Applets:Zur Verdeutlichung des Matched-Filters: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 55: Zeile 55:
  
  
===Beschreibung der Abtastung im Zeitbereich===
+
==Optimierungskriterium des Matched–Filters==
 +
<br>
 +
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp; Das&nbsp; '''Matched-Filter'''&nbsp; – auch ''Korrelationsfilter''&nbsp; genannt – dient zum Nachweis der Signalexistenz.
 +
[[Datei:P_ID568__Sto_T_5_4_S1_neu.png |right|frame| Blockschaltbild des Matched-Filter-Empfängers]]
 +
*Der&nbsp; '''Matched-Filter-Empfänger'''&nbsp; kann mit größtmöglicher Sicherheit – anders ausgedrückt: &nbsp; mit maximalem SNR – entscheiden, ob ein durch additives Rauschen&nbsp; $n(t)$&nbsp; gestörtes impulsförmiges Nutzsignal&nbsp; $g(t)$&nbsp; vorhanden ist oder nicht.
  
[[Datei:P_ID1120__Sig_T_5_1_S1_neu.png|center|frame|Zur Zeitdiskretisierung des zeitkontinuierlichen Signals&nbsp; $x(t)$]]
 
 
Im Folgenden verwenden wir für die Beschreibung der Abtastung folgende Nomenklatur:
 
*Das zeitkontinuierliche Signal sei&nbsp; $x(t)$.
 
*Das in äquidistanten Abständen&nbsp; $T_{\rm A}$&nbsp; abgetastete zeitdiskretisierte Signal sei&nbsp; $x_{\rm A}(t)$.
 
*Außerhalb der Abtastzeitpunkte&nbsp; $\nu \cdot T_{\rm A}$&nbsp; gilt stets&nbsp; $x_{\rm A}(t) \equiv 0$.
 
*Die Laufvariable&nbsp; $\nu$&nbsp; sei&nbsp; [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Reelle_Zahlenmengen|ganzzahlig]]:  &nbsp; &nbsp; $\nu \in \mathbb{Z} =  \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} $.
 
*Dagegen ergibt sich zu den äquidistanten Abtastzeitpunkten mit der Konstanten&nbsp; $K$:
 
 
   
 
   
:$$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$
+
*Zur Herleitung des Matched-Filter-Empfängers wird die skizzierte Anordnung betrachtet. }}
  
Die Konstante hängt von der Art der Zeitdiskretisierung ab. Für die obige Skizze gilt&nbsp; $K = 1$.
 
<br><br>
 
===Beschreibung der Abtastung mit Diracpuls===
 
  
Im Folgenden gehen wir von einer geringfügig anderen Beschreibungsform aus.&nbsp; Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent anwendet.
+
Für die einzelnen Komponenten gelten folgende Voraussetzungen:
 +
*Der Nutzanteil&nbsp; $g(t)$&nbsp; des Empfangssignals&nbsp; $r(t)=g(t)+n(t)$&nbsp; sei impulsförmig und somit&nbsp; ''energiebegrenzt''.
 +
*Das heißt: &nbsp; Das Integral über&nbsp; $\big [g(t)\big ]^2$&nbsp; von&nbsp; $–∞$&nbsp; bis&nbsp; $+∞$&nbsp; liefert den endlichen Wert&nbsp; $E_g$.
 +
*Das Störsignal&nbsp; $n(t)$&nbsp; sei&nbsp; ''Weißes Gaußsches Rauschen''&nbsp; mit der Rauschleistungsdichte&nbsp; $N_0$.
 +
*Das Filterausgangssignal&nbsp; $d(t)$&nbsp; setzt sich additiv aus zwei Anteilen zusammen.&nbsp; Der Anteil&nbsp; $d_{\rm S}(t)$&nbsp; geht auf das&nbsp; $\rm S$ignal&nbsp; $g(t)$&nbsp; zurück, der Anteil&nbsp; $d_{\rm N}(t)$&nbsp; auf das&nbsp; $\rm N$oise&nbsp; $n(t)$.  
 +
*Der Empfänger, bestehend aus einem linearen Filter &nbsp;  ⇒ &nbsp; Frequenzgang&nbsp; $H_{\rm MF}(f)$&nbsp; und dem Entscheider, ist so zu dimensionieren, dass das momentane S/N-Verhältnis am Ausgang maximal wird:
 +
:$$\rho _d ( {T_{\rm D} } ) = \frac{ {d_{\rm S} ^2 ( {T_{\rm D} } )} }{ {\sigma _d ^2 } }\mathop = \limits^{\rm{!} }\hspace{0.1cm} {\rm{Maximum} }.$$
 +
*Hierbei bezeichnen &nbsp;$σ_d^2$&nbsp; die&nbsp; ''Varianz''&nbsp; (Leistung) von $d_{\rm N}(t)$ und &nbsp;$T_{\rm D}$&nbsp; den (geeignet gewählten)&nbsp; ''Detektionszeitpunkt.''
  
{{BlaueBox|TEXT=
+
==Matched-Filter-Optimierung==
$\text{Definitionen:}$&nbsp;
+
<br>
 +
Gegeben sei ein energiebegrenztes Nutzsignal&nbsp; $g(t)$&nbsp; mit dem zugehörigen Spektrum&nbsp; $G(f)$.
 +
*Damit kann das Filterausgangssignal zum Detektionszeitpunkt&nbsp; $T_{\rm D}$&nbsp; für jedes beliebige Filter mit der Impulsantwort&nbsp; $h(t)$&nbsp; und dem Frequenzgang&nbsp; $H(f) =\mathcal{ F}\{h(t)\}$ wie folgt geschrieben werden&nbsp; (ohne Berücksichtigung des Rauschens &nbsp; ⇒ &nbsp; Index &nbsp;$\rm S$&nbsp; für „Signal”):
 +
:$$d_{\rm S} ( {T_{\rm D} } ) = g(t) * h(t) = \int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e}}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  }\hspace{0.1cm} {\rm{d}}f} .$$
 +
*Der&nbsp; „Rauschanteil”&nbsp; $d_{\rm N}(t)$&nbsp; des Filterausgangssignals&nbsp; (Index &nbsp;$\rm N$&nbsp; für „Noise”) rührt allein vom Weißen Rauschen&nbsp; $n(t)$&nbsp; am Eingang des Empfängers her.&nbsp; Für seine Varianz (Leistung) gilt unabhängig vom Detektionszeitpunkt&nbsp; $T_{\rm D}$:
 +
:$$\sigma _d ^2  = \frac{ {N_0 } }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} .$$
 +
*Damit lautet das hier vorliegende Optimierungsproblem:
 +
:$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left| {\int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e} }^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  }\hspace{0.1cm} {\rm{d} }f} } \right|^2 } }{ {N_0 /2 \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } }  \stackrel{!}{=} {\rm{Maximum} }.$$
  
* Unter&nbsp; '''Abtastung'''&nbsp; verstehen wir hier die Multiplikation des zeitkontinuierlichen Signals&nbsp; $x(t)$&nbsp; mit einem&nbsp; '''Diracpuls''':
+
{{BlaueBox|TEXT= 
 +
$\text{Hier zunächst ohne Beweis:}$&nbsp; &nbsp; Man kann zeigen, dass dieser Quotient für den folgenden Frequenzgang&nbsp; $H(f)$&nbsp; am größten wird:
 +
:$$H(f) = H_{\rm MF} (f) = K_{\rm MF}  \cdot G^{\star}  (f) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  } . $$
 +
*Damit erhält man für das Signal&ndash;zu&ndash;Rauschleistungsverhältnis am Matched&ndash;Filter&ndash;Ausgang&nbsp; $($unabhängig von der dimensionsbehafteten Konstante&nbsp; $K_{\rm MF})$:  
 +
:$$\rho _d ( {T_{\rm D} } ) = { {2 \cdot E_g } }/{ {N_0 } }.$$
  
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$
+
* $E_g$ bezeichnet die Energie des Eingangsimpulses, die man nach dem&nbsp; [https://de.wikipedia.org/wiki/Satz_von_Parseval Satz von Parseval]&nbsp; sowohl im Zeit– als auch im Frequenzbereich berechnen kann:
 +
:$$E_g  = \int_{ - \infty }^{ + \infty } {g^2 (t)\hspace{0.1cm}{\rm{d} }t}  = \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right\vert ^{\rm{2} }\hspace{0.1cm} {\rm d}f} .$$}}
  
*Der&nbsp; '''Diracpuls (im Zeitbereich)'''&nbsp; besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand&nbsp; $T_{\rm A}$&nbsp; und alle mit gleichem Impulsgewicht&nbsp; $T_{\rm A}$:
 
 
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 
\delta(t- \nu \cdot T_{\rm A}
 
)\hspace{0.05cm}.$$}}
 
 
  
Aufgrund dieser Definition ergeben sich für das abgetastete Signal folgende Eigenschaften:
+
{{GraueBox|TEXT= 
:$$x_{\rm A}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
+
$\text{Beispiel 1:}$&nbsp; &nbsp;Ein rechteckförmiger Impuls&nbsp; $g(t)$&nbsp; mit Amplitude&nbsp; $\rm 1\hspace{0.05cm}V$,&nbsp; Dauer&nbsp; $0.5\hspace{0.05cm} \rm ms$&nbsp; und unbekannter Lage soll in einer verrauschten Umgebung aufgefunden werden.
\delta (t- \nu \cdot T_{\rm A}
+
*Somit ist die Impulsenergie&nbsp; $E_g = \rm 5 · 10^{–4} \hspace{0.05cm}V^2s$.
)\hspace{0.05cm}.$$
+
*Die Rauschleistungsdichte sei&nbsp; $N_0 = \rm 10^{–6} \hspace{0.05cm}V^2/Hz$.  
  
*Das abgetastete Signal zum betrachteten Zeitpunkt&nbsp; $(\nu \cdot T_{\rm A})$&nbsp; ist gleich&nbsp; $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) · \delta (0)$.
 
*Da&nbsp; $\delta (t)$&nbsp; zur Zeit&nbsp; $t = 0$&nbsp; unendlich ist, sind eigentlich alle Signalwerte&nbsp; $x_{\rm A}(\nu \cdot T_{\rm A})$&nbsp; ebenfalls unendlich groß und auch der oben eingeführte Faktor&nbsp; $K$.
 
*Zwei Abtastwerte&nbsp; $x_{\rm A}(\nu_1 \cdot T_{\rm A})$&nbsp; und&nbsp; $x_{\rm A}(\nu_2 \cdot T_{\rm A})$&nbsp; unterscheiden sich jedoch  im gleichen Verhältnis wie die Signalwerte&nbsp; $x(\nu_1 \cdot T_{\rm A})$&nbsp; und&nbsp; $x(\nu_2 \cdot T_{\rm A})$.
 
*Die Abtastwerte von&nbsp; $x(t)$&nbsp; erscheinen in den Impulsgewichten der Diracfunktionen:
 
*Die zusätzliche Multiplikation mit&nbsp; $T_{\rm A}$&nbsp; ist erforderlich, damit&nbsp; $x(t)$&nbsp; und&nbsp; $x_{\rm A}(t)$&nbsp; gleiche Einheit besitzen.&nbsp; Beachten Sie hierbei, dass&nbsp; $\delta (t)$&nbsp; selbst die Einheit „1/s” aufweist.
 
  
 +
Das beste Ergebnis  &nbsp; ⇒  &nbsp; das&nbsp; '''maximale S/N–Verhältnis'''&nbsp; erzielt man mit dem Matched-Filter:
 +
:$$\rho _d ( {T_{\rm D} } ) = \frac{ {2 \cdot E_g } }{ {N_0 } } =
 +
\frac{ {2 \cdot 5 \cdot 10^{-4}\, {\rm V^2\,s} } }{ {10^{-6}\, {\rm V^2/Hz} } } = 1000
 +
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 +
10 \cdot {\rm lg}\hspace{0.15cm}\rho _d ( {T_{\rm D} } ) = 30\,{\rm dB}.$$}}
  
===Beschreibung der Abtastung im Frequenzbereich===
 
  
Zum Spektrum des abgetasteten Signals&nbsp; $x_{\rm A}(t)$&nbsp; kommt man durch Anwendung des&nbsp; [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Frequenzbereich|Faltungssatzes]]. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltung im Spektralbereich entspricht:
+
Das oben angegebene Matched–Filter–Kriterium wird nun schrittweise hergeleitet.&nbsp; Wenn Sie daran nicht interessiert sind, so springen Sie bitte zur Fortsetzungsseite&nbsp; [[Stochastische_Signaltheorie/Matched-Filter#Interpretation_des_Matched-Filters|Interpretation des Matched–Filters]].  
 
:$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
 
  
Entwickelt man den&nbsp; Diracpuls&nbsp; $p_{\delta}(t)$ &nbsp; (im Zeitbereich) &nbsp; in eine&nbsp; [[Signaldarstellung/Fourierreihe|Fourierreihe]]&nbsp; und transformiert diese unter Anwendung des&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]]&nbsp; in den Frequenzbereich, so ergibt sich mit dem Abstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; zweier benachbarter Diraclinien im Frequenzbereich  folgende Korrespondenz &nbsp; &rArr; &nbsp; [[Signaldarstellung/Zeitdiskrete_Signaldarstellung#Diracpuls_im_Zeit-_und_im_Frequenzbereich|Beweis]]:
+
{{BlaueBox|TEXT= 
+
$\text{Herleitung des Matched–Filter–Kriteriums:}$&nbsp;  
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 
\delta(t- \nu \cdot T_{\rm A}
 
)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) =  \sum_{\mu = - \infty }^{+\infty} \delta
 
(f- \mu \cdot f_{\rm A} ).$$
 
  
[[Datei:P_ID1121__Sig_T_5_1_S3_NEU.png|right|frame|Diracpuls im Zeit- und Frequenzbereich  mit&nbsp; $T_{\rm A} = 50\ {\rm &micro;s}$&nbsp; und&nbsp; $f_{\rm A} = 1/T_{\rm A} = 20\ \text{kHz}$]]
+
$(1)$&nbsp; Die Schwarzsche Ungleichung lautet mit den beiden (im allgemeinen komplexen) Funktionen&nbsp; $A(f)$&nbsp; und&nbsp; $B(f)$:
Das Ergebnis besagt:
+
:$$\left \vert  {\int_a^b {A(f) \cdot B(f)\hspace{0.1cm}{\rm{d} }f} } \right  \vert ^2  \le \int_a^b {\left \vert {A(f)} \right \vert^{\rm{2} } \hspace{0.1cm}{\rm{d} }f}  \cdot \int_a^b {\left\vert {B(f)} \right \vert^{\rm{2} } \hspace{0.1cm}{\rm{d} }f} .$$
*Der Diracpuls&nbsp; $p_{\delta}(t)$&nbsp; im Zeitbereich besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand&nbsp; $T_{\rm A}$&nbsp; und alle mit gleichem Impulsgewicht&nbsp; $T_{\rm A}$.
+
$(2)$&nbsp; Wir wenden nun diese Gleichung auf das Signal&ndash;zu&ndash;Rauschverhältnis an:
*Die Fouriertransformierte von&nbsp; $p_{\delta}(t)$&nbsp; ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich  &nbsp; ⇒  &nbsp; $P_{\delta}(f)$.
+
:$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left  \vert {\int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e} }^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  } \hspace{0.1cm}{\rm{d} }f} } \right  \vert^2 } }{ {N_0 /2 \cdot \int_{ - \infty }^{ + \infty } {\left  \vert {H(f)} \right  \vert^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } }.$$
*Auch&nbsp; $P_{\delta}(f)$&nbsp; besteht aus unendlich vielen Diracimpulsen, nun im jeweiligen Abstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; und alle mit dem Impulsgewicht&nbsp; $1$.
+
$(3)$&nbsp; Mit&nbsp; $A(f) = G(f)$&nbsp; und&nbsp; $B(f) = H(f) · {\rm e}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  }$&nbsp; ergibt sich somit die folgende Schranke:
*Die Abstände der Diraclinien in Zeit– und Frequenzbereich folgen demnach dem&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz]]: &nbsp; $T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$
+
:$$\rho_d ( {T_{\rm D} } ) \le \frac{1}{ {N_0 /2} } \cdot \int_{ - \infty }^{ + \infty } {\left \vert  {G(f)} \right \vert^{\rm{2} } }\hspace{0.1cm}{\rm{d} }f .$$
 +
$(4)$&nbsp; Wir setzen für den Filterfrequenzgang nun versuchsweise ein:
 +
:$$H(f) = H_{\rm MF} (f) = K_{\rm MF}  \cdot G^{\star} (f) \cdot {\rm{e} }^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  }.$$
 +
$(5)$&nbsp; Dann erhält man aus der obigen Gleichung&nbsp; $(2)$&nbsp; folgendes Ergebnis:
 +
:$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left \vert  K_{\rm MF}\cdot {\int_{ - \infty }^{ + \infty } {\left \vert  {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } \right \vert ^2 } }{ {N_0 /2 \cdot K_{\rm MF} ^2  \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } } = \frac{1}{ {N_0 /2} } \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} .$$
  
 +
$\text{Das heißt:}$
 +
*Mit dem Ansatz&nbsp; $(4)$&nbsp; für das Matched&ndash;Filter $H_{\rm MF}(f)$ wird in obiger Abschätzung tatsächlich der maximal mögliche Wert erreicht.
 +
*Mit keinem anderen Filter&nbsp; $H(f) ≠ H_{\rm MF}(f)$&nbsp; kann man ein höheres Signal&ndash;zu&ndash;Rauschleistungsverhältnis erzielen.
 +
*Das Matched–Filter ist in Bezug auf das ihm zugrunde gelegte Maximierungskriterium optimal.
 +
<div align="right">'''q.e.d.'''</div>
 +
}}
  
Daraus folgt: &nbsp; Aus dem Spektrum&nbsp; $X(f)$&nbsp; wird durch Faltung mit der um&nbsp; $\mu \cdot f_{\rm A}$&nbsp; verschobenen Diraclinie:
+
==Interpretation des Matched-Filters==
+
<br>
:$$X(f) \star \delta
+
Auf der letzten Seite wurde der Frequenzgang des Matched-Filters wie folgt hergeleitet:  
(f- \mu \cdot f_{\rm A}
+
:$$H_{\rm MF} (f) = K_{\rm MF}  \cdot G^{\star}  (f) \cdot {\rm{e} }^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } .$$
)= X (f- \mu \cdot f_{\rm A}
+
Durch&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|Fourierrücktransformation]]&nbsp; erhält man die dazugehörige Impulsantwort:  
)\hspace{0.05cm}.$$
+
:$$h_{\rm MF} (t) = K_{\rm MF}  \cdot g(T_{\rm D} - t).$$
 
 
Wendet man dieses Ergebnis auf alle Diraclinien des Diracpulses an, so erhält man schließlich:
 
 
:$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta
 
  (f- \mu \cdot f_{\rm A}
 
) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A}
 
  )\hspace{0.05cm}.$$
 
 
 
{{BlaueBox|TEXT=
 
$\text{Fazit:}$&nbsp; Die Abtastung des analogen Zeitsignals&nbsp; $x(t)$&nbsp; in äquidistanten Abständen&nbsp; $T_{\rm A}$&nbsp; führt im Spektralbereich zu einer&nbsp; '''periodischen Fortsetzung'''&nbsp; von&nbsp; $X(f)$&nbsp; mit dem Frequenzabstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$.}}
 
 
 
 
 
[[Datei:P_ID1122__Sig_T_5_1_S4_neu.png|right|frame|Spektrum des abgetasteten Signals]]
 
{{GraueBox|TEXT=
 
$\text{Beispiel 1:}$&nbsp;
 
Die obere Grafik zeigt&nbsp; '''(schematisch!)'''&nbsp; das Spektrum&nbsp; $X(f)$&nbsp; eines Analogsignals&nbsp; $x(t)$, das Frequenzen bis&nbsp; $5 \text{ kHz}$&nbsp; beinhaltet.
 
 
 
Tastet man das Signal mit der Abtastrate&nbsp; $f_{\rm A}\,\text{ = 20 kHz}$, also im jeweiligen Abstand&nbsp; $T_{\rm A}\, = {\rm 50 \, &micro;s}$&nbsp; ab, so erhält man das unten skizzierte periodische Spektrum&nbsp; $X_{\rm A}(f)$.
 
*Da die Diracfunktionen unendlich schmal sind, beinhaltet das abgetastete Signal&nbsp;  $x_{\rm A}(t)$&nbsp; auch beliebig hochfrequente Anteile.
 
*Dementsprechend ist die Spektralfunktion&nbsp; $X_{\rm A}(f)$&nbsp; des abgetasteten Signals bis ins Unendliche ausgedehnt.}}
 
 
 
 
 
===Signalrekonstruktion===
 
 
 
[[Datei:P_ID1123__Sig_T_5_1_S5a_neu.png|right|frame|Gemeinsames Modell von &bdquo;Signalabtastung&rdquo; und &bdquo;Signalrekonstruktion&rdquo;]]
 
Die Signalabtastung ist bei einem digitalen Übertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden.&nbsp; Betrachten wir zum Beispiel das folgende System:
 
*Das Analogsignal&nbsp; $x(t)$&nbsp; mit der  Bandbreite&nbsp; $B_{\rm NF}$&nbsp; wird wie oben beschrieben abgetastet.
 
*Am Ausgang eines idealen Übertragungssystems liegt das ebenfalls zeitdiskrete Signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; vor.
 
*Die Frage ist nun, wie der Block &nbsp; '''Signalrekonstruktion''' &nbsp; zu gestalten ist, damit auch&nbsp; $y(t) = x(t)$&nbsp; gilt.
 
 
 
[[Datei:P_ID1124__Sig_T_5_1_S5b_neu.png|right|frame|Frequenzbereichsdarstellung der &bdquo;Signalrekonstruktion&rdquo;]]
 
<br>Die Lösung ist einfach, wenn man die Spektralfunktionen betrachtet: &nbsp;
 
 
 
Man erhält aus&nbsp; $Y_{\rm A}(f)$&nbsp; das Spektrum&nbsp; $Y(f) = X(f)$&nbsp; durch ein Tiefpass&nbsp;Filter mit dem&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich#.C3.9Cbertragungsfunktion_-_Frequenzgang|Frequenzgang]]&nbsp; $H_{\rm E}(f)$, der&nbsp;
 
 
 
*die tiefen Frequenzen unverfälscht durchlässt:
 
:$$H_{\rm E}(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B_{\rm
 
  NF}\hspace{0.05cm},$$
 
*die hohen Frequenzen vollständig unterdrückt:
 
:$$H_{\rm E}(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm
 
  NF}\hspace{0.05cm}.$$
 
 
Weiter ist aus der nebenstehenden Grafik zu erkennen: &nbsp; Solange die beiden oben genannten Bedingungen erfüllt sind, kann&nbsp; $H_{\rm E}(f)$&nbsp; im Bereich von&nbsp; $B_{\rm NF}$&nbsp; bis&nbsp; $f_{\rm A}–B_{\rm NF}$&nbsp; beliebig geformt sein kann,
 
*beispielsweise linear abfallend (gestrichelter Verlauf)
 
*oder auch rechteckförmig,
 
 
 
 
 
===Das Abtasttheorem===
 
 
 
Die vollständige Rekonstruktion des Analogsignals&nbsp; $y(t)$&nbsp; aus dem abgetasteten Signal&nbsp; $y_{\rm A}(t) = x_{\rm A}(t)$&nbsp; ist nur möglich, wenn die Abtastrate&nbsp; $f_{\rm A}$&nbsp; entsprechend der Bandbreite&nbsp; $B_{\rm NF}$&nbsp; des Nachrichtensignals richtig gewählt wurde.
 
 
 
Aus der obigen Grafik  erkennt man, dass folgende Bedingung erfüllt sein muss: &nbsp; $f_{\rm A} - B_{\rm  NF} > B_{\rm  NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot  B_{\rm  NF}\hspace{0.05cm}.$
 
 
{{BlaueBox|TEXT=
 
$\text{Abtasttheorem:}$&nbsp; Besitzt ein Analogsignal&nbsp; $x(t)$&nbsp; nur Spektralanteile im Bereich&nbsp; $\vert f \vert < B_{\rm NF}$, so kann dieses aus seinem abgetasteten Signal&nbsp; $x_{\rm A}(t)$&nbsp; nur dann vollständig rekonstruiert werden, wenn die Abtastrate hinreichend groß ist:
 
:$$f_{\rm A} ≥ 2 \cdot B_{\rm NF}.$$
 
 
 
Für den Abstand zweier Abtastwerte muss demnach gelten:
 
   
 
:$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm  NF} }\hspace{0.05cm}.$$}}
 
 
 
 
 
Wird bei der Abtastung der größtmögliche Wert &nbsp; ⇒ &nbsp; $T_{\rm A} = 1/(2B_{\rm NF})$&nbsp; herangezogen,
 
*so muss zur Signalrekonstruktion des Analogsignals aus seinen Abtastwerten
 
*ein idealer, rechteckförmiger Tiefpass mit der Grenzfrequenz&nbsp; $f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})$&nbsp; verwendet werden.
 
 
 
  
{{GraueBox|TEXT=
+
Diese beiden Funktionen lassen sich wie folgt interpretieren:
$\text{Beispiel 2:}$&nbsp; Die Grafik zeigt oben das auf&nbsp; $\pm\text{ 5 kHz}$&nbsp; begrenzte Spektrum&nbsp; $X(f)$&nbsp; eines Analogsignals, unten das Spektrum&nbsp; $X_{\rm A}(f)$&nbsp; des im Abstand&nbsp; $T_{\rm A} =\,\text{ 100 &micro;s}$&nbsp; abgetasteten Signals &nbsp; &nbsp; $f_{\rm A}=\,\text{ 10 kHz}$.
+
*Das&nbsp; ''Matched-Filter''&nbsp; ist durch den Term &nbsp;$G^{\star}(f)$&nbsp; an das Spektrum des aufzufindenden Impulses &nbsp;$g(t)$&nbsp; angepasst – daher sein Name (englisch: ''to match'' ≡ anpassen).
[[Datei:P_ID1125__Sig_T_5_1_S6_neu.png|right|frame|Abtasttheorem im Frequenzbereich]]
+
*Die&nbsp; ''Konstante'' &nbsp;$K_{\rm MF}$&nbsp; ist aus Dimensionsgründen notwendig.
Zusätzlich eingezeichnet ist der Frequenzgang&nbsp; $H_{\rm E}(f)$&nbsp; des tiefpassartigen Empfangsfilters zur Signalrekonstruktion, dessen Grenzfrequenz exakt&nbsp; $f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}$&nbsp; betragen muss.
+
*Ist&nbsp; $g(t)$&nbsp; ein Spannungsimpuls, so hat diese Konstante die Einheit „Hz/V”.&nbsp; Der Frequenzgang ist somit dimensionslos.
 +
*Die&nbsp; ''Impulsantwort'' &nbsp;$h_{\rm MF}(t)$&nbsp; ergibt sich aus dem Nutzsignal &nbsp;$g(t)$&nbsp; durch Spiegelung &nbsp; ⇒ &nbsp; aus $g(t)$ wird $g(–t)$ &nbsp; &nbsp; sowie einer Verschiebung um&nbsp; $T_{\rm D}$&nbsp; nach rechts.
 +
*Der&nbsp; ''früheste Detektionszeitpunkt'' &nbsp;$T_{\rm D}$&nbsp; folgt für realisierbare Systeme aus der Bedingung&nbsp; $h_{\rm MF}(t < 0)\equiv 0$ &nbsp; $($„Kausalität”,&nbsp; siehe Buch [[Lineare_zeitinvariante_Systeme|Lineare zeitinvariante Systeme]]$)$.
 +
*Der&nbsp; ''Nutzanteil'' &nbsp;$d_{\rm S} (t)$&nbsp; des Filterausgangssignals ist formgleich mit der&nbsp; [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung#AKF.E2.80.93Berechnung_eines_Digitalsignals|Energie-AKF]] &nbsp; $\varphi^{^{\bullet} }_{g} (t )$&nbsp; und gegenüber dieser um &nbsp;$T_{\rm D}$&nbsp; verschoben. Es gilt:
 +
:$$d_{\rm S} (t) = g(t) * h_{\rm MF} (t) = K_{\rm MF}  \cdot g(t) * g(T_{\rm D} - t) = K_{\rm MF}  \cdot \varphi^{^{\bullet} }_{g} (t - T_{\rm D} ).$$
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Bitte beachten Sie:}$&nbsp;
 +
Bei einem energiebegrenzten Signal&nbsp; $g(t)$&nbsp; kann man nur die&nbsp; ''Energie–AKF''&nbsp; angeben:
 +
:$$\varphi^{^{\bullet} }_g (\tau ) = \int_{ - \infty }^{ + \infty } {g(t) \cdot g(t + \tau )\,{\rm{d} }t} .$$
 +
Gegenüber der AKF-Definition eines leistungsbegrenzten Signals&nbsp; $x(t)$, nämlich
 +
:$$\varphi _x (\tau ) = \mathop {\lim }_{T_{\rm M}  \to \infty } \frac{1}{ {T_{\rm M} } }\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} {x(t) \cdot x(t + \tau )\hspace{0.1cm}\,{\rm{d} }t} ,$$
 +
wird bei der Berechnung der Energie-AKF auf die Division durch die Messdauer&nbsp; $T_{\rm M}$&nbsp; sowie auf den Grenzübergang&nbsp; $T_{\rm M} → ∞$&nbsp; verzichtet.}}
  
*Mit jedem anderen&nbsp; $f_{\rm G}$–Wert ergäbe sich&nbsp; $Y(f) \neq X(f)$.
 
*Bei&nbsp; $f_{\rm G} < 5\,\text{ kHz}$&nbsp; fehlen die oberen&nbsp; $X(f)$–Anteile.
 
* Bei&nbsp; $f_{\rm G} > 5\,\text{ kHz}$&nbsp; kommt es aufgrund von Faltungsprodukten zu unerwünschten Spektralanteilen in&nbsp; $Y(f)$.
 
  
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp; Wir gehen davon aus, dass der Rechteckimpuls zwischen &nbsp;$\rm 2\hspace{0.08cm}ms$&nbsp; und &nbsp;$\rm 2.5\hspace{0.08cm}ms$&nbsp; liegt und der Detektionszeitpunkt &nbsp;$T_{\rm D} =\rm 2\hspace{0.08cm}ms$&nbsp; gewünscht wird.
  
Wäre am Sender die Abtastung mit einer Abtastrate&nbsp; $f_{\rm A} < 10\ \text{ kHz}$&nbsp; erfolgt  &nbsp; ⇒  &nbsp; $T_{\rm A} >100 \ {\rm &micro;  s}$, so wäre das Analogsignal&nbsp; $y(t) = x(t)$&nbsp; aus den Abtastwerten&nbsp; $y_{\rm A}(t)$&nbsp; auf keinen Fall rekonstruierbar.}}
+
Unter diesen Voraussetzungen gilt:
 +
*Die Matched–Filter–Impulsantwort &nbsp;$h_{\rm MF}(t)$&nbsp; muss im Bereich von &nbsp;$t_1 (= 4 - 2.5) =\rm 1.5\hspace{0.08cm}ms$&nbsp; bis&nbsp; $t_2 (= 4 - 2) =\rm 2\hspace{0.08cm}ms$&nbsp; konstant sein.
 +
*Für &nbsp;$t < t_1$&nbsp; sowie für &nbsp;$t > t_2$&nbsp; darf sie keine Anteile besitzen.
 +
*Der Betragsfrequenzgang &nbsp;$\vert H_{\rm MF}(f)\vert$&nbsp; ist hier&nbsp; $\rm si$–förmig.
 +
*Die Höhe der Impulsantwort &nbsp;$h_{\rm MF}(t)$&nbsp; spielt für das S/N–Verhältnis keine Rolle, da dieses unabhängig von &nbsp;$K_{\rm MF}$&nbsp; ist.}}
 
<br clear=all>
 
<br clear=all>
 
==Versuchsdurchführung==
 
==Versuchsdurchführung==
Zeile 222: Zeile 179:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(1)'''&nbsp; Der Eingangsimpuls sei gaußförmig mit&nbsp; $A_g=1,\ \Delta t_g=1,\ \tau_g=1$.&nbsp; Mit welcher Einstellung ergibt sich das &bdquo;Matched-Filter&rdquo;?&nbsp; Wie groß ist&nbsp; $10 \cdot \lg \ \rho_{\rm MF}$? }}
+
'''(1)'''&nbsp; Der Eingangsimpuls sei gaußförmig mit&nbsp; $A_g=1,\ \Delta t_g=1,\ \tau_g=1$.&nbsp; Welche Einstellung führt zum &bdquo;Matched&ndash;Filter&rdquo;?&nbsp; Wie groß ist&nbsp; $10 \cdot \lg \ \rho_{\rm MF}$&nbsp; mit&nbsp; $N_0=0.1$? }}
  
:*&nbsp;Das Spektrum&nbsp; $X(f)$&nbsp; besteht aus zwei Diraclinien bei&nbsp; $\pm \text{4 kHz}$, jeweils mit Impulsgewicht &nbsp;$0.5$.  
+
:*&nbsp;Das Matched&ndash;Filter muss ebenfalls einen gaußförmigen Verlauf haben und es muss gelten:&nbsp; $\Delta t_h=\Delta t_g=1,\ \tau_h =\tau_g=1$ &nbsp; &rArr; &nbsp; $T_{\rm D} = \tau_h +\tau_g=2$.  
 
:*&nbsp;Durch die periodische Fortsetzung hat&nbsp; $X_{\rm A}(f)$&nbsp; Linien gleicher Höhe bei&nbsp; $\pm \text{4 kHz}$,&nbsp; $\pm \text{6 kHz}$,&nbsp; $\pm \text{14 kHz}$,&nbsp; $\pm \text{16 kHz}$,&nbsp; $\pm \text{24 kHz}$,&nbsp; $\pm \text{26 kHz}$,&nbsp; usw.
 
:*&nbsp;Durch die periodische Fortsetzung hat&nbsp; $X_{\rm A}(f)$&nbsp; Linien gleicher Höhe bei&nbsp; $\pm \text{4 kHz}$,&nbsp; $\pm \text{6 kHz}$,&nbsp; $\pm \text{14 kHz}$,&nbsp; $\pm \text{16 kHz}$,&nbsp; $\pm \text{24 kHz}$,&nbsp; $\pm \text{26 kHz}$,&nbsp; usw.
 
:*&nbsp;Der Rechteck&ndash;Tiefpass mit der Grenzfrequenz&nbsp;  $f_{\rm G} = \text{5 kHz}$&nbsp; entfernt alle Linien bis auf die beiden bei&nbsp; $\pm \text{4 kHz}$&nbsp; &rArr; &nbsp;$Y(f) =X(f)$&nbsp; &rArr; &nbsp;$y(t) =x(t)$&nbsp; &rArr; &nbsp; $P_\varepsilon = 0$.
 
:*&nbsp;Der Rechteck&ndash;Tiefpass mit der Grenzfrequenz&nbsp;  $f_{\rm G} = \text{5 kHz}$&nbsp; entfernt alle Linien bis auf die beiden bei&nbsp; $\pm \text{4 kHz}$&nbsp; &rArr; &nbsp;$Y(f) =X(f)$&nbsp; &rArr; &nbsp;$y(t) =x(t)$&nbsp; &rArr; &nbsp; $P_\varepsilon = 0$.

Version vom 14. Mai 2020, 13:23 Uhr

Applet in neuem Tab öffnen

Programmbeschreibung


Das Applet behandelt die Systemkomponenten  „Abtastung”  und  „Signalrekonstruktion”, zwei Komponenten, die zum Beispiel für das Verständnis der  Pulscodemodulation  $({\rm PCM})$  von großer Wichtigkeit sind.  Die obere Grafik zeigt das für dieses Applet zugrundeliegende Modell.  Darunter gezeichnet sind die Abtastwerte  $x(\nu \cdot T_{\rm A})$  des zeitkontinuierlichen Signals  $x(t)$. Die (unendliche) Summe über alle diese Abtastwerte bezeichnen wir als das abgetastete Signal  $x_{\rm A}(t)$.

Oben:    Zugrundeliegendes Modell für Abtastung und Signalrekonstruktion
Unten:   Beispiel zur Zeitdiskretisierung des zeitkontinuierlichen Signals  $x(t)$
  • Beim Sender wird aus dem zeitkontinuierlichen Quellensignal  $x(t)$  das zeitdiskrete (abgetastete) Signal  $x_{\rm A}(t)$  gewonnen.  Man nennt diesen Vorgang  Abtastung  oder  A/D–Wandlung.
  • Der entsprechende Programmparameter für den Sender ist die Abtastrate  $f_{\rm A}= 1/T_{\rm A}$. In der unteren Grafik ist der Abtastabstand  $T_{\rm A}$  eingezeichnet.
  • Beim Empfänger wird aus dem zeitdiskreten Empfangssignal  $y_{\rm A}(t)$  das zeitkontinuierliche Sinkensignal  $y(t)$  erzeugt   ⇒   Signalrekonstruktion  oder  D/A–Wandlung  entsprechend dem Empfänger–Frequenzgang  $H_{\rm E}(f)$.


Das Applet berücksichtigt nicht die PCM–Blöcke  „Quantisierung”,  „Codierung / Decodierung” und der Digitale Übertragungskanal ist als ideal angenommen. 

Empfänger–Frequenzgang  $H_{\rm E}(f)$

Daraus ergeben sich folgende Konsequenzen:

  • Im Programm ist vereinfachend  $y_{\rm A}(t) = x_{\rm A}(t)$  gesetzt.
  • Bei geeigneten Systemparametern ist somit auch das Fehlersignal   $\varepsilon(t) = y(t)-x(t)\equiv 0$  möglich.


Das Abtasttheorem und die Signalrekonstruktion lassen sich im Frequenzbereich besser erklären.  Im Programm werden deshalb auch alle Spektralfunktionen angezeigt:

             $X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t)$,  $X_{\rm A}(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x_{\rm A}(t)$,  $Y(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ y(t)$,  $E(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ \varepsilon(t).$ 

Parameter für den Empfänger–Frequenzgang  $H_{\rm E}(f)$  sind die Grenzfrequenz und der Rolloff–Faktor  (siehe untere Grafik):

$$f_{\rm G} = \frac{f_2 +f_1}{2},\hspace{1cm}r = \frac{f_2 -f_1}{f_2 +f_1}.$$

Hinweise:

(1)   Alle Signalwerte sind normiert auf  $\pm 1$  zu verstehen. 

(2)   Die Leistungsberechnung erfolgt durch Integration über die jeweilige Periodendauer  $T_0$:

$$P_x = \frac{1}{T_0} \cdot \int_0^{T_0} x^2(t)\ {\rm d}t,\hspace{0.8cm}P_\varepsilon = \frac{1}{T_0} \cdot \int_0^{T_0} \varepsilon^2(t).$$

(3)   Die Signalleistung  $P_x$  und die Verzerrungsleistung  $P_\varepsilon$  werden ebenfalls normiert ausgegeben, was implizit den Bezugswiderstand  $R = 1\, \rm \Omega$  voraussetzt. 

(4)   Daraus kann der Signal–Verzerrungs–Abstand  $10 \cdot \lg \ (P_x/P_\varepsilon)$  berechnet werden.

(5)   Besteht die Spektralfunktion  $X(f)$  bei positiven Frequenzen aus  $I$  Diraclinien mit den (eventuell komplexen) Gewichten  $X_1$, ... , $X_I$,
         so gilt für die Sendeleistung unter Berücksichtigung der spiegelbildlichen Linien bei den negativen Frequenzen:

$$P_x = 2 \cdot \sum_{i=1}^I |X_k|^2.$$

(6)   Entsprechend gilt für die Verzerrungsleistung, wenn die Spektralfunktion  $E(f)$  im Bereich  $f>0$  genau  $J$  Diraclinien mit Gewichten  $E_1$, ... , $E_J$  aufweist:

$$P_\varepsilon = 2 \cdot \sum_{j=1}^J |E_j|^2.$$




Theoretischer Hintergrund

Optimierungskriterium des Matched–Filters


$\text{Definition:}$  Das  Matched-Filter  – auch Korrelationsfilter  genannt – dient zum Nachweis der Signalexistenz.

Blockschaltbild des Matched-Filter-Empfängers
  • Der  Matched-Filter-Empfänger  kann mit größtmöglicher Sicherheit – anders ausgedrückt:   mit maximalem SNR – entscheiden, ob ein durch additives Rauschen  $n(t)$  gestörtes impulsförmiges Nutzsignal  $g(t)$  vorhanden ist oder nicht.


  • Zur Herleitung des Matched-Filter-Empfängers wird die skizzierte Anordnung betrachtet.


Für die einzelnen Komponenten gelten folgende Voraussetzungen:

  • Der Nutzanteil  $g(t)$  des Empfangssignals  $r(t)=g(t)+n(t)$  sei impulsförmig und somit  energiebegrenzt.
  • Das heißt:   Das Integral über  $\big [g(t)\big ]^2$  von  $–∞$  bis  $+∞$  liefert den endlichen Wert  $E_g$.
  • Das Störsignal  $n(t)$  sei  Weißes Gaußsches Rauschen  mit der Rauschleistungsdichte  $N_0$.
  • Das Filterausgangssignal  $d(t)$  setzt sich additiv aus zwei Anteilen zusammen.  Der Anteil  $d_{\rm S}(t)$  geht auf das  $\rm S$ignal  $g(t)$  zurück, der Anteil  $d_{\rm N}(t)$  auf das  $\rm N$oise  $n(t)$.
  • Der Empfänger, bestehend aus einem linearen Filter   ⇒   Frequenzgang  $H_{\rm MF}(f)$  und dem Entscheider, ist so zu dimensionieren, dass das momentane S/N-Verhältnis am Ausgang maximal wird:
$$\rho _d ( {T_{\rm D} } ) = \frac{ {d_{\rm S} ^2 ( {T_{\rm D} } )} }{ {\sigma _d ^2 } }\mathop = \limits^{\rm{!} }\hspace{0.1cm} {\rm{Maximum} }.$$
  • Hierbei bezeichnen  $σ_d^2$  die  Varianz  (Leistung) von $d_{\rm N}(t)$ und  $T_{\rm D}$  den (geeignet gewählten)  Detektionszeitpunkt.

Matched-Filter-Optimierung


Gegeben sei ein energiebegrenztes Nutzsignal  $g(t)$  mit dem zugehörigen Spektrum  $G(f)$.

  • Damit kann das Filterausgangssignal zum Detektionszeitpunkt  $T_{\rm D}$  für jedes beliebige Filter mit der Impulsantwort  $h(t)$  und dem Frequenzgang  $H(f) =\mathcal{ F}\{h(t)\}$ wie folgt geschrieben werden  (ohne Berücksichtigung des Rauschens   ⇒   Index  $\rm S$  für „Signal”):
$$d_{\rm S} ( {T_{\rm D} } ) = g(t) * h(t) = \int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e}}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }\hspace{0.1cm} {\rm{d}}f} .$$
  • Der  „Rauschanteil”  $d_{\rm N}(t)$  des Filterausgangssignals  (Index  $\rm N$  für „Noise”) rührt allein vom Weißen Rauschen  $n(t)$  am Eingang des Empfängers her.  Für seine Varianz (Leistung) gilt unabhängig vom Detektionszeitpunkt  $T_{\rm D}$:
$$\sigma _d ^2 = \frac{ {N_0 } }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} .$$
  • Damit lautet das hier vorliegende Optimierungsproblem:
$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left| {\int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e} }^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }\hspace{0.1cm} {\rm{d} }f} } \right|^2 } }{ {N_0 /2 \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } } \stackrel{!}{=} {\rm{Maximum} }.$$

$\text{Hier zunächst ohne Beweis:}$    Man kann zeigen, dass dieser Quotient für den folgenden Frequenzgang  $H(f)$  am größten wird:

$$H(f) = H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } . $$
  • Damit erhält man für das Signal–zu–Rauschleistungsverhältnis am Matched–Filter–Ausgang  $($unabhängig von der dimensionsbehafteten Konstante  $K_{\rm MF})$:
$$\rho _d ( {T_{\rm D} } ) = { {2 \cdot E_g } }/{ {N_0 } }.$$
  • $E_g$ bezeichnet die Energie des Eingangsimpulses, die man nach dem  Satz von Parseval  sowohl im Zeit– als auch im Frequenzbereich berechnen kann:
$$E_g = \int_{ - \infty }^{ + \infty } {g^2 (t)\hspace{0.1cm}{\rm{d} }t} = \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right\vert ^{\rm{2} }\hspace{0.1cm} {\rm d}f} .$$


$\text{Beispiel 1:}$   Ein rechteckförmiger Impuls  $g(t)$  mit Amplitude  $\rm 1\hspace{0.05cm}V$,  Dauer  $0.5\hspace{0.05cm} \rm ms$  und unbekannter Lage soll in einer verrauschten Umgebung aufgefunden werden.

  • Somit ist die Impulsenergie  $E_g = \rm 5 · 10^{–4} \hspace{0.05cm}V^2s$.
  • Die Rauschleistungsdichte sei  $N_0 = \rm 10^{–6} \hspace{0.05cm}V^2/Hz$.


Das beste Ergebnis   ⇒   das  maximale S/N–Verhältnis  erzielt man mit dem Matched-Filter:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {2 \cdot E_g } }{ {N_0 } } = \frac{ {2 \cdot 5 \cdot 10^{-4}\, {\rm V^2\,s} } }{ {10^{-6}\, {\rm V^2/Hz} } } = 1000 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}\rho _d ( {T_{\rm D} } ) = 30\,{\rm dB}.$$


Das oben angegebene Matched–Filter–Kriterium wird nun schrittweise hergeleitet.  Wenn Sie daran nicht interessiert sind, so springen Sie bitte zur Fortsetzungsseite  Interpretation des Matched–Filters.

$\text{Herleitung des Matched–Filter–Kriteriums:}$ 

$(1)$  Die Schwarzsche Ungleichung lautet mit den beiden (im allgemeinen komplexen) Funktionen  $A(f)$  und  $B(f)$:

$$\left \vert {\int_a^b {A(f) \cdot B(f)\hspace{0.1cm}{\rm{d} }f} } \right \vert ^2 \le \int_a^b {\left \vert {A(f)} \right \vert^{\rm{2} } \hspace{0.1cm}{\rm{d} }f} \cdot \int_a^b {\left\vert {B(f)} \right \vert^{\rm{2} } \hspace{0.1cm}{\rm{d} }f} .$$

$(2)$  Wir wenden nun diese Gleichung auf das Signal–zu–Rauschverhältnis an:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left \vert {\int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e} }^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } \hspace{0.1cm}{\rm{d} }f} } \right \vert^2 } }{ {N_0 /2 \cdot \int_{ - \infty }^{ + \infty } {\left \vert {H(f)} \right \vert^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } }.$$

$(3)$  Mit  $A(f) = G(f)$  und  $B(f) = H(f) · {\rm e}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }$  ergibt sich somit die folgende Schranke:

$$\rho_d ( {T_{\rm D} } ) \le \frac{1}{ {N_0 /2} } \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert^{\rm{2} } }\hspace{0.1cm}{\rm{d} }f .$$

$(4)$  Wir setzen für den Filterfrequenzgang nun versuchsweise ein:

$$H(f) = H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm{e} }^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }.$$

$(5)$  Dann erhält man aus der obigen Gleichung  $(2)$  folgendes Ergebnis:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left \vert K_{\rm MF}\cdot {\int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } \right \vert ^2 } }{ {N_0 /2 \cdot K_{\rm MF} ^2 \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } } = \frac{1}{ {N_0 /2} } \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} .$$

$\text{Das heißt:}$

  • Mit dem Ansatz  $(4)$  für das Matched–Filter $H_{\rm MF}(f)$ wird in obiger Abschätzung tatsächlich der maximal mögliche Wert erreicht.
  • Mit keinem anderen Filter  $H(f) ≠ H_{\rm MF}(f)$  kann man ein höheres Signal–zu–Rauschleistungsverhältnis erzielen.
  • Das Matched–Filter ist in Bezug auf das ihm zugrunde gelegte Maximierungskriterium optimal.
q.e.d.

Interpretation des Matched-Filters


Auf der letzten Seite wurde der Frequenzgang des Matched-Filters wie folgt hergeleitet:

$$H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm{e} }^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } .$$

Durch  Fourierrücktransformation  erhält man die dazugehörige Impulsantwort:

$$h_{\rm MF} (t) = K_{\rm MF} \cdot g(T_{\rm D} - t).$$

Diese beiden Funktionen lassen sich wie folgt interpretieren:

  • Das  Matched-Filter  ist durch den Term  $G^{\star}(f)$  an das Spektrum des aufzufindenden Impulses  $g(t)$  angepasst – daher sein Name (englisch: to match ≡ anpassen).
  • Die  Konstante  $K_{\rm MF}$  ist aus Dimensionsgründen notwendig.
  • Ist  $g(t)$  ein Spannungsimpuls, so hat diese Konstante die Einheit „Hz/V”.  Der Frequenzgang ist somit dimensionslos.
  • Die  Impulsantwort  $h_{\rm MF}(t)$  ergibt sich aus dem Nutzsignal  $g(t)$  durch Spiegelung   ⇒   aus $g(t)$ wird $g(–t)$     sowie einer Verschiebung um  $T_{\rm D}$  nach rechts.
  • Der  früheste Detektionszeitpunkt  $T_{\rm D}$  folgt für realisierbare Systeme aus der Bedingung  $h_{\rm MF}(t < 0)\equiv 0$   $($„Kausalität”,  siehe Buch Lineare zeitinvariante Systeme$)$.
  • Der  Nutzanteil  $d_{\rm S} (t)$  des Filterausgangssignals ist formgleich mit der  Energie-AKF   $\varphi^{^{\bullet} }_{g} (t )$  und gegenüber dieser um  $T_{\rm D}$  verschoben. Es gilt:
$$d_{\rm S} (t) = g(t) * h_{\rm MF} (t) = K_{\rm MF} \cdot g(t) * g(T_{\rm D} - t) = K_{\rm MF} \cdot \varphi^{^{\bullet} }_{g} (t - T_{\rm D} ).$$

$\text{Bitte beachten Sie:}$  Bei einem energiebegrenzten Signal  $g(t)$  kann man nur die  Energie–AKF  angeben:

$$\varphi^{^{\bullet} }_g (\tau ) = \int_{ - \infty }^{ + \infty } {g(t) \cdot g(t + \tau )\,{\rm{d} }t} .$$

Gegenüber der AKF-Definition eines leistungsbegrenzten Signals  $x(t)$, nämlich

$$\varphi _x (\tau ) = \mathop {\lim }_{T_{\rm M} \to \infty } \frac{1}{ {T_{\rm M} } }\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} {x(t) \cdot x(t + \tau )\hspace{0.1cm}\,{\rm{d} }t} ,$$

wird bei der Berechnung der Energie-AKF auf die Division durch die Messdauer  $T_{\rm M}$  sowie auf den Grenzübergang  $T_{\rm M} → ∞$  verzichtet.


$\text{Beispiel 2:}$  Wir gehen davon aus, dass der Rechteckimpuls zwischen  $\rm 2\hspace{0.08cm}ms$  und  $\rm 2.5\hspace{0.08cm}ms$  liegt und der Detektionszeitpunkt  $T_{\rm D} =\rm 2\hspace{0.08cm}ms$  gewünscht wird.

Unter diesen Voraussetzungen gilt:

  • Die Matched–Filter–Impulsantwort  $h_{\rm MF}(t)$  muss im Bereich von  $t_1 (= 4 - 2.5) =\rm 1.5\hspace{0.08cm}ms$  bis  $t_2 (= 4 - 2) =\rm 2\hspace{0.08cm}ms$  konstant sein.
  • Für  $t < t_1$  sowie für  $t > t_2$  darf sie keine Anteile besitzen.
  • Der Betragsfrequenzgang  $\vert H_{\rm MF}(f)\vert$  ist hier  $\rm si$–förmig.
  • Die Höhe der Impulsantwort  $h_{\rm MF}(t)$  spielt für das S/N–Verhältnis keine Rolle, da dieses unabhängig von  $K_{\rm MF}$  ist.


Versuchsdurchführung


Aufgaben 2D-Gauss.png

Überarbeiten

  • Wählen Sie zunächst die Nummer  (1, ... , 10)  der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Musterlösung”.
  • Die Nummer  0  entspricht einem „Reset”:  Gleiche Einstellung wie beim Programmstart.
  • Alle Signalwerte sind normiert auf  $\pm 1$  zu verstehen.  Auch die ausgegebenen Leistungen sind normierte Größen.

Alles normiert

Für (1) soll voreingestellt sein, ohne dass es in der Aufgabenstellung erwähnt wird: Spalt-TP, $A_h=0.5,\ \Delta t_h=1.6,\ \tau_h=0.8, \ T_D = 2$

(1)  Der Eingangsimpuls sei gaußförmig mit  $A_g=1,\ \Delta t_g=1,\ \tau_g=1$.  Welche Einstellung führt zum „Matched–Filter”?  Wie groß ist  $10 \cdot \lg \ \rho_{\rm MF}$  mit  $N_0=0.1$?

  •  Das Matched–Filter muss ebenfalls einen gaußförmigen Verlauf haben und es muss gelten:  $\Delta t_h=\Delta t_g=1,\ \tau_h =\tau_g=1$   ⇒   $T_{\rm D} = \tau_h +\tau_g=2$.
  •  Durch die periodische Fortsetzung hat  $X_{\rm A}(f)$  Linien gleicher Höhe bei  $\pm \text{4 kHz}$,  $\pm \text{6 kHz}$,  $\pm \text{14 kHz}$,  $\pm \text{16 kHz}$,  $\pm \text{24 kHz}$,  $\pm \text{26 kHz}$,  usw.
  •  Der Rechteck–Tiefpass mit der Grenzfrequenz  $f_{\rm G} = \text{5 kHz}$  entfernt alle Linien bis auf die beiden bei  $\pm \text{4 kHz}$  ⇒  $Y(f) =X(f)$  ⇒  $y(t) =x(t)$  ⇒   $P_\varepsilon = 0$.
  •  Die Signalrekonstruktion funktioniert hier perfekt  $(P_\varepsilon = 0)$  und zwar für alle Amplituden $A$  und beliebige Phasen $\varphi$.

(2)  Es gelte weiter  $A=1$,  $f_0 = \text{4 kHz}$,  $\varphi=0$,  $f_{\rm A} = \text{10 kHz}$,  $f_{\rm G} = \text{5 kHz}$.  Welchen Einfluss haben hier die Rolloff–Faktoren  $r=0.2$,  $r=0.5$  und   $r=1$?
          Geben Sie die jeweiligen Leistungen  $P_x$  und  $P_\varepsilon$  an.  für welche  $r$–Werte ist  $P_\varepsilon= 0$?  Gelten diese Ergebnisse auch für andere  $A$  und  $\varphi$?

  •  Die Signalleistung ist mit  $|X_1|=0.5$  gleich  $P_x = 2\cdot 0.5^2 = 0.5$.  Die Verzerrungsleistung  $P_\varepsilon$  hängt signifikant vom Rolloff–Faktor  $r$  ab.
  •  Für  $r \le 0.2$  ist  $P_\varepsilon=0$.  Die  $X_{\rm A}(f)$–Linie bei  $f_0 = \text{4 kHz}$  wird durch den Tiefpass nicht verändert und die unerwünschte  Linie bei  $\text{6 kHz}$  voll unterdrückt.
  •  $r = 0.5$ :  $Y(f = \text{4 kHz}) = 0.35$,  $Y(f = \text{6 kHz}) = 0.15$  ⇒   $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0.15$  ⇒  $P_\varepsilon = 0.09$  ⇒  $10 \cdot \lg \ (P_x/P_\varepsilon)=7.45\ \rm dB$.
  • $r = 1.0$ :  $Y(f = \text{4 kHz}) = 0.3$,  $Y(f = \text{6 kHz}) = 0.2$  ⇒   $|E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0.2$  ⇒  $P_\varepsilon = 0.16$  ⇒  $10 \cdot \lg \ (P_x/P_\varepsilon)=4.95\ \rm dB$.
  •  Für alle  $r$  ist  $P_\varepsilon$  unabhängig von  $\varphi$.  Die Amplitude  $A$  beeinflusst  $P_x$  und  $P_\varepsilon$  in gleicher Weise   ⇒   der Quotient ist jeweils unabhängig von  $A$.

(3)  Nun gelte  $A=1$,  $f_0 = \text{5 kHz}$,  $\varphi=0$,  $f_{\rm A} = \text{10 kHz}$,  $f_{\rm G} = \text{5 kHz}$,  $r=0$  $($Rechteck–Tiefpass$)$.  Interpretieren Sie das Ergebnis der Signalrekonstruktion.

  •  $X(f)$  besteht aus zwei Diraclinien bei  $\pm \text{5 kHz}$  $($Gewicht  $0.5)$.  Durch die periodische Fortsetzung hat  $X_{\rm A}(f)$  Linien bei  $\pm \text{5 kHz}$,  $\pm \text{15 kHz}$,  $\pm \text{25 kHz}$,  usw.
  •   Der Rechteck–Tiefpass entfernt die Linien bei  $\pm \text{15 kHz}$,  $\pm \text{25 kHz}$,  Die Linien bei  $\pm \text{5 kHz}$  werden wegen  $H_{\rm E}(\pm f_{\rm G}) = H_{\rm E}(\pm \text{5 kHz}) = 0.5$ halbiert
  •    ⇒   $\text{Gewichte von }X(f = \pm \text{5 kHz})$:  $0.5$   |   $\text{Gewichte von }X(f_{\rm A} = \pm \text{5 kHz})$:  $1.0$;     |   $\text{Gewichte von }Y(f = \pm \text{5 kHz})$:  $0.5$   ⇒   $Y(f)=X(f)$.
  •  Die Signalrekonstruktion funktioniert also auch hier perfekt  $(P_\varepsilon = 0)$.  Das gilt auch für die Phase  $\varphi=180^\circ$   ⇒   $x(t) = -A \cdot \cos (2\pi \cdot f_0 \cdot t)$.

(4)  Es gelten weiter die Einstellungen von  (3)  mit Ausnahme von  $\varphi=30^\circ$.  Interpretieren Sie die Unterschiede gegenüber der Einstellung  (3)   ⇒   $\varphi=0^\circ$.

  •  Die Phasenbeziehung geht verloren.  Das Sinkensignal  $y(t)$  verläuft cosinusförmig  $(\varphi_y=0^\circ)$  mit um  $\cos(\varphi_x)$  kleinerer Amplitude als das Quellensignal  $x(t)$.
  •  Begründung im Frequenzbereich:  Bei der periodische Fortsetzung von  $X(f)$  ⇒  $X_{\rm A}(f)$  sind nur die Realteile zu addieren.  Die Imaginärteile löschen sich aus.
  •  Die  $f_0$–Diraclinie von  $Y(f)$  ist reell, die von  $X(f)$  komplex und die von  $E(f)$  imaginär   ⇒   $\varepsilon(t)$  verläuft minus–sinusförmig   ⇒   $P_\varepsilon = 0.125$.

(5)  Verdeutlichen Sie sich nochmals das Ergebnis von  (4)  im Vergleich zu den Einstellungen  $f_0 = \text{5 kHz}$,  $\varphi=30^\circ$,  $f_{\rm A} = \text{11 kHz}$,  $f_{\rm G} = \text{5.5 kHz}$.

  •  Bei dieser Einstellung hat das  $X_{\rm A}(f)$–Spektrum auch einen positiven Imaginärteil bei  $\text{5 kHz}$  und einen negativen Imaginärteil gleicher Höhe bei  $\text{6 kHz}$.
  •  Der Rechteck–Tiefpass mit der Grenzfrequenz  $\text{5.5 kHz}$  entfernt diesen zweiten Anteil.  Somit ist bei dieser Einstellung  $Y(f) =X(f)$   ⇒   $P_\varepsilon = 0$.
  •  Jede  $f_0$–Schwingung beliebiger Phase ist fehlerfrei aus seinen Abtastwerten rekonstruierbar, falls  $f_{\rm A} = 2 \cdot f_{\rm 0} + \mu, \ f_{\rm G}= f_{\rm A}/2$  $($beliebig kleines $\mu>0)$.
  •  Bei wertkontinuierlichem Spektrum mit   $X(|f|> f_0) \equiv 0$  ⇒   $\big[$keine Diraclinien bei $\pm f_0 \big ]$ genügt grundsätzlich die Abtastrate  $f_{\rm A} = 2 \cdot f_{\rm 0}$.

(6)  Es gelten weiter die Einstellungen von  (3)  und  (4)  mit Ausnahme von  $\varphi=90^\circ$.  Interpretieren Sie die Darstellungen im Zeit– und Frequenzbereich.

  •  Das Quellensignal wird genau bei seinen Nulldurchgängen abgetastet   ⇒   $x_{\rm A}(t) \equiv 0$  ⇒    $y(t) \equiv 0$  ⇒  $\varepsilon(t)=-x(t)$  ⇒  $P_\varepsilon = P_x$  ⇒  $10 \cdot \lg \ (P_x/P_\varepsilon)=0\ \rm dB$.
  •  Beschreibung im Frequenzbereich:  Wie in  (4)  löschen sich die Imaginärteile von  $X_{\rm A}(f)$  aus.  Auch die Realteile von  $X_{\rm A}(f)$  sind wegen des Sinusverlaufs Null.

(7)  Nun betrachten wir das  $\text {Quellensignal 2}$.  Die weiteren Parameter seien  $f_{\rm A} = \text{5 kHz}$,  $f_{\rm G} = \text{2.5 kHz}$,  $r=0$.  Interpretieren Sie die Ergebnisse.

  •  Das Quellensignal besitzt Spektralanteile bis  $\pm \text{2 kHz}$.  Die Signalleistung ist $P_x = 2 \cdot \big[0.1^2 + 0.25^2+0.15^2\big]= 0.19 $. 
  •  Mit der Abtastrate  $f_{\rm A} = \text{5 kHz}$  sowie den Empfängerparametern  $f_{\rm G} = \text{2.5 kHz}$  und  $r=0$ funktioniert die Signalrekonstruktion perfekt:  $P_\varepsilon = 0$.
  •  Ebenso mit dem Trapez–Tiefpass mit  $f_{\rm G} = \text{2.5 kHz}$, wenn für den Rolloff–Faktor gilt:  $r \le 0.2$.

(8)  Was passiert, wenn die Grenzfrequenz  $f_{\rm G} = \text{1.5 kHz}$  des Rechteck–Tiefpasses zu klein ist?  Interpretieren Sie insbesondere das Fehlersignal  $\varepsilon(t)=y(t)-x(t)$.

  •  Das Fehlersignal  $\varepsilon(t)=-0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t -60^\circ)=0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t +120^\circ)$  ist gleich dem (negierten) Signalanteil bei  $\text{2 kHz}$.  Stimmt das?
  •  Die Verzerrungsleistung ist  $P_\varepsilon(t)=2 \cdot 0.15^2= 0.045$  und der Signal–zu–Verzerrungsabstand  $10 \cdot \lg \ (P_x/P_\varepsilon)=10 \cdot \lg \ (0.19/0.045)= 6.26\ \rm dB$.

(9)  Was passiert, wenn die Grenzfrequenz  $f_{\rm G} = \text{3.5 kHz}$  des Rechteck–Tiefpasses zu groß ist?  Interpretieren Sie insbesondere das Fehlersignal  $\varepsilon(t)=y(t)-x(t)$.

  •  Das Fehlersignal  $\varepsilon(t)=0.3 \cdot \cos(2\pi \cdot \text{3 kHz} \cdot t +60^\circ)$  ist nun gleich dem vom Tiefpass nicht entfernten $\text{3 kHz}$–Anteil des Sinkensignals  $y(t)$.  Stimmt das?
  •  Gegenüber der Teilaufgabe  (8)  verändert sich die Frequenz von  $\text{2 kHz}$  auf  $\text{3 kHz}$  und auch die Phasenbeziehung.
  •  Die Amplitude dieses  $\text{3 kHz}$–Fehlersignals ist gleich der Amplitude des  $\text{2 kHz}$–Anteils von$x(t)$.  Auch hier gilt  $P_\varepsilon(t)= 0.045$,  $10 \cdot \lg \ (P_x/P_\varepsilon)= 6.26\ \rm dB$.

(10)  Abschließend betrachten wir das  $\text {Quellensignal 4}$  $($Anteile bis  $\pm \text{4 kHz})$, sowie  $f_{\rm A} = \text{5 kHz}$,  $f_{\rm G} = \text{2.5 kHz}$,  $0 \le r\le 1$.  Interpretation der Ergebnisse.

  •  Bis zum Rolloff–Faktor  $r=0.2$  funktioniert die Signalrekonstruktion perfekt  $(P_\varepsilon = 0)$.  Erhöht man  $r$, so nimmt  $P_\varepsilon$  kontinuierlich zu und  $10 \cdot \lg \ (P_x/P_\varepsilon)$  ab.
  •  Mit  $r=1$  werden die Signalfrequenzen  $\text{0.5 kHz}$,  ...,  $\text{4 kHz}$  abgeschwächt, umso mehr, je höher die Frequenz ist, zum Beispiel  $H_{\rm E}(f=\text{4 kHz}) = 0.6$.
  •  Ebenso beinhaltet  $Y(f)$  aufgrund der periodischen Fortsetzung auch Anteile bei den Frequenzen  $\text{6 kHz}$,  $\text{7 kHz}$,  $\text{8 kHz}$,  $\text{9 kHz}$  und  $\text{9.5 kHz}$.
  •  Zu den Abtastzeitpunkten  $t\hspace{0.05cm}' = n \cdot T_{\rm A}$  stimmen  $x(t\hspace{0.05cm}')$  und  $y(t\hspace{0.05cm}')$  exakt überein   ⇒   $\varepsilon(t\hspace{0.05cm}') = 0$.  Dazwischen nicht   ⇒   kleine Verzerrungsleistung  $P_\varepsilon = 0.008$.




Zur Handhabung des Applets


Anleitung abtast.png





    (A)     Auswahl eines von vier Quellensignalen

    (B)     Parameterwahl für Quellensignal  $1$  (Amplitude, Frequenz, Phase)

    (C)     Ausgabe der verwendeten Programmparameter

    (D)     Parameterwahl für Abtastung  $(f_{\rm G})$  und
                Signalrekonstruktion  $(f_{\rm A},\ r)$

    (E)     Skizze des Empfänger–Frequenzgangs  $H_{\rm E}(f)$

    (F)     Numerische Ausgabe  $(P_x, \ P_{\rm \varepsilon}, \ 10 \cdot \lg(P_x/ P_{\rm \varepsilon})$

    (G)     Darstellungsauswahl für Zeitbereich

    (H)     Grafikbereich für Zeitbereich

    ( I )     Darstellungsauswahl für Frequenzbereich

    (J)     Grafikbereich für Frequenzbereich

    (K)     Bereich für Übungen:  Aufgabenauswahl, Fragen, Musterlösung

Über die Autoren

Dieses interaktive Berechnungstool wurde am  Lehrstuhl für Nachrichtentechnik  der  Technischen Universität München  konzipiert und realisiert.

  • Die erste Version wurde 2008 von  Slim Lamine  im Rahmen einer Werkstudententätigkeit mit „FlashMX–Actionscript” erstellt (Betreuer:  Günter Söder).
  • 2020 wurde das Programm von  Carolin Mirschina  im Rahmen einer Werkstudententätigkeit auf „HTML5” umgesetzt und neu gestaltet (Betreuer:  Tasnád Kernetzky).


Die Umsetzung dieses Applets auf HTML 5 wurde durch die  Exzellenzinitiative  der TU München finanziell unterstützt. Wir bedanken uns.



Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen