Aufgabe 4.09: Recursive Systematic Convolutional Codes

Aus LNTwww
Wechseln zu:Navigation, Suche

Zustandsübergangsdiagramm eines RSC–Codes

In der  Aufgabe 4.8  wurden aus dem Zustandsübergangsdiagramm bereits wichtige Eigenschaften von Faltungscodes abgeleitet, wobei von einer nichtrekursiven Filterstruktur ausgegangen wurde.

Nun wird ein Rate–$1/2$–RSC–Code in ähnlicher Weise behandelt. Hierbei steht „RSC” für „Recursive Systematic Convolutional”.

Die Übertragungsfunktionsmatrix eines RSC–Faltungscodes kann wie folgt angegeben werden:

$${\boldsymbol{\rm G}}(D) = \left [ 1\hspace{0.05cm},\hspace{0.3cm} G^{(2)}(D)/G^{(1)}(D) \right ] \hspace{0.05cm}.$$

Ansonsten gelten hier die genau gleichen Voraussetzungen wie bei der Aufgabe 4.8. Wir verweisen wieder auf folgende Theorieseiten:

  1. Systematische Faltungscodes
  2. Darstellung im Zustandsübergangsdiagramm
  3. Definition der freien Distanz
  4. GF(2)–Beschreibungsformen eines Digitalen Filters
  5. Anwendung der $D$–Transformation auf Rate–1/ $n$–Faltungscodes
  6. Filterstruktur bei gebrochen–rationaler Übertragungsfunktion


Im Zustandsübergangsdiagramm wird grundsätzlich vom Zustand  $S_0$  ausgegangen. Von jedem Zustand gehen zwei Pfeile ab. Die Beschriftung lautet „$u_i \hspace{0.05cm}| \hspace{0.05cm} x_i^{(1)}x_i^{(2)}$”. Bei einem systematischen Code gilt dabei:

  • Das erste Codebit ist identisch mit dem Informationsbit:   $\hspace{0.2cm} x_i^{(1)} = u_i ∈ \{0, \, 1\}$.
  • Das zweite Codebit ist das Prüfbit (Paritybit):   $\hspace{0.2cm} x_i^{(2)} = p_i ∈ \{0, \, 1\}$.




Hinweise:

  • In den Fragen zu dieser Aufgabe werden folgende vektoriellen Größen verwendet:
    • die Informationssequenz:  $\hspace{0.2cm} \underline{u} = (u_1, \, u_2, \text{...} \hspace{0.05cm} )$,
    • die Paritysequenz:  $\hspace{0.2cm} \underline{p} = (p_1, \, p_2, \text{...} \hspace{0.05cm})$,
    • die Impulsantwort:  $\hspace{0.2cm} \underline{g} = (g_1, \, g_2, \text{...} \hspace{0.05cm} ); \hspace{0.2cm}$ diese ist gleich der Paritysequenz $\underline{p}$  für  $\underline{u} = (1, \, 0, \, 0, \text{...} \hspace{0.05cm} )$.


Fragebogen

1

Wie lautet die Impulsantwort  $\underline{g}$ ?

Es gilt  $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{...} \hspace{0.05cm})$.
Es gilt  $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm})$.

2

Es gelte  $\underline{u} = (1, \, 1, \, 0, \, 1)$. Welche Aussagen gelten für die Paritysequenz  $\underline{p}$ ?

Es gilt  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm})$.
Es gilt  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm})$.
Bei begrenzter Informationssequenz  $\underline{u}$  ist stets auch  $\underline{p}$  begrenzt.

3

Wie lautet die  $D$–Übertragungsfunktion  $G(D)$?

Es gilt  $G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \text{...} \hspace{0.05cm}$
Es gilt  $G(D) = (1 + D^2)/(1 + D + D^2)$.
Es gilt  $G(D) = (1 + D + D^2)/(1 + D^2)$.

4

Nun gelte  $\underline{u} = (1, \, 1, \, 1)$. Welche Aussagen gelten für die Paritysequenz  $\underline{p}$?

Es gilt  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm})$.
Es gilt  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm})$.
Bei unbegrenzter Impulsantwort  $\underline{g}$  ist stets auch  $\underline{p}$  unbegrenzt.

5

Wie groß ist die freie Distanz  $d_{\rm F}$  dieses RSC–Coders?

$d_{\rm F} \ = \ $


Musterlösung

(1)  Verfolgt man die Übergänge im Zustandsdiagramm für die Sequenz $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0)$ am Eingang, so erhält man den Weg

$$S_0 → S_1 → S_3 → S_2 → S_1 → S_3 → S_2 → S_1 → S_3 → \hspace{0.05cm}\text{...} \hspace{0.05cm}$$

Bei jedem Übergang ist das erste Codesymbol $x_i^{(1)}$ gleich dem Informationsbit $u_i$ und das Codesymbol $x_i^{(2)}$ gibt das Paritybit $p_i$ an. Damit erhält man das Ergebnis entsprechend dem Lösungsvorschlag 1:

$$\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\text{...} \hspace{0.05cm}) = \underline{g}\hspace{0.05cm}.$$

Bei einem jeden RSC–Code ist die Impulsantwort $\underline{g}$ unendlich lang und wird irgendwann periodisch, in diesem Beispiel mit der Periode $P = 3$ und „$0, \, 1, \, 1$”.


Verdeutlichung von $\underline{p} = (1, \, 1, \, 0, \, 1)^{\rm T} \cdot \mathbf{G}$

(2)  Die Grafik zeigt die Lösung dieser Aufgabe entsprechend der Gleichung $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$.

  • Hierbei ist die Generatormatrix $\mathbf{G}$ nach unten und rechts unendlich weit ausgedehnt.
  • Richtig ist der Lösungsvorschlag 2.


(3)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Zwischen der Impulsantwort $\underline{g}$ und der $D$–Übertragungsfunktion $\mathbf{G}(D)$ besteht der Zusammenhang gemäß dem ersten Lösungsvorschlag:
$$\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}0\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}0\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, ... ) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad G(D) = 1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 + \hspace{0.05cm} \text{...} \hspace{0.05cm}.$$
  • Überprüfen wir nun den zweiten Vorschlag:
$$G(D) = \frac{1+ D^2}{1+ D + D^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G(D) \cdot [1+ D + D^2] = 1+ D^2 \hspace{0.05cm}.$$
  • Die folgende Rechnung zeigt, dass diese Gleichung tatsächlich stimmt:
$$(1+ D+ D^2+ D^4 +D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}) \cdot (1+ D+ D^2 ) =$$
$$=1+ D+ D^2\hspace{1.05cm} +D^4 + D^5 \hspace{1.05cm} +D^7 + D^8 \hspace{1.05cm} + D^{10}+ \hspace{0.05cm} \text{...}$$
$$+ \hspace{0.8cm}D+ D^2+D^3 \hspace{1.05cm}+ D^5 + D^6 \hspace{1.05cm} +D^8 + D^9 \hspace{1.25cm} +\hspace{0.05cm} \text{...} $$
$$+ \hspace{1.63cm} D^2+D^3+ D^4 \hspace{1.05cm}+ D^6 +D^7 \hspace{1.05cm}+ D^9 + D^{10} \hspace{0.12cm}+ \hspace{0.05cm} \text{...}$$
$$=\underline{1\hspace{0.72 cm}+ D^2} \hspace{0.05cm}.$$
  • Da aber die Gleichung (2) stimmt, muss die letzte Gleichung falsch sein.


(4)  Richtig ist nur der Lösungsvorschlag 1:

  • Aus $\underline{u} = (1, \, 1, \, 1)$ folgt $U(D) = 1 + D + D^2$. Damit gilt auch:
$$P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}. $$
  • Wären die Größen $u_i$ und $g_i$ reellwertig, so würde die (diskrete) Faltung $\underline{p} = \underline{u} * \underline{g}$ stets zu einer Verbreiterung führen  ⇒  $\underline{p}$ wäre in diesem Fall breiter als $\underline{u}$ und auch breiter als $\underline{g}$.
  • Bei $u_i ∈ {\rm GF}(2)$ und $g_i ∈ {\rm GF}(2)$ kann es (muss es aber nicht) dagegen vorkommen, dass auch bei unbegrenztem $\underline{u}$ oder bei unbegrenztem $\underline{g}$ das Faltungsprodukt $\underline{p} = \underline{u} * \underline{g}$ begrenzt ist.
Verdeutlichung von $\underline{p} = (1, \, 1, \, 1, \, 0, \, ...)^{\rm T} \cdot \mathbf{G}$

Das Ergebnis wird abschließend noch entsprechend der Gleichung $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$ überprüft.
(5)  In ähnlicher Vorgehensweise wie in der Aufgabe A4.8, (4) wird auch hier die freie Distanz zum Beispiel durch den Pfad $S_0 → S_0 → S_1 → S_2 → S_0 → S_0 → \\hspace{0.05cm}\text{...}\hspace{0.05cm}$ bestimmt.

  • Die zugehörige Codesequenz $\underline{x}$ ist nun aber „ $00 \ 11 \ 10 \ 11 \ 00 \ ... $”. Damit ergibt sich die freie Distanz zu $d_{\rm F} \ \underline{= 5}$.
  • Beim nichtrekursiven Code von Aufgabe 4.8 wurde dagegen nur die freie Distanz $d_{\rm F} = 3$ ermittelt.