Periodendauer periodischer Signale

Aus LNTwww
Wechseln zu:Navigation, Suche

Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an:

Applet-Variante 1 in neuem Tab öffnen     Applet-Variante 2 in neuem Tab öffnen

Programmbeschreibung


Dieses Applet zeichnet den Verlauf und berechnet die Periodendauer  $T_0$  der periodischen Funktion

$$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$

Bitte beachten Sie:

  • Die Phasen  $\varphi_i$  sind hier im Bogenmaß einzusetzen.  Umrechnung aus dem Eingabewert:  
$$\varphi_i \text{[im Bogenmaß]} =\varphi_i \text{[in Grad]}/360 \cdot 2\pi.$$
  • Ausgegeben werden auch der Maximalwert  $x_{\rm max}$  und ein Signalwert  $x(t_*)$  zu einer vorgebbaren Zeit  $t_*$.
  • Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung.


Die englische Beschreibung finden Sie unter Period Duration of Periodic Signals.

Theoretischer Hintergrund


Ein periodisches Signal  $x(t)$  liegt genau dann vor, wenn dieses nicht konstant ist und für alle beliebigen Werte von  $t$  und alle ganzzahligen Werte von  $i$  mit einem geeigneten  $T_{0}$  gilt:   $x(t+i\cdot T_{0}) = x(t).$

  • Man bezeichnet  $T_0$  als die  Periodendauer  und  $f_0 = 1/T_0$  als die  Grundfrequenz.
  • Bei einer harmonischen Schwingung  $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$  gilt  $f_0 = f_1$  und  $T_0 = 1/f_1$,  unabhängig von der Phase  $\varphi_1$  und der Amplitude  $A_1 \ne 0$.


$\text{Berechnungsvorschrift:}$  Setzt sich das periodisches Signal  $x(t)$  wie in diesem Applet aus zwei Anteilen  $x_1(t)$  und  $x_2(t)$  zusammen, dann gilt mit  $A_1 \ne 0$,  $f_1 \ne 0$,  $A_2 \ne 0$,  $f_2 \ne 0$  für Grundfrequenz und Periodendauer:

$$f_0 = {\rm ggT}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0.$$

Hierbei bezeichnet „ggT” den größten gemeinsamen Teiler.


$\text{Beispiele:}$   Im Folgenden bezeichnen  $f_0'$,  $f_1'$  und $f_2'$  jeweils auf $1\ \rm kHz$ normierte Signalfrequenzen:

(a)   $f_1' = 1.0$,   $f_2' = 3.0$   ⇒   $f_0' = {\rm ggt}(1.0, \ 3.0) = 1.0$   ⇒   $T_0 = 1.0\ \rm ms$;

(b)   $f_1' = 1.0$,   $f_2' = 3.5$   ⇒   $f_0' = {\rm ggt}(1.0, \ 3.5)= 0.5$   ⇒   $T_0 = 2.0\ \rm ms$;

(c)   $f_1' = 1.0$,   $f_2' = 2.5$   ⇒   $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$   ⇒   $T_0 = 2.0\ \rm ms$;

(d)   $f_1' = 0.9$,   $f_2' = 2.5$   ⇒   $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$   ⇒   $T_0 = 10.0 \ \rm ms$;

(e)   $f_2' = \sqrt{2} \cdot f_1' $   ⇒   $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$   ⇒   $T_0 \to \infty$  ⇒   Das Signal  $x(t)$  ist nicht periodisch.


$\text{Anmerkung:}$  Die Periodendauer könnte auch als kleinstes gemeinsames Vielfaches (kgV) entsprechend $T_0 = {\rm kgV}(T_1, \ T_2)$ ermittelt werden:

(c)   $T_1 = 1.0\ \rm ms$,   $T_2 = 0.4\ \rm kHz$   ⇒   $T_0 = {\rm kgV}(1.0, \ 0.4) \ \rm ms = 2.0\ \rm ms$

Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel

(a)   $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches.

Versuchsdurchführung

Fehler beim Erstellen des Vorschaubildes: Die Miniaturansicht konnte nicht am vorgesehenen Ort gespeichert werden
  • Wählen Sie zunächst die Nummer  $(1,\ 2$, ... $)$  der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt.  Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Musterlösung”.
  • Die Nummer  $0$  entspricht „Reset”:  Einstellung wie beim Programmstart.
  • $A_1'$  und  $A_2'$  bezeichnen hier die auf  $1\ \rm V$  normierten Signalamplituden.
  • $f_0'$,  $f_1'$  und  $f_2'$  sind die auf  $1\ \rm kHz$  normierten Frequenzen.


(1)   Es gelte  $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{.}$
          Wie groß ist die Periodendauer  $T_0$?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist  $T_0 = 2.0 \ \rm ms$  wegen  ${\rm ggt}(2.0, 2.5) = 0.5$.

(2)   Variieren Sie  $\varphi_1$  und  $\varphi_2$  im gesamten möglichen Bereich $\pm 180^\circ\text{.}$
          Wie wirkt sich dies auf die Periodendauer  $T_0$  aus?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer  $T_0 = 2.0 \ \rm ms$  bleibt für alle  $\varphi_1$  und  $\varphi_2$  erhalten.

(3)   Wählen Sie die Voreinstellung   ⇒   „Recall Parameters”
          Variieren Sie  $A_1'$  im gesamten möglichen Bereich  $0 \le A_1' \le 1\text{:}$.

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer  $T_0 = 2.0 \ \rm ms$  bleibt erhalten mit Ausnahme von  $A_1' =0$.
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$In letzerem Fall ist  $T_0 = 0.4 \ \rm ms$.

(4)   Wählen Sie die Voreinstellung   ⇒   „Recall Parameters” und variieren Sie  $f_2' $?
          Hat dies Auswirkungen auf  $T_0$?  Welcher Wert ergibt sich für  $f_2' = 0.2$.

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer springt hin und her.
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Für  $f_2' = 0.2$  ergibt sich  $T_0 = 5.0 \ \rm ms$   wegen   ${\rm ggt}(2.0, 0.2) = 0.2$.

(5)   Es gelte  $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 0.2, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{.}$
          Wie groß ist die Periodendauer  $T_0$?  Speichern Sie diese Einstellung mit „Store Parameters”.

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist  $T_0 = 10.0 \ \rm ms$  wegen  ${\rm ggt}(0.2, 2.5) = 0.1$.

(6)   Wählen Sie die letzte Einstellung   ⇒   „Recall Parameters” und ändern Sie  $f_2' = 0.6$.
          Speichern Sie diese Einstellung mit „Store Parameters”:

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist  $T_0 = 5.0 \ \rm ms$  wegen  ${\rm ggt}(0.2,0.6) = 0.2$.

(7)   Wie groß ist bei gleicher Einstellung der maximale Signalwert  $x_{\rm max}\text{?}$

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ $x_{\rm max} =x(t_* + i \cdot T_0) = 1.38 \ {\rm V} < A_1 + A_2$  mit  $t_* = 0.3 \ \rm ms$  und  $T_0 = 5.0 \ \rm ms$.

(8)   Welcher Unterschied ergibt sich mit  $\varphi_2 = 0^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Cosinusschwingungen?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ $t_* = 0$,  $T_0 = 5.0 \ \rm ms$  ⇒   $x_{\rm max} =x(t_* + i \cdot T_0) = 1.5 \ {\rm V}=A_1 + A_2$.

(9)   Nun gelte  $\varphi_1 = \varphi_2 = 90^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Sinusschwingungen:

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun  $x_{\rm max} = 1.07 \ {\rm V} < A_1 + A_2$.
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ Dieser Wert ergibt sich mit  $T_0 = 5.0 \ \rm ms$  sowie  $t_* = 0.6 \ \rm ms$  bzw.  $t_* = 1.9 \ \rm ms$.


Zur Handhabung der Applet-Variante 1

Fehler beim Erstellen des Vorschaubildes: Die Miniaturansicht konnte nicht am vorgesehenen Ort gespeichert werden

    (A)     Parametereingabe per Slider

    (B)     Bereich der graphischen Darstellung

    (C)     Variationsmöglichkeit für die graphische Darstellung

    (D)     Abspeichern und Zurückholen von Parametersätzen

    (E)     Numerikausgabe des Hauptergebnisses $T_0$; graphische Verdeutlichung durch rote Linie

    (F)     Ausgabe von $x_{\rm max}$ und der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$

    (G)     Darstellung der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ durch grüne Punkte

    (H)     Einstellung der Zeit $t_*$ für die Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$

Details zum obigen Punkt (C)

    (*)   Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern) und $\rm o$ (Zurücksetzen)

    (*)   Verschieben mit „$\leftarrow$” (Ausschnitt nach links, Ordinate nach rechts), „$\uparrow$” „$\downarrow$” und „$\rightarrow$”

Andere Möglichkeiten:

    (*)   Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,

    (*)   Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.

Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2004 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder ).
  • 2017 wurde dieses Programm von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet   ⇒   Applet-Variante 1.
  • Parallel dazu erarbeitete Bastian Siebenwirth im Rahmen seiner Bachelorarbeit (Betreuer: Günter Söder) die HTML5-Variante 2.

Nochmalige Aufrufmöglichkeit der Applets in neuem Fenster

Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an:

Applet-Variante 1 in neuem Tab öffnen     Applet-Variante 2 in neuem Tab öffnen