Applets:Kausale Systeme und Laplacetransformation: Unterschied zwischen den Versionen
Zeile 348: | Zeile 348: | ||
<br clear=all> | <br clear=all> | ||
===Partialbruchzerlegung=== | ===Partialbruchzerlegung=== | ||
− | + | ||
Voraussetzung für die Anwendung des Residuensatzes ist, dass es weniger Nullstellen als Pole gibt ⇒ $Z$ muss stets kleiner als $N$ sein. | Voraussetzung für die Anwendung des Residuensatzes ist, dass es weniger Nullstellen als Pole gibt ⇒ $Z$ muss stets kleiner als $N$ sein. | ||
Zeile 453: | Zeile 453: | ||
*Es ergibt sich das „kausale” Cosinussignal $h_{\rm cos}(t\hspace{0.05cm}')$ mit Amplitude $1$ und der normierten Periodendauer $T_0\hspace{0.05cm}'= 2\pi/5 \approx 1.256$. | *Es ergibt sich das „kausale” Cosinussignal $h_{\rm cos}(t\hspace{0.05cm}')$ mit Amplitude $1$ und der normierten Periodendauer $T_0\hspace{0.05cm}'= 2\pi/5 \approx 1.256$. | ||
*Die $p$–Spektralfunktion lautet nämlich: $H_{\rm cos}(p)= p/(p^2 +25)$. Gemäß der angegebenen Laplacetabelle ist die dazugehörige Zeitfunktion der „kausale” Cosinus. | *Die $p$–Spektralfunktion lautet nämlich: $H_{\rm cos}(p)= p/(p^2 +25)$. Gemäß der angegebenen Laplacetabelle ist die dazugehörige Zeitfunktion der „kausale” Cosinus. | ||
− | |||
− | |||
Zeile 480: | Zeile 478: | ||
*Aus der $\rm F$– Grafik erkennt man: $Z=0$ ergibt einen Tiefpass und $Z=1,p_{\rm o1} = 0$ einen Bandpass. | *Aus der $\rm F$– Grafik erkennt man: $Z=0$ ergibt einen Tiefpass und $Z=1,p_{\rm o1} = 0$ einen Bandpass. | ||
+ | |||
+ | ===Dummy=== | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
Zeile 485: | Zeile 485: | ||
* Aus beiden Grafiken $\rm (F, \ Z)$ ist kein großer Unterschied zu $\text{Satz 4}$ erkennbar. Im $\rm F$– erkennt man für $f\hspace{0.05cm}' \approx 0.5$ eine leichte Überhöhung gegenüber $f\hspace{0.05cm}' =0$. | * Aus beiden Grafiken $\rm (F, \ Z)$ ist kein großer Unterschied zu $\text{Satz 4}$ erkennbar. Im $\rm F$– erkennt man für $f\hspace{0.05cm}' \approx 0.5$ eine leichte Überhöhung gegenüber $f\hspace{0.05cm}' =0$. | ||
+ | *$h(t\hspace{0.05cm}')$ ist eine aperiodisch abklingende Impulsantwort, die im $\text{Beispiel 5}$ analytisch berechnet wurde $($allerdings mit $p_{\rm o1}= 0.32$ statt mit $p_{\rm o1}= 0.3)$. | ||
+ | |||
+ | |||
+ | {{BlaueBox|TEXT= | ||
+ | '''(13)''' Interpretieren Sie die $\rm F$–Grafik für $\text{Satz 6:} \ \ K = 1, \ Z = 3, \ p_{\rm o1} = 2 + 2 {\rm j}, \ p_{\rm o2} = 2 - 2 {\rm j},\ p_{\rm o3} = 1, \ N= 3,\ p_{\rm x1} = -2 + 2 {\rm j}, \ p_{\rm x2} = -2 - 2 {\rm j},\ p_{\rm x3} = -1$. <br> Wie lässt sich die charakteristische Eigenschaft dieses Systems mit den Parameterwerten $Z=4$ und $N=4$ erfüllen? }} | ||
+ | |||
+ | * Hier gilt für alle Frequenzen $|H(f\hspace{0.05cm}')| = 1$ ⇒ keine einzige Frequenz wird gedämpft ⇒ $a(f\hspace{0.05cm}') = 0\hspace{0.15cm} {\rm dB}$. Die Phasenfunktion $b(f\hspace{0.05cm}')$ ist dagegen frequenzabhängig. | ||
*$h(t\hspace{0.05cm}')$ ist eine aperiodisch abklingende Impulsantwort, die im $\text{Beispiel 5}$ analytisch berechnet wurde $($allerdings mit $p_{\rm o1}= 0.32$ statt mit $p_{\rm o1}= 0.3)$. | *$h(t\hspace{0.05cm}')$ ist eine aperiodisch abklingende Impulsantwort, die im $\text{Beispiel 5}$ analytisch berechnet wurde $($allerdings mit $p_{\rm o1}= 0.32$ statt mit $p_{\rm o1}= 0.3)$. | ||
Version vom 9. Januar 2021, 17:58 Uhr
Applet in neuem Tab öffnen English Version
Inhaltsverzeichnis
- 1 Programmbeschreibung
- 2 Theoretischer Hintergrund
- 2.1 Betrachtetes Systemmodell
- 2.2 Definition der Laplace–Transformation
- 2.3 Einige wichtige Laplace–Korrespondenzen
- 2.4 Pol–Nullstellen–Darstellung von Schaltungen
- 2.5 Eigenschaften der Pole und Nullstellen
- 2.6 Grafische Ermittlung von Dämpfung und Phase
- 2.7 Laplace–Rücktransformation und Residuensatz
- 2.8 Drei Beispiele zur Anwendung des Residuensatzes bei zwei Polen
- 2.9 Partialbruchzerlegung
- 3 Versuchsdurchführung
- 4 Zur Handhabung des Programms
- 5 Über die Autoren
- 6 Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster
Programmbeschreibung
Dargestellt werden reelle und symmetrische Tiefpässe $H(f)$ und die dazugehörigen Impulsantworten $h(t)$, nämlich
- Gauß–Tiefpass (englisch: Gaussian low–pass),
- Rechteck–Tiefpass (englisch: Rectangular low–pass),
- Dreieck–Tiefpass (englisch: Triangular low–pass),
- Trapez–Tiefpass (englisch: Trapezoidal low–pass),
- Cosinus–Rolloff–Tiefpass (englisch: Cosine-rolloff low–pass),
- Cosinus-Quadrat-Tiefpass (englisch: Cosine-rolloff -squared Low–pass).
Es ist zu beachten:
- Die Funktionen $H(f)$ bzw. $h(t)$ werden für bis zu zwei Parametersätzen in jeweils einem Diagramm dargestellt.
- Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
- Die Abszissen $t$ (Zeit) und $f$ (Frequenz) sowie die Ordinaten $H(f)$ und $h(t)$ sind jeweils normiert.
Theoretischer Hintergrund
Betrachtetes Systemmodell
Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort $h(t)$, an dessen Eingang das Signal $x(t)$ anliegt. Das Ausgangssignal $y(t)$ ergibt sich dann als das Faltungsprodukt $x(t) ∗ h(t)$.
Bei akausalen Systemen und Signalen muss zur Spektralbeschreibung stets das erste Fourierintegral angewendet werden, und es gilt für das Ausgangsspektrum:
- $$Y(f) = X(f) \cdot H(f) \hspace{0.05cm}.$$
Das Fourierintegral besitzt auch für kausale Systeme und Signale weiterhin Gültigkeit, also für
- $$x(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0\hspace{0.05cm},\hspace{0.2cm} h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} y(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$
In diesem Fall ergeben sich aber durch Anwendung der Laplace–Transformation unter Beachtung gewisser Restriktionen wesentliche Vorteile:
- Die so behandelten Systeme sind stets durch eine Schaltung realisierbar. Der Entwickler kommt nicht in Versuchung, realitätsfremde Lösungen anzubieten.
- Die Laplace–Transformierte $X_{\rm L}(p)$ ist stets eine reelle Funktion der Spektralvariablen $p$. Dass sich $p = {\rm j} · 2πf$ aus der Multiplikation der physikalischen Kreisfrequenz $ω = 2πf$ mit der imaginären Einheit $\rm j$ ergibt, spielt für den Anwender keine Rolle.
- Die implizite Bedingung $x(t) = 0$ für $t < 0$ erlaubt speziell die einfachere Analyse des Einschwingverhaltens nach Einschaltvorgängen als mit dem Fourierintegral.
Definition der Laplace–Transformation
Ausgehend vom ersten Fourierintegral,
- $$X(f) = \int_{-\infty}^{+\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-{\rm j}\hspace{0.05cm} 2\pi f t}}\hspace{0.1cm}{\rm d}t,$$
ergibt sich bei kausaler Zeitfunktion ⇒ $x(t) = 0 \ \ \text{für} \ \ t < 0$ mit der formalen Substitution $p = {\rm j} · 2πf$ direkt die Laplace–Transformation:
- $$X_{\rm L}(p) = \int_{0}^{\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t} }\hspace{0.1cm}{\rm d}t\hspace{0.05cm}, \hspace{0.3cm}{\rm kurz}\hspace{0.3cm} X_{\rm L}(p) \quad \bullet\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\circ\quad x(t)\hspace{0.05cm}.$$
- Der Zusammenhang zwischen der Laplace–Transformierten $X_{\rm L}(p)$ und dem physikalischen Spektrum $X(f)$ ist häufig wie folgt gegeben:
- $$X(f) = X_{\rm L}(p) \Bigg |_{{\hspace{0.1cm} p\hspace{0.05cm}={\rm \hspace{0.05cm} j\hspace{0.05cm}2\pi \it f}}}.$$
$\text{Beispiel 1:}$ Wir gehen von der einseitig exponentiell abfallenden Zeitfunktion $x(t) ={\rm e}^{-t/T}$ für $t > 0$ gemäß der Skizze $\rm F$ in der unteren Tabelle aus. Damit lautet die Laplace–Transformierte:
- $$X_{\rm L}(p) = \int_{0}^{\infty} {\rm e}^{-t/T} \cdot {\rm e}^{-pt} \hspace{0.1cm}{\rm d}t= \frac {1}{p + 1/T} \cdot {{\rm e}^{-(p+1/T) \hspace{0.08cm}\cdot \hspace{0.08cm}t}}\hspace{0.15cm}\Bigg \vert_{t \hspace{0.05cm}=\hspace{0.05cm} 0}^{\infty}= \frac {1}{p + 1/T} \hspace{0.05cm} .$$
Mit $p = {\rm j} · 2πf$ erhält man die herkömmliche Spektralfunktion bezüglich $f$:
- $$X(f) = \frac {1}{{\rm j \cdot 2\pi \it f} + 1/T} = \frac {T}{1+{\rm j \cdot 2\pi \it fT}} \hspace{0.05cm} .$$
Betrachtet man dagegen den Frequenzgang eines Tiefpasses erster Ordnung, dessen Impulsantwort $h(t)$ sich gegenüber der obigen Zeitfunktion $x(t)$ um den Faktor $1/T$ unterscheidet, so gilt für die Laplace–Transformierte bzw. die Fourier–Transformierte:
- $$H_{\rm L}(p)= \frac {1/T}{p + 1/T}= \frac {1}{1 + p \cdot T} \hspace{0.05cm} , \hspace{0.8cm}H(f) = \frac {1}{1+{\rm j \cdot 2\pi \it fT} } = \frac {1}{1+{\rm j} \cdot f/f_{\rm G} } \hspace{0.05cm} .$$
Häufig verwendet man dann wie in dieser Gleichung anstelle des Parameters $T$ die 3dB–Grenzfrequenz $f_{\rm 3\hspace{0.15cm} dB} = 1/(2πT)$.
Einige wichtige Laplace–Korrespondenzen
Hier sind einige wichtige Laplace–Korrespondenzen zusammengestellt. Alle Zeitsignale $x(t)$ seien dimensionslos. Deshalb besitzt $X_{\rm L}(p)$ dann als Integral über die Zeit stets die Einheit „Sekunde”.
- Die Laplace–Transformierte der Diracfunktion $δ(t)$ ist $X_{\rm L}(p) = 1$ $($Diagramm $\rm A)$.
- Durch Anwendung des Integrationssatzes erhält man $X_{\rm L}(p) = 1/p$ für die Sprungfunktion $γ(t)$ $($Diagramm $\rm B)$.
- Aus dieser wird durch Multiplikation mit $1/(pT)$ die Laplace–Transformierte der linear ansteigenden Funktion $x(t) = t/T$ für $t > 0$ $($Diagramm $\rm C)$.
- Das Rechteck kann aus der Subtraktion zweier um $T$ versetzter Sprungfunktionen $γ(t)$ und $γ(t – T)$ erzeugt werden. Mit dem Verschiebungssatz: $X_{\rm L}(p) = (1 – {\rm e}^{–pT})/p$ ergibt $($Diagramm $\rm D)$.
- Durch Integration erhält man die Rampe bzw. nach Multiplikation mit $1/(pT)$ deren Laplace–Transformierte $($Diagramm $\rm E)$.
- Die Exponentialfunktion $($Diagramm $\rm F)$ wurde bereits im $\text{Beispiel 1}$ betrachtet. Mit dem Faktor $1/T$ ist diese gleichzeitig die Impulsantwort eines Tiefpasses erster Ordnung.
- Durch Quadrierung erhält man die $p$–Spektralfunktion eines Tiefpasses $2.$ Ordnung und $x(t) = t/T · {\rm e}^{–t/T}$ (Diagramm $\rm G$).
- Neben der kausalen $\rm si$–Funktion $($Diagramm $\rm H)$ sind in der Tabelle auch die Laplace–Transformierten der kausalen Cosinus– und Sinusfunktion $($Diagramme $\rm I$ und $\rm J)$ angegeben, die sich zu $p/(p^2 + ω_0^2)$ bzw. $ω_0/(p^2 + ω_0^2)$ ergeben. Hierbei bezeichnet $ω_0 = 2πf_0 = 2π/T$ die so genannte Kreisfrequenz.
Pol–Nullstellen–Darstellung von Schaltungen
Ein jedes lineare zeitinvariante System (LZI), das durch eine Schaltung aus diskreten zeitkonstanten Bauelementen wie Widerständen $(R)$, Kapazitäten $(C)$, Induktivitäten $(L)$ und Verstärkerelementen realisiert werden kann, besitzt eine gebrochen–rationale $p$–Übertragungsfunktion:
- $$H_{\rm L}(p)= \frac {A_Z \cdot p^Z +\text{...} + A_2 \cdot p^2 + A_1 \cdot p + A_0} {B_N \cdot p^N +\text{...} \ + B_2 \cdot p^2 + B_1 \cdot p + B_0}= \frac {Z(p)}{N(p)} \hspace{0.05cm} .$$
Alle Koeffizienten des Zählers ⇒ $A_Z, \text{...} \ , A_0$ und des Nenners ⇒ $B_N, \text{...} , B_0$ sind reell. Weiter bezeichnen mit
- $Z$ den Grad des Zählerpolynoms $Z(p)$,
- $N$ den Grad des Nennerpolynoms $N(p)$.
$\text{Äquivalente Pol–Nullstellen–Darstellung:}$ Für die $p$–Übertragungsfunktion kann auch geschieben werden:
- $$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z p - p_{\rm o i} } {\prod\limits_{i=1}^N p - p_{\rm x i} }= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{...} \ \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{...} \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$
Die $Z + N + 1$ Parameter bedeuten:
- $K = A_Z/B_N$ ist ein konstanter Faktor. Gilt $Z = N$, so ist dieser dimensionslos.
- Die Lösungen der Gleichung $Z(p) = 0$ ergeben die $Z$ Nullstellen $p_{\rm o1},\text{...} \ , p_{\rm oZ}$ von $H_{\rm L}(p)$.
- Die Nullstellen des Nennerpolynoms $N(p)$ liefern die $N$ Polstellen (oder kurz Pole).
Die Umformung ist eindeutig. Dies erkennt man daran, dass die $p$–Übertragungsfunktion gemäß der ersten Gleichung ebenfalls nur durch $Z + N + 1$ freie Parameter bestimmt ist, da einer der Koeffizienten $A_Z, \text{...} \ , A_0, B_N, \text{...} \ , B_0$ ohne Änderung des Quotienten auf $1$ normiert werden kann.
$\text{Beispiel 2:}$ Wir betrachten den gezeichneten Vierpol mit einer Induktivität $L$ $($komplexer Widerstand $pL)$ im Längszweig sowie im Querzweig die Serienschaltung eines Ohmschen Widerstandes $R$ und einer Kapazität $C$ mit dem komplexen Widerstand $1/(pC)$.
Damit lautet die $p$–Übertragungsfunktion $H_{\rm L}(p)= {Y_{\rm L}(p)}/ {X_{\rm L}(p)}$:
- $$H_{\rm L}(p)= \frac {R + {1}/{(pC)} } {pL + R +{1}/{(pC)} }= \frac {1 + p \cdot{RC} } {1 + p \cdot{RC}+ p^2 \cdot{LC} } \hspace{0.05cm} .$$
Dividiert man Zähler und Nenner durch $LC$, so ergibt sich:
- $$H_{\rm L}(p)= \frac {R} {L}\cdot \frac {p + {1}/{(RC)} } {p^2 + {R}/ {L}\cdot p + {1}/{(LC)} }$$
- $$\Rightarrow \hspace{0.3cm}H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o } } {(p - p_{\rm x 1})(p - p_{\rm x 2})} \hspace{0.05cm} .$$
Für $R = 50 \ \rm Ω$, $L = 25\ \rm µ H$ und $C = 62.5 \ \rm nF$ ergeben sich durch Koeffizientenvergleich folgende Werte der $H_{\rm L}(p)$–Darstellung::
- die Konstante $K = R/L = 2 · 10^6 \cdot 1/{\rm s}$,
- die Nullstelle $p_{\rm o} = -1/(RC) = -0.32 · 10^6 \cdot 1/{\rm s},$
- die beiden Pole $p_{\rm x1}$ und $p_{\rm x2}$ als Lösung der Gleichung
- $$p^2 + \frac {R} {L}\cdot p + \frac{1}{LC} = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -\frac {R} {2L}\pm \sqrt{\frac {R^2} {4L^2}- \frac{1}{LC} }$$
- $$\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -10^6 \cdot {1}/{\rm s} \pm \sqrt{10^{12} \cdot {1} /{\rm s^2}-0.64 \cdot 10^{12} \cdot {1}/ {\rm s^2} }\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm x 1 }= -0.4 \cdot 10^6\cdot {1}/ {\rm s},\hspace{0.2cm}p_{\rm x 2 }= -1.6 \cdot 10^6\cdot {1}/ {\rm s} \hspace{0.05cm} .$$
In der Grafik ist rechts das Pol–Nullstellen–Diagramm angegeben.
- Die beiden Achsen bezeichnen den Real– und den Imaginärteil der Variablen $p$, jeweils normiert auf den Wert $10^6 · \rm 1/s\; (= 1/µs)$.
- Man erkennt die Nullstelle bei $p_{\rm o} =\, –0.32$ als Kreis und die Polstellen bei $p_{\rm x1} = \,–0.4$ und $p_{\rm x2} = \,–1.6$ als Kreuze.
Eigenschaften der Pole und Nullstellen
Die Übertragungsfunktion $H_{\rm L}(p)$ einer jeden realisierbaren Schaltung wird durch $Z$ Nullstellen und $N$ Pole zusammen mit einer Konstanten $K$ vollständig beschrieben, wobei folgende Einschränkungen gelten:
- Es gilt stets $Z ≤ N$. Mit $Z > N$ wäre im Grenzfall für $p → ∞$ (also für sehr hohe Frequenzen) auch die $p$–Übertragungsfunktion „unendlich groß”.
- Die Nullstellen $p_{{\rm o}i}$ und die Pole $p_{ {\rm x}i}$ sind im allgemeinen komplex und weisen wie $p$ die Einheit $\rm 1/s$ auf. Gilt $Z < N$, so besitzt auch die Konstante $K$ eine Einheit.
- Die Pole und Nullstellen können reell sein, wie im letzten Beispiel gezeigt. Sind sie komplex, so treten immer zwei konjugiert–komplexe Polstellen bzw. zwei konjugiert–komplexe Nullstellen auf, da $H_{\rm L}(p)$ stets eine reelle gebrochen–rationale Funktion darstellt.
- Alle Pole liegen in der linken Halbebene oder auf der imaginären Achse (Grenzfall). Diese Eigenschaft ergibt sich aus der erforderlichen und vorausgesetzten Kausalität zusammen mit dem Hauptsatz der Funktionstheorie.
- Nullstellen können sowohl in der linken als auch in der rechten $p$–Halbebene auftreten oder auch auf der imaginären Achse. Nullstellen in der rechten Halbebene gibt es insbesondere bei Allpässen.
Diese Eigenschaften werden nun an drei Beispielen verdeutlicht.
$\text{Beispiel 3:}$ Ausgehend von obiger Vierpolschaltung]] $(L$ im Längszweig, $R$ und $C$ im Querzweig$)$ können die charakteristischen Größen der Übertragungsfunktion wie folgt angegeben werden:
- $$K = 2A, \hspace{0.2cm}p_{\rm x 1,\hspace{0.05cm}2 }= -A \pm \sqrt{A^2-B^2}, \hspace{0.2cm}p_{\rm o }= - \frac{B^2}{2A} \hspace{0.05cm} \hspace{0.2cm} {\rm mit } \hspace{0.2cm} A = \frac {R} {2L}, \hspace{0.2cm}B = \frac{1}{\sqrt{LC} } \hspace{0.05cm}.$$
Die Grafik zeigt drei verschiedene Diagramme mit unterschiedlichen Kapazitätswerten $C$. Es gilt stets $R = 50 \ \rm Ω$ und $L = 25 \ \rm µ H$. Die Achsen sind auf die Variable $A = R/(2L) = 10^6 · \rm 1/s$ normiert. Der konstante Faktor ist jeweils $K = 2A = 2 · 10^6 · \rm 1/s.$
- Links: Für $B/A < 1$ $($hier $B/A =0.8)$ erhält man zwei reelle Pole und eine Nullstelle rechts von $-A/2$:
- $$ p_{\rm x 1}/A = -0.4 , \hspace{0.2cm}p_{\rm x 2}/A= -1.6 , \hspace{0.2cm}p_{\rm o}/A= -0.32 \hspace{0.05cm} .$$
- Rechts: Für $B/A >1$ $($hier $B/A =\sqrt{5})$ ergeben sich zwei konjugiert–komplexe Pole und eine Nullstelle links von $-A/2$:
- $$p_{\rm x 1,\hspace{0.05cm}2 }/A= -1\pm {\rm j}\cdot 2,\hspace{0.2cm}p_{\rm o}/A\approx -2.5 \hspace{0.05cm} .$$
- Mitte: Der Fall $A = B$ führt zu einer reellen doppelten Polstelle und einer Nullstelle bei $– A/2$:
- $$ p_{\rm x 1}/A= p_{\rm x 2}/A= -1, \hspace{0.2cm}p_{\rm o}/A= -0.5 \hspace{0.05cm} .$$
Die Impulsantworten $h(t)$ ergeben sich entsprechend dem folgenden Kapitel Laplace–Rücktransformation wie folgt:
- Bei der linken Konstellation ist $h(t)$ aperiodisch abklingend.
- Bei der rechten Konstellation ist $h(t)$ gedämpft oszillierend.
- Bei der mittleren Konstellation spricht man vom aperiodischen Grenzfall.
Grafische Ermittlung von Dämpfung und Phase
Gegeben sei die $p$–Übertragungsfunktion in der Pol–Nullstellen–Notation:
- $$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z (p - p_{\rm o i})} {\prod\limits_{i=1}^N (p - p_{\rm x i})}= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{...} \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{...} \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$
Zum herkömmlichen Frequenzgang $H(f)$ kommt man, indem man das Argument $p$ von $H_{\rm L}(p)$ durch ${\rm j} \cdot 2πf$ ersetzt:
- $$H(f)= K \cdot \frac {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 2})\cdot \text{...} \cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} \hspace{-0.03cm} Z})} {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 2})\cdot \text{...}\cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$
Wir betrachten nun einen speziellen $p$–Wert und damit eine feste Frequenz $f$. Die Abstände und Winkel aller Nullstellen beschreiben wir durch Vektoren:
- $$R_{ {\rm o} i} = {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} i}= |R_{{\rm o} i}| \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm}\cdot\hspace{0.03cm}\phi_{ {\rm o} i} }, \hspace{0.3cm}i= 1, \text{...}\ , Z \hspace{0.05cm} .$$
In gleicher Weise gehen wir für die Polstellen vor:
- $$R_{ {\rm x} i} = {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} i}= |R_{ {\rm x} i}| \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm}\cdot\hspace{0.03cm}\phi_{ {\rm x} i} }, \hspace{0.3cm}i= 1, \text{...}\ , N \hspace{0.05cm} .$$
Die Grafik zeigt die Beträge und Phasenwinkel für ein System
- mit $Z = 2$ Nullstellen in der rechten Halbebene
- und $N = 2$ Polstellen in der linken Halbebene.
Zu berücksichtigen ist zudem die Konstante $K$.
Mit dieser Vektordarstellung kann für den Frequenzgang geschrieben werden:
- $$H(f)= K \cdot \frac {|R_{ {\rm o} 1}| \cdot |R_{ {\rm o} 2}|\cdot ... \cdot |R_{ {\rm o} \hspace{-0.03cm} Z}|} {|R_{ {\rm x} 1}| \cdot |R_{ {\rm x} 2}|\cdot \text{...} \cdot |R_{ {\rm x} \hspace{-0.03cm} N}|} \cdot {\rm e^{\hspace{0.03cm}{\rm j} \hspace{0.05cm}\cdot [ \phi_{ {\rm o} 1}\hspace{0.1cm}+ \hspace{0.1cm}\phi_{ {\rm o} 2} \hspace{0.1cm}+ \hspace{0.1cm}\hspace{0.1cm}\text{...}. \hspace{0.1cm} + \hspace{0.1cm}\phi_{ {\rm o} \hspace{-0.03cm}{\it Z}}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 1}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 2} \hspace{0.1cm}- \hspace{0.1cm}... \hspace{0.1cm} - \hspace{0.1cm} \phi_{ {\rm x} \hspace{-0.03cm}{\it N} }]} } \hspace{0.05cm} .$$
Stellt man $H(f)$ durch die Dämpfungsfunktion $a(f)$ und die Phasenfunktion $b(f)$ nach der allgemein gültigen Beziehung $H(f) = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}$ dar, so erhält man durch den Vergleich mit der obigen Gleichung das folgende Ergebnis:
- Bei geeigneter Normierung aller dimensionsbehafteten Größen gilt für die Dämpfung in Neper $(1 \ \rm Np$ entspricht $8.686 \ \rm dB)$:
- $$a(f) = -{\rm ln} \hspace{0.1cm} K + \sum \limits_{i=1}^N {\rm ln} \hspace{0.1cm} |R_{ {\rm x} i}|- \sum \limits_{i=1}^Z {\rm ln} \hspace{0.1cm} |R_{ {\rm o} i}| \hspace{0.05cm} .$$
- Die Phasenfunktion in Radian $\rm (rad)$ ergibt sich entsprechend der oberen Skizze zu
- $$b(f) = \phi_K + \sum \limits_{i=1}^N \phi_{ {\rm x} i}- \sum \limits_{i=1}^Z \phi_{ {\rm o} i}\hspace{0.2cm}{\rm mit} \hspace{0.2cm} \phi_K = \left\{ \begin{array}{c} 0 \\ \pi \end{array} \right. \begin{array}{c} {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \end{array}\begin{array}{*{20}c} { K > 0\hspace{0.05cm},} \\ { K <0\hspace{0.05cm}.} \end{array}$$
$\text{Beispiel 4:}$ Die Grafik verdeutlicht die Berechnung
- der Dämpfungsfunktion $a(f)$ ⇒ roter Kurvenverlauf, und
- der Phasenfunktion $b(f)$ ⇒ grüner Kurvenverlauf
eines Vierpols, der durch den Faktor $K = 1.5$, eine Nullstelle bei $-3$ und zwei Pole bei $–1 \pm {\rm j} · 4$ festliegt.
Wie im Applet verwenden wir auch in diesem Beispiel die normierte Frequenz $f\hspace{0.05cm}'=(2\pi T)\cdot f$. Der Zeitnormierungswert sei $T=1$.
Die angegebenen Zahlenwerte gelten für die Frequenz $f\hspace{0.05cm}' = 3$. Die Herleitung dieser Zahlenwerte ist im umrahmten Block verdeutlicht:
- $$a \big (f\hspace{0.05cm}' = {3} \big ) = a \big [f = {3}/({2\pi T}) \big ] = 0.453\,\,{\rm Np}= 3.953\,\,{\rm dB}$$
- $$\Rightarrow \hspace{0.4cm}\big \vert H \big (f\hspace{0.05cm}' = {3} \big )\big \vert = 0.636,$$
- $$ b\big (f\hspace{0.05cm}' = {3} \big ) = -8.1^\circ \hspace{0.05cm} .$$
Für den Betragsfrequenzgang $\vert H(f)\vert$ ⇒ blauer Kurvenverlauf ergibt sich ein bandpassähnlicher Verlauf mit
- $$\vert H(f = 0)\vert \approx 0.25\hspace{0.05cm}, \hspace{0.5cm} \vert H(f = {4}/(2\pi T)\vert \approx 0.637\hspace{0.05cm},\hspace{0.5cm} \vert H(f \rightarrow \infty)\vert= 0 \hspace{0.05cm} .$$
Laplace–Rücktransformation und Residuensatz
$\text{Aufgabenstellung:}$ Dieses Kapitel behandelt das folgende Problem:
- Bekannt ist die $p$–Spektralfunktion $Y_{\rm L}(p)$ in der Pol–Nullstellen–Form.
- Gesucht ist die Laplace–Rücktransformierte, also die dazugehörige Zeitfunktion $y(t)$, wobei folgende Notation gelten soll:
- $$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}\hspace{0.05cm} , \hspace{0.3cm}{\rm kurz}\hspace{0.3cm} y(t) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\bullet\quad Y_{\rm L}(p)\hspace{0.05cm} .$$
Im Gegensatz zu den Fourierintegralen, die sich in den beiden Transformationsrichtungen nur geringfügig unterscheiden, ist bei „Laplace” die Berechnung von $y(t)$ aus $Y_{\rm L}(p)$ – also die Rücktransformation –
- sehr viel schwieriger als die Berechnung von $Y_{\rm L}(p)$ aus $y(t)$,
- auf elementarem Weg nicht oder nur sehr umständlich lösbar.
$\text{Definition:}$ Allgemein gilt für die Laplace–Rücktransformation:
- $$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}= \lim_{\beta \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty} \hspace{0.15cm} \frac{1}{ {\rm j} \cdot 2 \pi}\cdot \int_{ \alpha - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta } ^{\alpha+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta} Y_{\rm L}(p) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm} t}\hspace{0.1cm}{\rm d}p \hspace{0.05cm} .$$
- Die Integration erfolgt parallel zur imaginären Achse.
- Der Realteil $α$ ist so zu wählen, dass alle Pole links vom Integrationsweg liegen.
Die linke Grafik verdeutlicht dieses Linienintegral entlang der rot gepunkteten Vertikalen ${\rm Re}\{p\}= α$. Lösbar ist dieses Integral mit dem Jordanschen Lemma der Funktionstheorie. Hier folgt nur eine sehr kurze und einfache Zusammenfassung der Vorgehensweise:
- Das Linienintegral kann gemäß der Skizze in zwei Kreisintegrale aufgeteilt werden. Alle Polstellen liegen im linken Kreisintegral. Das rechte Kreisintegral darf nur Nullstellen beinhalten.
- Das rechte Kreisintegral liefert die Zeitfunktion $y(t)$ für negative Zeiten. Aufgrund der Kausalität muss $y(t < 0)$ identisch Null sein, was aber nach dem Hauptsatz der Funktionstheorie nur dann zutrifft, wenn es in der rechten $p$–Halbebene keine Pole gibt.
- Das Integral über den linken Halbkreis liefert die Zeitfunktion für $t ≥ 0$. Dieses umschließt alle Polstellen und ist mit dem Residuensatz in (relativ) einfacher Weise berechenbar, wie im Folgenden gezeigt wird.
Es wird weiterhin vorausgesetzt, dass die Übertragungsfunktion $Y_{\rm L}(p)$ in Pol–Nullstellen–Form durch den konstanten Faktor $K$, die $Z$ Nullstellen $p_{{\rm o}i}$ $(i = 1$, ... , $Z)$ und die $N$ Polstellen $p_{{\rm x}i}$ $(i = 1$, ... , $N$) dargestellt werden kann. Wir setzen zudem $Z < N$ voraus.
Die Anzahl der unterscheidbaren Pole bezeichnen wir mit $I$. Zur Bestimung von $I$ werden mehrfache Pole nur einfach gezählt. So gilt für die obige Skizze aufgrund einer doppelten Polstelle: $N = 5$ und $I = 4$.
$\text{Residuensatz:}$ Unter den genannten Voraussetzungen ergibt sich die Laplace–Rücktransformierte von $Y_{\rm L}(p)$ für Zeiten $t ≥ 0$ als die Summe von $I$ Eigenschwingungen der Pole, die man als die Residuen – abgekürzt mit „Res” – bezeichnet:
- $$y(t) = \sum_{i=1}^{I}{\rm Res} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}_i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p \hspace{0.05cm}t}\} \hspace{0.05cm} .$$
Da $Y_{\rm L}(p)$ nur für kausale Signale angebbar ist, gilt für negative Zeiten stets $y(t < 0) = 0$.
- Für einen Pol der Vielfachheit $l$ gilt allgemein:
- $${\rm Res} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= \frac{1}{(l-1)!}\cdot \frac{ {\rm d}^{\hspace{0.05cm}l-1} }{ {\rm d}p^{\hspace{0.05cm}l-1} }\hspace{0.15cm} \left \{Y_{\rm L}(p)\cdot (p - p_{ {\rm x}_i})^{\hspace{0.05cm}l}\cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{0.05cm} .$$
- Als Sonderfall ergibt sich daraus mit $l = 1$ für einen einfachen Pol:
- $${\rm Res} \bigg\vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= Y_{\rm L}(p)\cdot (p - p_{ {\rm x}_i} )\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{0.05cm} .$$
Drei Beispiele zur Anwendung des Residuensatzes bei zwei Polen
Nun wird der Residuensatz anhand dreier ausführlicher Beispiele verdeutlicht, die mit den drei Konstellationen im obigen $\text{Beispiel 3}$ im Kapitel „Laplace–Transformation” korrespondieren:
- Wir betrachten also wieder den Vierpol mit einer Induktivität $L = 25 \ \rm µH$ im Längszweig sowie im Querzweig die Serienschaltung aus einem Ohmschen Widerstand $R = 50 \ \rm Ω$ und einer Kapazität $C$. Für Letztere betrachten wir wieder drei verschiedene Werte, nämlich $C = 62.5 \ \rm nF$, $C = 8 \ \rm nF$ und $C = 40 \ \rm nF$.
- Vorausgesetzt ist zudem stets $x(t) = δ(t) \; ⇒ \; X_{\rm L}(p) = 1$ ⇒ $Y_{\rm L}(p) = H_{\rm L}(p)$ ⇒ $y(t)$ ist gleich der Impulsantwort $h(t)$.
$\text{Beispiel 5: Aperiodisch abklingende Impulsantwort:}$
Mit $C = 62.5 \ \rm nF$ erhält man für die $p$–Übertragungsfunktion:
- $$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o } } {(p - p_{\rm x 1} )(p - p_{\rm x 2}) }= 2 \cdot \frac {p + 0.32 } {(p +0.4)(p +1.6 )} \hspace{0.05cm} .$$
Beachten Sie bitte die vorgenommene Normierung von $p$, $K$ sowie aller Pole und Nullstellen mit dem Faktor ${\rm 10^6} · 1/\rm s$.
Die Impulsantwort setzt sich aus $I = N = 2$ Eigenschwingungen zusammen. Für $t < 0$ sind diese gleich Null.
- Das Residium des Pols bei $p_{\rm x1} =\ –0.4$ liefert die Zeitfunktion:
- $$h_1(t) = {\rm Res} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}1} } \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p) \cdot {\rm e}^{p t} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} = $$
- $$\hspace{1.05cm}= 2 \cdot \frac {p + 0.32 } {p +0.4}\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}-0.4}= - \frac {2 } {15}\cdot {\rm e}^{-0.4 \hspace{0.05cm} t} \hspace{0.05cm}. $$
- In gleicher Weise kann das Residium des zweiten Pols bei $p_{\rm x2} = \ –1.6$ berechnet werden:
- $$h_2(t) = {\rm Res} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}2} } \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p) \cdot {\rm e}^{p t} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}=$$
- $$\hspace{1.05cm}= 2 \cdot \frac {p + 0.32 } {p +1.6}\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}-1.6}=\frac {32 } {15}\cdot {\rm e}^{-1.6 \hspace{0.05cm} t} \hspace{0.05cm}.$$
Die Grafik zeigt $h_1(t)$ und $h_2(t)$ sowie das Summensignal $h(t)$. Berücksichtigt ist der Normierungsfaktor $1/T = 10^6 · \rm 1/s$ ⇒ die Zeit ist auf $T = 1 \ \rm µ s$ normiert.
- Für $t =0$ ergibt sich $T \cdot h(t=0) = 32/15-2= 2 \hspace{0.05cm}$.
- Für Zeiten $t > 2 \ \rm µ s$ ist die Impulsantwort negativ (wenn auch nur geringfügig und in der Grafik nur schwer zu erkennen).
$\text{Beispiel 6: Gedämpft oszillierende Impulsantwort:}$
Die Bauelementewerte $R = 50 \ \rm Ω$, $L = 25 \ \rm µ H$ und $C = 8 \ \rm nF$ ergeben zwei konjugiert komplexe Pole bei $p_{{\rm x}1} = \ –1 + {\rm j} · 2$ und $p_{{\rm x}2} = \ –1 - {\rm j} · 2$. Die Nullstelle liegt bei $p_{\rm o} = \ –2.5$. Es gilt $K = 2$ und alle Zahlenwerte sind wieder mit dem Faktor $1/T$ zu multiplizieren $(T = 1\ \rm µ s$).
Wendet man den Residuensatz auf diese Konfiguration an, so erhält man:
- $$h_1(t) = \text{ ...} = K \cdot \frac {p_{\rm x 1} - p_{\rm o }} {p_{\rm x 1} - p_{\rm x 2}}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot \hspace{0.05cm}t} 2 \cdot \frac {1.5 + {\rm j}\cdot 2} {{\rm j}\cdot 4}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot\hspace{0.05cm}t}$$
- $$\Rightarrow \hspace{0.3cm}h_1(t) = \frac {3 + {\rm j}\cdot 4} {{\rm j}\cdot 4}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot\hspace{0.05cm}t}= (1 - {\rm j}\cdot 0.75)\cdot {\rm e}^{-t}\cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} ,$$
- $$ h_2(t) = \text{ ...} = K \cdot \frac {p_{\rm x 2} - p_{\rm o }} {p_{\rm x 2} - p_{\rm x 1}}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot \hspace{0.05cm}t}= 2 \cdot \frac {1.5 - {\rm j}\cdot 2} {-{\rm j}\cdot 4}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t} $$
- $$\Rightarrow \hspace{0.3cm}h_2(t) = (1 + {\rm j}\cdot 0.75)\cdot {\rm e}^{-t}\cdot {\rm e}^{\hspace{0.03cm}-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} . $$
Mit dem Satz von Euler ergibt sich somit für das Summensignal:
- $$h(t) = h_1(t) + h_2(t)= {\rm e}^{-t}\cdot \big [ (1 - {\rm j}\cdot 0.75)\cdot (\cos(2t) + {\rm j}\cdot \sin(2t))+ (1 + {\rm j}\cdot 0.75)\cdot (\cos(2t) - {\rm j}\cdot \sin(2t))\big ]$$
- $$\Rightarrow \hspace{0.3cm}h(t) ={\rm e}^{-t}\cdot \big [ 2\cdot \cos(2t) + 1.5 \cdot \sin(2t)\big ]\hspace{0.05cm} . $$
Die Grafik zeigt die nun mit ${\rm e}^{–t}$ gedämpft oszillierende Impulsantwort $h(t)$ für diese Pol–Nullstellen–Konfiguration.
$\text{Beispiel 7: Aperiodischer Grenzfall:}$
Der Kapazitätswert $C = 40 \ \rm nF$ ist der kleinstmögliche Wert, für den sich gerade noch reelle Polstellen ergeben. Diese fallen zusammen, das heißt $p_{\rm x} = \ –1$ ist eine doppelte Polstelle.
- $$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o } } {(p - p_{\rm x })^2}= 2 \cdot \frac {p + 0.5 } { (p +1)^2} \hspace{0.05cm} .$$
Die Zeitfunktion lautet somit entsprechend dem Residuensatz mit $l = 2$:
- $$h(t) = {\rm Res} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\} $$
- $$\Rightarrow \hspace{0.3cm} h(t) = \frac{ {\rm d} }{ {\rm d}p}\hspace{0.15cm} \left \{H_{\rm L}(p)\cdot (p - p_{ {\rm x} })^2\cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } }$$
- $$\Rightarrow \hspace{0.3cm} h(t) = K \cdot \frac{ {\rm d} }{ {\rm d}p}\hspace{0.15cm}\left \{ (p - p_{ {\rm o} })\cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } \hspace{0.05cm} .$$
Mit der Produktregel der Differentialrechnung ergibt sich daraus:
- $$h(t) = K \cdot \left [ {\rm e}^{p \hspace{0.05cm}t} + (p - p_{ {\rm o} })\cdot t \cdot {\rm e}^{p \hspace{0.05cm}t} \right ] \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}-1} = {\rm e}^{-t}\cdot \left ( 2 - t \right) \hspace{0.05cm} .$$
Die Grafik zeigt diese Impulsantwort (grüne Kurve) in normierter Darstellung. Sie unterscheidet sich von derjenigen in $\text{Beispiel 5}$ mit den beiden unterschiedlichen Polen bei $-0.4$ und $-1.6$ nur geringfügig.
Die rot gezeichnete Sprungantwort $\sigma(t) = 1 - {\rm e}^{-t} + t \cdot {\rm e}^{-t}$ ergibt sich, wenn man am Eingang zusätzlich eine Sprungfunktion berücksichtigt. Zu deren Berechnung kann man alternativ
- bei der Residuenberechnung einen zusätzlichen Pol bei $p = 0$ (rot markiert) berücksichtigen,
- oder das Integral über die Impulsantwort $h(t)$ bilden.
Partialbruchzerlegung
Voraussetzung für die Anwendung des Residuensatzes ist, dass es weniger Nullstellen als Pole gibt ⇒ $Z$ muss stets kleiner als $N$ sein.
Gilt dagegen wie bei einem Hochpass $Z = N$, so
- ist der Grenzwert der Spektralfunktion für großes $p$ ungleich Null,
- beinhaltet das zugehörige Zeitsignal $y(t)$ auch einen Diracimpuls,
- versagt der Residuensatz und es ist eine Partialbruchzerlegung vorzunehmen.
Die Vorgehensweise soll beispielhaft für einen Hochpass erster Ordnung verdeutlicht werden.
$\text{Beispiel 1:}$ Die $p$–Übertragungsfunktion eines $RC$–Hochpasses erster Ordnung kann durch Abspaltung einer Konstanten wie folgt umgewandelt werden:
- $$\frac{p}{p + RC} = 1- \frac{RC}{p + RC}\hspace{0.05cm} .$$
Damit lautet die Hochpass–Impulsantwort:
- $$h_{\rm HP}(t) = \delta(t) - h_{\rm TP}(t) \hspace{0.05cm} .$$
Die Grafik zeigt
- als rote Kurve die Hochpass–Impulsantwort $h_{\rm HP}(t)$,
- als blaue Kurve die Impulsantwort $h_{\rm TP}(t)$ des äquivalenten Tiefpasses.
Die Diracfunktion ist die Laplace–Transformierte des konstanten Wertes $1$, während die zweite Funktion die Impulsantwort des äquivalenten Tiefpasses angibt, die mit $Z = 0$, $N =1$ und $K = RC$ durch den Residuensatz angebbar ist.
Versuchsdurchführung
- Wählen Sie zunächst die Nummer $(1,\ 2$, ... $)$ der zu bearbeitenden Aufgabe. Die Nummer $0$ entspricht einem „Reset”: Einstellung wie beim Programmstart.
- Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst. Lösung nach Drücken von „Musterlösung”.
- Analysieren Sie bei allen Aufgaben die dargestellen Grafiken im Frequenzbereich $\rm (F)$ und/oder Zeitbereich $\rm (Z)$.
- Für die normierte Zeit gilt $t\hspace{0.05cm}'=t/T$ und für die normierte Frequenz $f\hspace{0.05cm}'=(2\pi T)\cdot f$. Die Ordinaten im Frequenzbereich sind $Y(f\hspace{0.05cm}')$ und im Zeitbereich $y(t\hspace{0.05cm}')$.
- Ein diracförmiges Eingangssignal ⇒ $X_{\rm L}(p) =1$ beschreibt ein LZI–System mit der Impulsantwort $h(t\hspace{0.05cm}')$ dem Frequenzgang $H(f\hspace{0.05cm}')$.
- Eine Sprungfunktion am Eingangssignal ⇒ $X_{\rm L}(p) =1/p$ wird durch die Sprungantwort $\sigma(t\hspace{0.05cm}')$ und deren Spektralfunktion ${\it \Sigma}(f\hspace{0.05cm}')$ charakterisiert.
(1) Interpretieren Sie die Grafiken $\rm (F, \ Z)$ gemäß $\text{Satz 1:}\ K = 1, \ Z = 0,\ N= 1,\ p_{\rm x1} = -1$. Was ändert sich nach Variation von $p_{\rm x1}$?
- $\rm (Z)$ zeigt die Exponentialfunktion $y(t\hspace{0.05cm}')$ mit dem Maximum $y(t\hspace{0.05cm}' = 0) = 1$ und der Abfallzeitkonstanten $T\hspace{0.05cm}' =1$ und $\rm (F)$ die zugehörige komplexe Spektralfunktion.
- Mit $p_{\rm x1} = -2$ ist der $\rm (T)$–Abfall steiler $(T\hspace{0.05cm}' =0.5)$, während der Maximalwert unverändert bleibt. Der $\rm (F)$–Graph ist nun halb so hoch und doppelt so breit.
- Nähert sich $p_{\rm x1}\to 0$ dem Nullwert von links immer mehr an, so wird $T\hspace{0.05cm}'$ immer größer. Im Grenzfall $p_{\rm x1} \to 0$ ergibt sich die Sprungfunktion: $y(t\hspace{0.05cm}') \equiv 0$ für $t\hspace{0.05cm}' \ge 0$.
(2) Es gelten weiter die Einstellungen gemäß $\text{Satz 1}$. Interpretieren Sie aber nun die Grafiken für ein LZI–System und ermitteln Sie dessen Kenngrößen.
Betrachten Sie insbesondere den Gleichsignalübertragungsfaktor $\vert H(f\hspace{0.05cm}'= 0)\vert$ und die ${\rm 3\hspace{0.05cm} dB}$–Grenzfrequenz. Variieren Sie die Parameter $p_{\rm x1}$ und $K$.
- Entsprechend dem $\rm F$–Graphen handelt es sich um einen Tiefpass ⇒ $H(f\hspace{0.05cm}') \to H_{\rm TP}(f\hspace{0.05cm}')$ und zwar mit dem Gleichsignalübertragungsfaktor $|H_{\rm TP}(f\hspace{0.05cm}'= 0)| = 1$.
- Die normierte ${\rm 3\hspace{0.05cm} dB}$–Grenzfrequenz ist diejenige Frequenz, bei der $\vert H_{\rm TP}(f\hspace{0.05cm}')\vert$ um den Faktor $1/\sqrt{2}$ kleiner ist als das Maximum: $f_{\rm 3\hspace{0.05cm} dB}\hspace{0.05cm}' = 1$ ⇒ $f_{\rm 3\hspace{0.05cm} dB} = 1/(2πT)$.
- Bei $p_{\rm x1}= -2$ ist diese Größe doppelt so groß: $f_{\rm 3\hspace{0.10cm} dB}\hspace{0.05cm}' = 2$. Um wieder $|H(f\hspace{0.05cm}'= 0)| = 1$ zu erreichen, ist zusätzlich $K= 2$ anzupassen.
- Für die Herleitung der hier verwendeten Gleichungen verweisen wir auf das obige $\text{Beispiel 1}$. Man bezeichnet das Filter als Tiefpass erster Ordnung.
(3) Nun gelte $K=1$ und $p_{\rm x1}= -2.$ Welchen Verlauf hat das Ausgangssignal $y(t\hspace{0.05cm}')$, wenn am Eingang eine Sprungfunktion $x(t\hspace{0.05cm}')$ anliegt ⇒ $X_{\rm L}(p) =1/p$.
- Die $\rm Z$–Graphik zeigt die exponentiell abfallende Impulsantwort $h(t\hspace{0.05cm}')$, also das Ausgangssignal $y(t\hspace{0.05cm}')$ für eine Diracfunktion am Eingang.
- Bei anderem Eingangssignal $x(t\hspace{0.05cm}')$ erhält man das Ausgangssignal $y(t\hspace{0.05cm}')$ durch dessen Faltung mit $h(t\hspace{0.05cm}')$. Oder mit den $p$–Funktionen: $Y_{\rm L}(p)= X_{\rm L}(p) \cdot H_{\rm L}(p)$.
- Für die Sprungfunktion gilt: $X_{\rm L}(p)= 1/p$ ⇒ $Y_{\rm L}(p)= K/\big [(p-p_{\rm x1}) \cdot p\big ]$ ⇒ Die Einstellung $N= 2,\ p_{\rm x1} = -1, \ p_{\rm x2} = 0 $ liefert die Sprungantwort $\sigma(t\hspace{0.05cm}')$.
- Die $\rm Z$–Graphik zeigt nun die exponentiell ansteigende Sprungantwort $\sigma(t\hspace{0.05cm}')$. Für $K=1$ ist der Endwert gleich $\sigma(t\hspace{0.05cm}')\to \infty = 0.5$. Mit $K=2$ gilt $\sigma(t\hspace{0.05cm}')\to \infty = 1$.
(4) Interpretieren Sie die Grafiken $\rm (F, \ Z)$ für die Einstellung $K = 1, \ Z = 1, \ p_{\rm o1} = 0, \ N= 1,\ p_{\rm x1} = -1$. Welcher Unterschied ergibt sich gegenüber $Z=0$?
- Mit $Z=0$: Tiefpass 1. Ordnung mit $H_{\rm TP}(p)= 1/(p+2)$ ⇒ $H_{\rm TP}(f\hspace{0.05cm}'= 0)= 0.5$, $H_{\rm TP}(f\hspace{0.05cm}'\to \infty)= 0$, $h_{\rm TP}(t\hspace{0.05cm}')= {\rm e}^{-2 \hspace{0.05cm}\cdot\hspace{0.05cm} t\hspace{0.05cm}'}$ für $t\hspace{0.05cm}'\ge 0$. Siehe (2) und (3).
- Mit $Z=1$: Hochpass 1. Ordnung mit $H_{\rm HP}(p)= p/(p+2)$ ⇒ $H_{\rm HP}(f\hspace{0.05cm}'= 0)= 0$, $H_{\rm HP}(f\hspace{0.05cm}'\to \infty)= 1$. Da $Z=N$: $h_{\rm TP}(t\hspace{0.05cm}')$ erst nach Partialbruchzerlegung:
- $H_{\rm HP}(p)= p/(p+2) = 1- 2/(p+2)$ führt zur Impulsantwort $h_{\rm HP}(t\hspace{0.05cm}')= \delta(t\hspace{0.05cm}') - 2 \cdot{\rm e}^{-2 \hspace{0.05cm}\cdot\hspace{0.05cm} t\hspace{0.05cm}'}= \delta(t\hspace{0.05cm}') - 2 \cdot h_{\rm TP}(t\hspace{0.05cm}')$ ⇒ zusätzliche Diracfunktion.
(5) Wie lautet die Sprungantwort $\sigma_{\rm HP}(t\hspace{0.05cm}')$ des in (4) behandelten Hochpasses $H_{\rm HP}(p)= p/(p+2)$?
- Die zugehörige $p$–Spektralfunktion lautet: $\Sigma_{\rm HP}(p) =X_{\rm L} \cdot H_{\rm HP}(p)= 1/p \cdot p/(p+2) = 1/(p+2)=H_{\rm TP}(p) $ ⇒ $\sigma_{\rm HP}(t\hspace{0.05cm}')= h_{\rm TP}(t\hspace{0.05cm}')= {\rm e}^{-2 \hspace{0.05cm}\cdot\hspace{0.05cm} t\hspace{0.05cm}'}$ für $t\hspace{0.05cm}'\ge 0$.
- Die Zeitfunktion springt bei $t\hspace{0.05cm}' =0$ sofort auf $1$ (der HP beeinflusst den Sprung nicht) und fällt dann exponentiell auf $0$ (der HP sperrt jedes Gleichsignal).
(6) Ändern Sie ausgehend von der Einstellung (4) den Parameter $ p_{\rm x1} = -5 \cdot {\rm j}.$ Liegt ein realisierbares System vor? Welchen Verlauf hat die Impulsantwort $h(t\hspace{0.05cm}')$?
- Der Frequenzgang hat bei $f\hspace{0.05cm}'= -5$ eine Unendlichkeitstelle. Es ist aber kein diracförmiger Verlauf, da außerhalb nicht $H(f\hspace{0.05cm}' \ne -5) \equiv 0$ gilt.
- Die Impulsantwort ist eine komplexe Exponentialfunktion ⇒ System nicht realisierbar. $h(t\hspace{0.05cm}')$ dreht mathematisch positiv (entgegen dem Uhrzeigersinn).
- Mit $p_{\rm x1}= \pm 5 \cdot {\rm j}$ beträgt die normierte Periodendauer $T_0\hspace{0.05cm}'= 2\pi/5 \approx 1.256$. Es gilt also $h(t\hspace{0.05cm}'=T_0\hspace{0.05cm}')= h(t\hspace{0.05cm}'=0)= 1.$
- Bei ${\rm Re}\hspace{0.05cm}[p_{\rm x1}] \ne 0$ klingt die komplexe Exponentialfunktion kontinuierlich ab $({\rm Re}\hspace{0.05cm}[p_{\rm x1}] < 0)$ bzw. an $({\rm Re}\hspace{0.05cm}[p_{\rm x1}] > 0)$.
(7) Wie ändert sich der $\rm (Z)$–Graph, wenn man den Imaginärteil von $p_{\rm x1}$ verändert: $p_{\rm x1}= -5 \cdot {\rm j}$, $p_{\rm x1}= -2 \cdot {\rm j}$, $p_{\rm x1}= 0 $, $p_{\rm x1}= +2 \cdot {\rm j}$, $p_{\rm x1}= +5 \cdot {\rm j}$.
- Bei negativem Imaginärteil dreht $h(t\hspace{0.05cm}')$ stets in mathematisch positiver Richtung (entgegen dem Uhrzeigersinn) und bei positivem Imaginärteil im Uhrzeigersinn.
- Die normierte Periodendauer $T_0\hspace{0.05cm}'= 2\pi/5 \approx 1.256$ gilt für $p_{\rm x1}= \pm5 \cdot {\rm j}$ gleichermaßen und $T_0\hspace{0.05cm}'= 2\pi/2 \approx 3.14$ gilt für $p_{\rm x1}= \pm2 \cdot {\rm j}$.
- Für $p_{\rm x1}= 0$ ergibt sich die $p$–Übertragungsfunktion $H_{\rm L}(p)=1/p$. Daraus folgt $h(t\hspace{0.05cm}') \equiv 1$ für $t\hspace{0.05cm}' \ge 0$ und $h(t\hspace{0.05cm}') \equiv 0$ für $t\hspace{0.05cm}' < 0$.
Unsaubere Frequenzgrafik für $p_{\rm x1}= \pm2 \cdot {\rm j}$
(8) Interpretieren Sie nun die $\rm (Z)$–Grafik gemäß $\text{Satz 2:}\ K = 1, \ Z = 1,\ p_{\rm o1} =0, \ N= 2,\ p_{\rm x1} = -5 \cdot {\rm j}, \ p_{\rm x2} = +5 \cdot {\rm j}$. Was ändert sich nach Variation von $p_{\rm x1}$?
- Es ergibt sich das „kausale” Cosinussignal $h_{\rm cos}(t\hspace{0.05cm}')$ mit Amplitude $1$ und der normierten Periodendauer $T_0\hspace{0.05cm}'= 2\pi/5 \approx 1.256$.
- Die $p$–Spektralfunktion lautet nämlich: $H_{\rm cos}(p)= p/(p^2 +25)$. Gemäß der angegebenen Laplacetabelle ist die dazugehörige Zeitfunktion der „kausale” Cosinus.
(9) Durch welche Parameteränderungen kommt man zum „kausalen” Sinussignal ⇒ $h_{\rm sin}(t\hspace{0.05cm}')$ gleicher Frequenz und gleicher Amplitude $1$.
- Man kommt vom Cosinus zum Sinus durch Integration. Das heißt: $H_{\rm sin}(p)= H_{\rm cos}(p) \cdot H_{\rm Sprung}(p)= p/(p^2 +25) \cdot 1/p= 1/(p^2 +25)$ ⇒ $Z=0$ statt $Z=1$.
- Allerdings ist damit die Amplitude des resultierenden Sinussignal zu klein. Deshalb muss für $p_{\rm x} = \pm 5 \cdot {\rm j}$ noch der konstante Faktor angepasst werden: $K=5$.
(10) Interpretieren Sie die Grafiken $\rm (F, \ Z)$ für $\text{Satz 3:} \ K = 2, \ Z = 1, \ p_{\rm o1} = -2.5, \ N= 2,\ p_{\rm x1} = -1-2 \cdot {\rm j}, \ p_{\rm x2} = -1+2 \cdot {\rm j}$.
Was ändert sich mit der Nullstelle $p_{\rm o1} = 0$?
- Der Frequenzgang ist gekennzeichnet durch die Werte $|H(f\hspace{0.05cm}'= 0)|= 1$, $|H(f\hspace{0.05cm}'= 2)\approx 1.55|$ (etwa das Maximum) und $|H(f\hspace{0.05cm}' \to \infty)|\to 0$.
- Bei der Impulsantwort $h(t\hspace{0.05cm}')$ handelt es sich um eine gedämpft oszillierende Schwingung, die im $\text{Beispiel 6}$ exakt berechnet wurde.
- Mit $p_{\rm o1} = 0$ ist $|H(f\hspace{0.05cm}'= 0)|\equiv 0$, und das Maximum $|H(f\hspace{0.05cm}'= 2)\approx 1|$ liegt etwas tiefer bei gleicher Frequenz. Der Zeitbereich wird von $p_{\rm o1}$ nur wenig beeinflusst.
(11) Interpretieren Sie die Grafiken $\rm (F, \ Z)$ für $\text{Satz 4:} \ K = 2, \ Z = 1, \ p_{\rm o1} = -0.5, \ N= 2,\ p_{\rm x1} = p_{\rm x2} = -1$.
Was ändert sich mit der Nullstelle $p_{\rm o1} = 0$ und was mit der Einstellung $Z=0$?
- Bei der Impulsantwort $h(t\hspace{0.05cm}')$ gemäß $\text{Satz 4}$ handelt es sich um den aperiodischen Grenzfall, der im $\text{Beispiel 7}$ exakt berechnet wurde.
- Verschiebt man bei $Z=1$ die Nullstelle zu $p_{\rm o1} = 0$, so fällt $h(t\hspace{0.05cm}')$ schneller ab und auch der nachfolgende Unterschwinger ist sehr viel ausgeprägter.
- Dagegen ergibt sich mit $Z=0$ ein Tiefpass zweiter Ordnung, dessen Impulsantwort aus der vorne angegebenen Laplace-Tabelle entnommen werden kann.
- Aus der $\rm F$– Grafik erkennt man: $Z=0$ ergibt einen Tiefpass und $Z=1,p_{\rm o1} = 0$ einen Bandpass.
Dummy
(12) Interpretieren Sie die Grafiken $\rm (F, \ Z)$ für $\text{Satz 5:} \ K = 2, \ Z = 1, \ p_{\rm o1} = -0.3, \ N= 2,\ p_{\rm x1} = -0.4, \ p_{\rm x2} = -1.6$.
Was bewirkt ein weiterer Pol bei $p_{\rm x1} = 0$?
- Aus beiden Grafiken $\rm (F, \ Z)$ ist kein großer Unterschied zu $\text{Satz 4}$ erkennbar. Im $\rm F$– erkennt man für $f\hspace{0.05cm}' \approx 0.5$ eine leichte Überhöhung gegenüber $f\hspace{0.05cm}' =0$.
- $h(t\hspace{0.05cm}')$ ist eine aperiodisch abklingende Impulsantwort, die im $\text{Beispiel 5}$ analytisch berechnet wurde $($allerdings mit $p_{\rm o1}= 0.32$ statt mit $p_{\rm o1}= 0.3)$.
(13) Interpretieren Sie die $\rm F$–Grafik für $\text{Satz 6:} \ \ K = 1, \ Z = 3, \ p_{\rm o1} = 2 + 2 {\rm j}, \ p_{\rm o2} = 2 - 2 {\rm j},\ p_{\rm o3} = 1, \ N= 3,\ p_{\rm x1} = -2 + 2 {\rm j}, \ p_{\rm x2} = -2 - 2 {\rm j},\ p_{\rm x3} = -1$.
Wie lässt sich die charakteristische Eigenschaft dieses Systems mit den Parameterwerten $Z=4$ und $N=4$ erfüllen?
- Hier gilt für alle Frequenzen $|H(f\hspace{0.05cm}')| = 1$ ⇒ keine einzige Frequenz wird gedämpft ⇒ $a(f\hspace{0.05cm}') = 0\hspace{0.15cm} {\rm dB}$. Die Phasenfunktion $b(f\hspace{0.05cm}')$ ist dagegen frequenzabhängig.
- $h(t\hspace{0.05cm}')$ ist eine aperiodisch abklingende Impulsantwort, die im $\text{Beispiel 5}$ analytisch berechnet wurde $($allerdings mit $p_{\rm o1}= 0.32$ statt mit $p_{\rm o1}= 0.3)$.
(4) Vergleichen Sie den roten Trapez–Tiefpass $(K_1 = 1, \ \Delta f_1 = 1, \ r_1 = 0.5)$ mit dem blauen Rechteck–Tiefpass $(K_2 = 1, \ \Delta f_2 = 1)$.
Variieren Sie anschließend $r_1$ zwischen $0$ und $1$.
- Mit $r_1 = 0.5$ sind die Unterschwinger von $h_1(t)$ beim „Trapez” wegen des flacheren Flankenabfalls geringer als beim „Rechteck”.
- Die Impulsantwort
- Mit kleinerem $r_1$ nehmen die Unterschwinger zu. Mit $r_1= 0$ ist der Trapez– gleich dem Rechteck–Tiefpass ⇒ $h(t)= {\rm si}(\pi \cdot t/T)$.
- Mit größerem $r_1$ werden die Unterschwinger kleiner. Mit $r_1= 1$ ist der Trapez– gleich dem Dreieck–Tiefpass ⇒ $h(t)= {\rm si}^2(\pi \cdot t/T)$.
(5) Vergleichen Sie den Trapez–Tiefpass $(K_1 = 1, \ \Delta f_1 = 1, \ r_1 = 0.5)$ mit dem Cosinus-Rolloff-Tiefpass $(K_2 = 1,\ \Delta f_2 = 1, \ r_2 = 0.5)$.
Variieren Sie $r_2$ zwischen $0$ und $1$. Interpretieren Sie die Impulsantwort für $r_2 = 0.75$. Welcher Tiefpass erfüllt das erste Nyquistkriterium?
- Bei $r_1 = r_2= 0.5$ verläuft der Flankenabfall von $H_2(f)$ um die Frequenz $f = 0.5$ steiler als der Flankenabfall von $H_1(f)$.
- Bei gleichem Rolloff $r= 0.5$ hat die Impulsantwort $h_2(t)$ für $t > 1$ betragsmäßig größere Anteile als $h_1(t)$.
- Mit $r_1 = 0.5$ und $r_2 = 0.75$ gilt $H_1(f) \approx H_2(f)$ und damit auch $h_1(t) \approx h_2(t)$.
- $H_1(f)$ und $H_2(f)$ erfüllen beide das erste Nyquistkriterium: Beide Funktionen sind punktsymmetrisch um den „Nyquistpunkt”.
- Wegen $\Delta f = 1$ besitzen sowohl $h_1(t)$ als auch $h_2(t)$ Nulldurchgänge bei $\pm 1$, $\pm 2$, ... ⇒ jeweils maximale vertikale Augenöffnung.
(6) Vergleichen Sie den Cosinus–Quadrat–Tiefpass $(K_1 = 1, \ \Delta f_1 = 1)$ mit dem Cosinus-Rolloff-Tiefpass $(K_2 = 1, \ \Delta f_2 = 1,\ r_2 = 0.5)$.
Variieren Sie $r_2$ zwischen $0$ und $1$. Interpretieren Sie die Ergebnisse. Welcher Tiefpass erfüllt das zweite Nyquistkriterium]]?
- $H_1(f)$ ist ein Sonderfall des Cosinus–Rolloff–Tiefpasses mit Rolloff $r_2 =1$. Das erste Nyquistkriterium wird auch mit $r_2 \ne 1$ erfüllt.
- Nach dem zweiten Nyquistkriterium muss $h(t)$ auch Nulldurchgänge bei $t=\pm 1.5$, $\pm 2.5$, $\pm 3.5$, ... besitzen $($nicht jedoch bei $t = \pm 0.5)$.
- Für den Cosinus–Quadrat–TP gilt also $h_1(t=\pm 0.5) = 0.5$, $h_1(t=\pm 1) = h_1(t=\pm 1.5) = h_1(t=\pm 2)= h_1(t=\pm 2.5) = \text{...} =0$.
- Nur der Cosinus–Quadrat–TP erfüllt das erste und zweite Nyquistkriterium gleichzeitig: Maximale vertikale und horizontale Augenöffnung.
Zur Handhabung des Programms
(A) Theme (veränderbare grafische Oberflächengestaltung)
- Dark: schwarzer Hintergrund (wird von den Autoren empfohlen)
- Bright: weißer Hintergrund (empfohlen für Beamer und Ausdrucke)
- Deuteranopia: für Nutzer mit ausgeprägter Grün–Sehschwäche
- Protanopia: für Nutzer mit ausgeprägter Rot–Sehschwäche
(B) Vorauswahl für den Frequenzgang $H_1(f)$ (rote Kurve)
(C) Parameterfestlegung für $H_1(f)$
(D) Numerikausgabe für $H_1(f_*)$ und $h_1(t_*)$
(E) Vorauswahl für den Frequenzgang $H_2(f)$ (blaue Kurve)
(F) Parameterfestlegung für $H_2(f)$
(G) Numerikausgabe für $H_2(f_*)$ und $h_2(t_*)$
(H) Einstellung der Frequenz $f_*$ für die Numerikausgabe
(I) Einstellung der Zeit $t_*$ für die Numerikausgabe
(J) Bereich der graphischen Darstellung im Frequenzbereich
(K) Bereich der graphischen Darstellung im Zeitbereich
(L) Auswahl der Aufgabe entsprechend der Aufgabennummer
(M) Aufgabenbeschreibung und Fragestellung
(N) Musterlösung anzeigen und verbergen
Details zu den obigen Punkten (J ) und (K)
Zoom–Funktionen:
„$+$” (Vergrößern), „$-$” (Verkleinern), „$\rm o$” (Zurücksetzen)
Verschiebe–Funktionen: „$\leftarrow$” „$\uparrow$” „$\downarrow$” „$\rightarrow$”
„$\leftarrow$” bedeutet: Bildausschnitt nach links, Ordinate nach rechts
Andere Möglichkeiten:
- Bei gedrückter Shifttaste und Scrollen kann im Koordinatensystem gezoomt werden.
- Bei gedrückter Shifttaste und gedrückter linker Maustaste kann das Koordinatensystem verschoben werden.
Über die Autoren
Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
- Die erste Version wurde 2005 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder und Klaus Eichin).
- 2017 wurde „Impulse & Spektren” von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet.