cdot \lg \rho_{\rm MF} =21.94$  dB.
  •  Der Gewinn von  $21.94$  dB gegenüber  (5)  lässt sich dadurch erklären, dass bei gleicher Rauschvarianz  $\sigma_d^2= 0.0064$  der Nutzabtastwert wieder  ${d_{\rm S}} (T_{\rm D}) = 1$  ist.



$\text{Hier zunächst ohne Beweis:}$    Man kann zeigen, dass dieser Quotient für den folgenden Frequenzgang  $H(f)$  am größten wird:

$$H(f) = H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } . $$
  • Damit erhält man für das Signal–zu–Rauschleistungsverhältnis am Matched–Filter–Ausgang  $($unabhängig von der dimensionsbehafteten Konstante  $K_{\rm MF})$:
$$\rho _d ( {T_{\rm D} } ) = { {2 \cdot E_g } }/{ {N_0 } }.$$
  • $E_g$ bezeichnet die Energie des Eingangsimpulses, die man nach dem  Satz von Parseval  sowohl im Zeit– als auch im Frequenzbereich berechnen kann:
$$E_g = \int_{ - \infty }^{ + \infty } {g^2 (t)\hspace{0.1cm}{\rm{d} }t} = \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right\vert ^{\rm{2} }\hspace{0.1cm} {\rm d}f} .$$
  • $E_g$ bezeichnet die Energie des Eingangsimpulses, die man nach dem  Satz von Parseval  sowohl im Zeit– als auch im Frequenzbereich berechnen kann:
$$E_g = \int_{ - \infty }^{ + \infty } {g^2 (t)\hspace{0.1cm}{\rm{d} }t} = \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right\vert ^{\rm{2} }\hspace{0.1cm} {\rm d}f} .$$}}

(3)  Nun gelte  $A=1$,  $f_0 = \text{5 kHz}$,  $\varphi=0$,  $f_{\rm A} = \text{10 kHz}$,  $f_{\rm G} = \text{5 kHz}$,  $r=0$  $($Rechteck–Tiefpass$)$.  Interpretieren Sie das Ergebnis der Signalrekonstruktion.

  •  $X(f)$  besteht aus zwei Diraclinien bei  $\pm \text{5 kHz}$  $($Gewicht  $0.5)$.  Durch die periodische Fortsetzung hat  $X_{\rm A}(f)$  Linien bei  $\pm \text{5 kHz}$,  $\pm \text{15 kHz}$,  $\pm \text{25 kHz}$,  usw.
  •   Der Rechteck–Tiefpass entfernt die Linien bei  $\pm \text{15 kHz}$,  $\pm \text{25 kHz}$,  Die Linien bei  $\pm \text{5 kHz}$  werden wegen  $H_{\rm E}(\pm f_{\rm G}) = H_{\rm E}(\pm \text{5 kHz}) = 0.5$ halbiert
  •    ⇒   $\text{Gewichte von }X(f = \pm \text{5 kHz})$:  $0.5$   |   $\text{Gewichte von }X(f_{\rm A} = \pm \text{5 kHz})$:  $1.0$;     |   $\text{Gewichte von }Y(f = \pm \text{5 kHz})$:  $0.5$   ⇒   $Y(f)=X(f)$.
  •  Die Signalrekonstruktion funktioniert also auch hier perfekt  $(P_\varepsilon = 0)$.  Das gilt auch für die Phase  $\varphi=180^\circ$   ⇒   $x(t) = -A \cdot \cos (2\pi \cdot f_0 \cdot t)$.

(4)  Es gelten weiter die Einstellungen von  (3)  mit Ausnahme von  $\varphi=30^\circ$.  Interpretieren Sie die Unterschiede gegenüber der Einstellung  (3)   ⇒   $\varphi=0^\circ$.

  •  Die Phasenbeziehung geht verloren.  Das Sinkensignal  $y(t)$  verläuft cosinusförmig  $(\varphi_y=0^\circ)$  mit um  $\cos(\varphi_x)$  kleinerer Amplitude als das Quellensignal  $x(t)$.
  •  Begründung im Frequenzbereich:  Bei der periodische Fortsetzung von  $X(f)$  ⇒  $X_{\rm A}(f)$  sind nur die Realteile zu addieren.  Die Imaginärteile löschen sich aus.
  •  Die  $f_0$–Diraclinie von  $Y(f)$  ist reell, die von  $X(f)$  komplex und die von  $E(f)$  imaginär   ⇒   $\varepsilon(t)$  verläuft minus–sinusförmig   ⇒   $P_\varepsilon = 0.125$.

(5)  Verdeutlichen Sie sich nochmals das Ergebnis von  (4)  im Vergleich zu den Einstellungen  $f_0 = \text{5 kHz}$,  $\varphi=30^\circ$,  $f_{\rm A} = \text{11 kHz}$,  $f_{\rm G} = \text{5.5 kHz}$.

  •  Bei dieser Einstellung hat das  $X_{\rm A}(f)$–Spektrum auch einen positiven Imaginärteil bei  $\text{5 kHz}$  und einen negativen Imaginärteil gleicher Höhe bei  $\text{6 kHz}$.
  •  Der Rechteck–Tiefpass mit der Grenzfrequenz  $\text{5.5 kHz}$  entfernt diesen zweiten Anteil.  Somit ist bei dieser Einstellung  $Y(f) =X(f)$   ⇒   $P_\varepsilon = 0$.
  •  Jede  $f_0$–Schwingung beliebiger Phase ist fehlerfrei aus seinen Abtastwerten rekonstruierbar, falls  $f_{\rm A} = 2 \cdot f_{\rm 0} + \mu, \ f_{\rm G}= f_{\rm A}/2$  $($beliebig kleines $\mu>0)$.
  •  Bei wertkontinuierlichem Spektrum mit   $X(|f|> f_0) \equiv 0$  ⇒   $\big[$keine Diraclinien bei $\pm f_0 \big ]$ genügt grundsätzlich die Abtastrate  $f_{\rm A} = 2 \cdot f_{\rm 0}$.

(6)  Es gelten weiter die Einstellungen von  (3)  und  (4)  mit Ausnahme von  $\varphi=90^\circ$.  Interpretieren Sie die Darstellungen im Zeit– und Frequenzbereich.

  •  Das Quellensignal wird genau bei seinen Nulldurchgängen abgetastet   ⇒   $x_{\rm A}(t) \equiv 0$  ⇒    $y(t) \equiv 0$  ⇒  $\varepsilon(t)=-x(t)$  ⇒  $P_\varepsilon = P_x$  ⇒  $10 \cdot \lg \ (P_x/P_\varepsilon)=0\ \rm dB$.
  •  Beschreibung im Frequenzbereich:  Wie in  (4)  löschen sich die Imaginärteile von  $X_{\rm A}(f)$  aus.  Auch die Realteile von  $X_{\rm A}(f)$  sind wegen des Sinusverlaufs Null.

(7)  Nun betrachten wir das  $\text {Quellensignal 2}$.  Die weiteren Parameter seien  $f_{\rm A} = \text{5 kHz}$,  $f_{\rm G} = \text{2.5 kHz}$,  $r=0$.  Interpretieren Sie die Ergebnisse.

  •  Das Quellensignal besitzt Spektralanteile bis  $\pm \text{2 kHz}$.  Die Signalleistung ist $P_x = 2 \cdot \big[0.1^2 + 0.25^2+0.15^2\big]= 0.19 $. 
  •  Mit der Abtastrate  $f_{\rm A} = \text{5 kHz}$  sowie den Empfängerparametern  $f_{\rm G} = \text{2.5 kHz}$  und  $r=0$ funktioniert die Signalrekonstruktion perfekt:  $P_\varepsilon = 0$.
  •  Ebenso mit dem Trapez–Tiefpass mit  $f_{\rm G} = \text{2.5 kHz}$, wenn für den Rolloff–Faktor gilt:  $r \le 0.2$.

(8)  Was passiert, wenn die Grenzfrequenz  $f_{\rm G} = \text{1.5 kHz}$  des Rechteck–Tiefpasses zu klein ist?  Interpretieren Sie insbesondere das Fehlersignal  $\varepsilon(t)=y(t)-x(t)$.

  •  Das Fehlersignal  $\varepsilon(t)=-0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t -60^\circ)=0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t +120^\circ)$  ist gleich dem (negierten) Signalanteil bei  $\text{2 kHz}$.  Stimmt das?
  •  Die Verzerrungsleistung ist  $P_\varepsilon(t)=2 \cdot 0.15^2= 0.045$  und der Signal–zu–Verzerrungsabstand  $10 \cdot \lg \ (P_x/P_\varepsilon)=10 \cdot \lg \ (0.19/0.045)= 6.26\ \rm dB$.

(9)  Was passiert, wenn die Grenzfrequenz  $f_{\rm G} = \text{3.5 kHz}$  des Rechteck–Tiefpasses zu groß ist?  Interpretieren Sie insbesondere das Fehlersignal  $\varepsilon(t)=y(t)-x(t)$.

  •  Das Fehlersignal  $\varepsilon(t)=0.3 \cdot \cos(2\pi \cdot \text{3 kHz} \cdot t +60^\circ)$  ist nun gleich dem vom Tiefpass nicht entfernten $\text{3 kHz}$–Anteil des Sinkensignals  $y(t)$.  Stimmt das?
  •  Gegenüber der Teilaufgabe  (8)  verändert sich die Frequenz von  $\text{2 kHz}$  auf  $\text{3 kHz}$  und auch die Phasenbeziehung.
  •  Die Amplitude dieses  $\text{3 kHz}$–Fehlersignals ist gleich der Amplitude des  $\text{2 kHz}$–Anteils von$x(t)$.  Auch hier gilt  $P_\varepsilon(t)= 0.045$,  $10 \cdot \lg \ (P_x/P_\varepsilon)= 6.26\ \rm dB$.

(10)  Abschließend betrachten wir das  $\text {Quellensignal 4}$  $($Anteile bis  $\pm \text{4 kHz})$, sowie  $f_{\rm A} = \text{5 kHz}$,  $f_{\rm G} = \text{2.5 kHz}$,  $0 \le r\le 1$.  Interpretation der Ergebnisse.

  •  Bis zum Rolloff–Faktor  $r=0.2$  funktioniert die Signalrekonstruktion perfekt  $(P_\varepsilon = 0)$.  Erhöht man  $r$, so nimmt  $P_\varepsilon$  kontinuierlich zu und  $10 \cdot \lg \ (P_x/P_\varepsilon)$  ab.
  •  Mit  $r=1$  werden die Signalfrequenzen  $\text{0.5 kHz}$,  ...,  $\text{4 kHz}$  abgeschwächt, umso mehr, je höher die Frequenz ist, zum Beispiel  $H_{\rm E}(f=\text{4 kHz}) = 0.6$.
  •  Ebenso beinhaltet  $Y(f)$  aufgrund der periodischen Fortsetzung auch Anteile bei den Frequenzen  $\text{6 kHz}$,  $\text{7 kHz}$,  $\text{8 kHz}$,  $\text{9 kHz}$  und  $\text{9.5 kHz}$.
  •  Zu den Abtastzeitpunkten  $t\hspace{0.05cm}' = n \cdot T_{\rm A}$  stimmen  $x(t\hspace{0.05cm}')$  und  $y(t\hspace{0.05cm}')$  exakt überein   ⇒   $\varepsilon(t\hspace{0.05cm}') = 0$.  Dazwischen nicht   ⇒   kleine Verzerrungsleistung  $P_\varepsilon = 0.008$.




Zur Handhabung des Applets


Anleitung abtast.png





    (A)     Auswahl eines von vier Quellensignalen

    (B)     Parameterwahl für Quellensignal  $1$  (Amplitude, Frequenz, Phase)

    (C)     Ausgabe der verwendeten Programmparameter

    (D)     Parameterwahl für Abtastung  $(f_{\rm G})$  und
                Signalrekonstruktion  $(f_{\rm A},\ r)$

    (E)     Skizze des Empfänger–Frequenzgangs  $H_{\rm E}(f)$

    (F)     Numerische Ausgabe  $(P_x, \ P_{\rm \varepsilon}, \ 10 \cdot \lg(P_x/ P_{\rm \varepsilon})$

    (G)     Darstellungsauswahl für Zeitbereich

    (H)     Grafikbereich für Zeitbereich

    ( I )     Darstellungsauswahl für Frequenzbereich

    (J)     Grafikbereich für Frequenzbereich

    (K)     Bereich für Übungen:  Aufgabenauswahl, Fragen, Musterlösung

Über die Autoren

Dieses interaktive Berechnungstool wurde am  Lehrstuhl für Nachrichtentechnik  der  Technischen Universität München  konzipiert und realisiert.

  • Die erste Version wurde 2006 von  Markus Elsberger  im Rahmen seiner Diplomarbeit (LB) mit „FlashMX–Actionscript” erstellt (Betreuer:  Günter Söder).
  • 2020 wurde das Programm von  Carolin Mirschina  im Rahmen einer Werkstudententätigkeit auf „HTML5” umgesetzt und neu gestaltet (Betreuer:  Tasnád Kernetzky).


Die Umsetzung dieses Applets auf HTML 5 wurde durch die  Exzellenzinitiative  der TU München finanziell unterstützt. Wir bedanken uns.



Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen