Applets:Impulse und Spektren: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 129: Zeile 129:
 
==Versuchsdurchführung==
 
==Versuchsdurchführung==
 
<br>
 
<br>
&bdquo;Rot&rdquo; bezieht sich stets auf den ersten Parametersatz &nbsp; &rArr; &nbsp; $x_1(t)  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_1(f)$ und &bdquo;Blau&rdquo; den zweiten &nbsp; &rArr; &nbsp; $x_2(t)  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_2(f)$.
+
[[Datei:Aufgaben_2D-Gauss.png|right]]
 +
 
 +
*Wählen Sie zunächst die Nummer&nbsp; $(1$, ... , $7)$&nbsp; der zu bearbeitenden Aufgabe.
 +
*Eine Aufgabenbeschreibung wird angezeigt.&nbsp; Die Parameterwerte sind angepasst.
 +
*Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.
 +
*Die Nummer&nbsp; $0$&nbsp; entspricht einem &bdquo;Reset&rdquo;:&nbsp; Gleiche Einstellung wie beim Programmstart.
 +
*&bdquo;Rot&rdquo; bezieht sich auf den ersten Parametersatz &nbsp; &rArr; &nbsp; $x_1(t)  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_1(f)$.
 +
*&bdquo;Blau&rdquo; bezieht sich auf den zweiten Parametersatz &nbsp; &rArr; &nbsp; $x_2(t)  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_2(f)$.
 +
 
  
 
  {{BlaueBox|TEXT=   
 
  {{BlaueBox|TEXT=   
'''(1)''' &nbsp; Vergleichen Sie den '''roten Gaußimpuls''' $(A_1 = 1, \Delta t_1 = 1)$  mit dem '''blauen Rechteckimpuls''' $(A_2 = 1, \Delta t_2 = 1)$  &nbsp; &rArr; &nbsp; Voreinstellung.
+
'''(1)''' &nbsp; Vergleichen Sie den '''roten Gaußimpuls'''&nbsp; $(A_1 = 1, \Delta t_1 = 1)$&nbsp; mit dem '''blauen Rechteckimpuls'''&nbsp; $(A_2 = 1, \Delta t_2 = 1)$  &nbsp; &rArr; &nbsp; Voreinstellung.
<br>Welche Unterschiede erkennt man im Zeit- und im Frequenzbereich?}}
+
<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Welche Unterschiede erkennt man im Zeit- und im Frequenzbereich?}}
 
 
  
*Der Gaußimpuls reicht sowohl im Zeit&ndash; als auch im Frequenzbereich theoretisch bis ins Unendliche. Praktisch sind aber $x_1(t)$ für $|t| > 1.5$ und $X_1(t)$ für $|f| > 1.5$ nahezu Null.
+
*Der Gaußimpuls reicht sowohl im Zeit&ndash; als auch im Frequenzbereich theoretisch bis ins Unendliche.  
*Der Rechteckimpuls ist zeitlich steng begrenzt: $x_2(|t| \ge 0.5) \equiv 0$, während  $X_2(f)$ in einem sehr viel größeren Bereich als $X_1(f)$ betragsmäßige Anteile besitzt.  
+
*Praktisch sind aber&nbsp; $x_1(t)$&nbsp; für&nbsp; $|t| > 1.5$&nbsp; und&nbsp; $X_1(t)$&nbsp; für&nbsp; $|f| > 1.5$&nbsp; nahezu Null.
*Es gilt $X_1(f = 0) = X_2(f = 0)$, weil das Integral über den Gaußimpuls $x_1(t)$ wie das Integral über den Rechteckimpuls $x_2(t)$.
+
*Das Rechteck ist zeitlich steng begrenzt:&nbsp; $x_2(|t| \ge 0.5) \equiv 0$.&nbsp; $X_2(f)$&nbsp; hat in einem viel größeren Bereich als&nbsp; $X_1(f)$&nbsp; Anteile.  
 +
*Es gilt&nbsp; $X_1(f = 0) = X_2(f = 0)$, weil das Integral über den Gaußimpuls&nbsp; $x_1(t)$&nbsp; gleich dem Integral über den Rechteckimpuls&nbsp; $x_2(t)$&nbsp; ist.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(2)''' &nbsp; Vergleichen Sie den '''roten Gaußimpuls''' $(A_1 = 1, \Delta t_1 = 1)$  mit dem '''blauen Rechteckimpuls''' $(A_2 = 1,\Delta t_2)$ und variieren Sie $\Delta t_2$ zwischen $0.5$ und $2$. Interpretieren Sie die dargestellten Graphen.}}
+
'''(2)''' &nbsp; Vergleichen Sie den '''roten Gaußimpuls'''&nbsp; $(A_1 = 1, \Delta t_1 = 1)$&nbsp; mit dem '''blauen Rechteckimpuls'''&nbsp; $(A_2 = 1,\Delta t_2)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Variieren Sie die äquivalente Impulsdauer&nbsp; $\Delta t_2$&nbsp; zwischen&nbsp; $0.5$&nbsp; und&nbsp; $2$.&nbsp; Interpretieren Sie die dargestellten Graphen.}}
 
 
  
*Man erkennt das [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz von Bandbreite und Impulsdauer]]. Je größer die äquivalente Impulsdauer $\Delta t_2$ ist, um so höher und schmäler ist die Spektralfunktion $X_2(f)$.
+
*Man erkennt das [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz von Bandbreite und Impulsdauer]].&nbsp; Je größer&nbsp; $\Delta t_2$&nbsp; ist, um so höher und schmäler ist die Spektralfunktion&nbsp; $X_2(f)$.
*Da bei jeder Einstellung von $\Delta t_2$ die Zeitsignalwerte bei $t=0$ von $x_1(t)$ und $x_2(t)$ sind auch die Integrale über $X_1(f)$ und $X_2(f)$ identisch.
+
*Bei jeder Einstellung von&nbsp; $\Delta t_2$&nbsp; sind die Zeitsignalwerte&nbsp;  $x_1(t= 0)$&nbsp; und&nbsp; $x_2(t=0)$&nbsp; gleich &nbsp; &rArr;  &nbsp; Auch die Integrale über&nbsp; $X_1(f)$&nbsp; und&nbsp; $X_2(f)$&nbsp; sind identisch.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(3)''' &nbsp; Vergleichen Sie den '''roten Rechteckimpuls''' $(A_1 = 1, \Delta t_1 = 1)$  mit dem '''blauen Rechteckimpuls''' $(A_2 = 1,\Delta t_2 = 0.5)$ und variieren Sie anschließend $\Delta t_2$ zwischen $0.05$ und $2$. Interpretieren Sie die dargestellten Graphen und extrapolieren Sie das Ergebnis.}}
+
'''(3)''' &nbsp; Vergleichen Sie den '''roten Rechteckimpuls'''&nbsp; $(A_1 = 1, \Delta t_1 = 1)$&nbsp; mit dem '''blauen Rechteckimpuls'''&nbsp; $(A_2 = 1,\Delta t_2 = 0.5)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Variieren Sie&nbsp;  $\Delta t_2$&nbsp; zwischen&nbsp; $0.05$&nbsp; und&nbsp; $2$.&nbsp; Interpretieren Sie die dargestellten Graphen und extrapolieren Sie das Ergebnis.}}
  
  

Version vom 15. Juli 2020, 12:58 Uhr

Applet in neuem Tab öffnen

Programmbeschreibung


Dargestellt werden impulsförmige symmetrische Zeitsignale   ⇒   „Impulse” $x(t)$ und die dazugehörigen Spektralfunktionen $X(f)$, nämlich

  • Gaußimpuls (englisch: Gaussian pulse),
  • Rechteckimpuls (englisch: Rectangular pulse),
  • Dreieckimpuls (englisch: Triangular pulse),
  • Trapezimpuls (englisch: Trapezoidal pulse),
  • Cosinus–Rolloff–Impuls (englisch: Cosine-rolloff pulse).


Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung.

Die englische Beschreibung finden Sie unter Pulses & Spectra (derzeit noch nicht realisiert).


Weiter ist zu beachten:

  • Die Funktionen $x(t)$ bzw. $X(f)$ werden für bis zu zwei Parametersätzen in jeweils einem Diagramm dargestellt.
  • Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
  • Die Abszissen $t$ (Zeit) und $f$ (Frequenz) sowie die Ordinaten $x(t)$ (Signalwerte) bzw. $X(f)$ (Spektralwerte) sind jeweils normiert.


$\text{Beispiel:}$  Stellt man einen Rechteckimpuls mit Amplitude $A_1 = 1$ und äquivalenter Impulsdauer $\Delta t_1 = 1$ ein, so ist $x_1(t)$ im Bereich $-0.5 < t < +0.5$ gleich $1$ und außerhalb dieses Bereichs gleich $0$. Die Spektralfunktion $X_1(f)$ verläuft si–förmig mit $X_1(f= 0) = 1$ und der ersten Nullstelle bei $f=1$.

Soll mit dieser Einstellung ein Rechteckimpuls mit $A = K = 3 \ \rm V$ und $\Delta t = T = 2 \ \rm ms$ nachgebildet werden, dann sind alle Signalwerte mit $K = 3 \ \rm V$ und alle Spektralwerte mit $K \cdot T = 0.006 \ \rm V/Hz$ zu multiplizieren. Der maximale Spektralwert ist dann $X(f= 0) = 0.006 \ \rm V/Hz$ und die erste Nullstelle liegt bei $f=1/T = 0.5 \ \rm kHz$.


Theoretischer Hintergrund


Zusammenhang $x(t)\Leftrightarrow X(f)$

  • Der Zusammenhang zwischen Zeitfunktion $x(t)$ und dem Spektrum $X(f)$ ist durch das erste Fourierintegral gegeben:
$$X(f)={\rm FT} [x(t)] = \int_{-\infty}^{+\infty}x(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm} \rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$
  • Um aus der Spektralfunktion $X(f)$ die Zeitfunktion $x(t)$ berechnen zu können, benötigt man das zweite Fourierintegral:
$$x(t)={\rm IFT} [X(f)] = \int_{-\infty}^{+\infty}X(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm} {\rm IFT}\hspace{-0.1cm}: \rm Inverse \ Fouriertransformation.$$
  • In allen Beispielen verwenden wir reelle und gerade Funktionen. Somit gilt:
$$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
  • $x(t)$ und $X(f)$ haben unterschiedliche Einheiten, z. B. $x(t)$ in $\rm V$, $X(f)$ in $\rm V/Hz$.
  • Der Zusammenhang zwischen diesem Modul „Impulse & Spektren” und dem ähnlich aufgebauten Applet Frequenzgang & Impulsantwort basiert auf dem Vertauschungssatz.
  • Alle Zeiten sind auf eine Normierungszeit $T$ normiert und alle Frequenzen auf $1/T \Rightarrow$ die Spektralwerte $X(f)$ müssen noch mit der Normierungszeit $T$ multipliziert werden.


$\text{Beispiel:}$  Stellt man einen Rechteckimpuls mit Amplitude $A_1 = 1$ und äquivalenter Impulsdauer $\Delta t_1 = 1$ ein, so ist $x_1(t)$ im Bereich $-0.5 < t < +0.5$ gleich $1$ und außerhalb dieses Bereichs gleich $0$. Die Spektralfunktion $X_1(f)$ verläuft si–förmig mit $X_1(f= 0) = 1$ und der ersten Nullstelle bei $f=1$.

Soll mit dieser Einstellung ein Rechteckimpuls mit $A = K = 3 \ \rm V$ und $\Delta t = T = 2 \ \rm ms$ nachgebildet werden, dann sind alle Signalwerte mit $K = 3 \ \rm V$ und alle Spektralwerte mit $K \cdot T = 0.006 \ \rm V/Hz$ zu multiplizieren. Der maximale Spektralwert ist dann $X(f= 0) = 0.006 \ \rm V/Hz$ und die ersteNullstelle liegt bei $f=1/T = 0.5 \ \rm kHz$.


Gaußimpuls   $\Rightarrow$   Gaussian Pulse

  • Die Zeitfunktion des Gaußimpulses mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
$$x(t)=K\cdot {\rm e}^{-\pi\cdot(t/\Delta t)^2}.$$
  • Die äquivalente Zeitdauer $\Delta t$ ergibt sich aus dem flächengleichen Rechteck.
  • Der Wert bei $t = \Delta t/2$ ist um den Faktor $0.456$ kleiner als der Wert bei $t=0$.
  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
$$X(f)=K\cdot \Delta t \cdot {\rm e}^{-\pi(f\cdot \Delta t)^2} .$$
  • Je kleiner die äquivalente Zeitdauer $\Delta t$ ist, um so breiter und niedriger ist das Spektrum   ⇒   Reziprozitätsgesetz von Bandbreite und Impulsdauer.
  • Sowohl $x(t)$ als auch $X(f)$ sind zu keinem $f$- bzw. $t$-Wert exakt gleich Null.
  • Für praktische Anwendungen kann der Gaußimpuls jedoch in Zeit und Frequenz als begrenzt angenommen werden. Zum Beispiel ist $x(t)$ bereits bei $t=1.5 \Delta t$ auf weniger als $0.1\% $ des Maximums abgefallen.

Rechteckimpuls   $\Rightarrow$   Rectangular Pulse

  • Die Zeitfunktion des Rechteckimpulses mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K /2 \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < T/2,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| = T/2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| > T/2.} \\ \end{array}$$
  • Der $\pm \Delta t/2$–Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
  • Für die Spektralfunktion erhält man entsprechend den Gesetzmäßigkeiten der Fouriertransformation (1. Fourierintegral):
$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
  • Der Spektralwert bei $f=0$ ist gleich der Rechteckfläche der Zeitfunktion.
  • Die Spektralfunktion besitzt Nullstellen in äquidistanten Abständen $1/\Delta t$.
  • Das Integral über der Spektralfunktion $X(f)$ ist gleich dem Signalwert zum Zeitpunkt $t=0$, also der Impulsamplitude $K$.

Dreieckimpuls $\Rightarrow$ Dreieckimpuls Triangular Pulse

  • Die Zeitfunktion des Dreieckimpulses mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \Big(1-\frac{|t|}{\Delta t}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.} \\ \end{array}$$
  • Die absolute Zeitdauer ist $2 \cdot \Delta t$; diese ist doppelt so groß als die des Rechtecks.
  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
$$X(f)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
  • Obige Zeitfunktion ist gleich der Faltung zweier Rechteckimpulse, jeweils mit Breite $\Delta t$
  • Daraus folgt: $X(f)$ beinhaltet anstelle der ${\rm si}$-Funktion die ${\rm si}^2$-Funktion.
  • $X(f)$ weist somit ebenfalls Nullstellen im äquidistanten Abständen $1/\Delta f$ auf.
  • Der asymptotische Abfall von $X(f)$ erfolgt hier mit $1/f^2$, während zum Vergleich der Rechteckimpuls mit $1/f$ abfällt.


Trapezimpuls   $\Rightarrow$   Trapezoidal Pulse

Die Zeitfunktion des Trapezimpulses mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \frac{t_2-|t|}{t_2-t_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,} \\ {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.} \\ \end{array}$$
  • Für die äquivalente Impulsdauer (flächengleiches Rechteck) gilt: $\Delta t = t_1+t_2$.
  • Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
$$r=\frac{t_2-t_1}{t_2+t_1}.$$
  • Der Sonderfall $r=0$ entspricht dem Rechteckimpuls der Sonderfall $r=1$ dem Dreieckimpuls.
  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f)\cdot {\rm si}(\pi \cdot r \cdot \Delta t \cdot f) \quad \text{mit} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
  • Der asymptotische Abfall von $X(f)$ liegt zwischen $1/f$ (für Rechteck, $r=0$) und $1/f^2$ (für Dreieck, $r=1$).

Cosinus-Rolloff-Impuls   $\Rightarrow$   Cosine-rolloff Pulse

Die Zeitfunktion des Cosinus-Rolloff-Impulses mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \cos^2\Big(\frac{|t|-t_1}{t_2-t_1}\cdot \frac{\pi}{2}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,} \\ {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.} \\ \end{array}$$
  • Für die äquivalente Impulsdauer (flächengleiches Rechteck) gilt: $\Delta t = t_1+t_2$.
  • Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
$$r=\frac{t_2-t_1}{t_2+t_1}.$$
  • Der Sonderfall $r=0$ entspricht dem Rechteckimpuls der Sonderfall $r=1$ dem Cosinus-Quadrat-Impuls .
  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
$$X(f)=K\cdot \Delta t \cdot \frac{\cos(\pi \cdot r\cdot \Delta t \cdot f)}{1-(2\cdot r\cdot \Delta t \cdot f)^2} \cdot si(\pi \cdot \Delta t \cdot f).$$
  • Je größer der Rolloff-Faktor $r$ ist, desto schneller nimmt $X(f)$ asymptotisch mit $f$ ab.

Cosinus-Quadrat-Impuls

  • Dies ist ein Sonderfall des Cosinus-Rolloff-Impulses und ergibt sich für $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}t_1=0, t_2= \Delta t$:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|t|\cdot \pi}{2\cdot \Delta t}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.} \\ \end{array}$$
  • Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
$$X(f)=K\cdot \Delta f \cdot \frac{\pi}{4}\cdot \big [{\rm si}(\pi(\Delta t\cdot f +0.5))+{\rm si}(\pi(\Delta t\cdot f -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
  • Wegen der letzten ${\rm si}$-Funktion ist $X(f)=0$ für alle Vielfachen von $F=1/\Delta t$. Die äquidistanten Nulldurchgänge des Cos-Rolloff-Impulses bleiben erhalten.
  • Aufgrund des Klammerausdrucks weist $X(f)$ nun weitere Nulldurchgänge bei $f=\pm1.5 F$, $\pm2.5 F$, $\pm3.5 F$, ... auf.
  • Für die Frequenz $f=\pm F/2$ erhält man die Spektralwerte $K\cdot \Delta t/2$.
  • Der asymptotische Abfall von $X(f)$ verläuft in diesem Sonderfall mit $1/f^3$.

Versuchsdurchführung


Aufgaben 2D-Gauss.png
  • Wählen Sie zunächst die Nummer  $(1$, ... , $7)$  der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt.  Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Musterlösung”.
  • Die Nummer  $0$  entspricht einem „Reset”:  Gleiche Einstellung wie beim Programmstart.
  • „Rot” bezieht sich auf den ersten Parametersatz   ⇒   $x_1(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_1(f)$.
  • „Blau” bezieht sich auf den zweiten Parametersatz   ⇒   $x_2(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_2(f)$.


(1)   Vergleichen Sie den roten Gaußimpuls  $(A_1 = 1, \Delta t_1 = 1)$  mit dem blauen Rechteckimpuls  $(A_2 = 1, \Delta t_2 = 1)$   ⇒   Voreinstellung.
          Welche Unterschiede erkennt man im Zeit- und im Frequenzbereich?

  • Der Gaußimpuls reicht sowohl im Zeit– als auch im Frequenzbereich theoretisch bis ins Unendliche.
  • Praktisch sind aber  $x_1(t)$  für  $|t| > 1.5$  und  $X_1(t)$  für  $|f| > 1.5$  nahezu Null.
  • Das Rechteck ist zeitlich steng begrenzt:  $x_2(|t| \ge 0.5) \equiv 0$.  $X_2(f)$  hat in einem viel größeren Bereich als  $X_1(f)$  Anteile.
  • Es gilt  $X_1(f = 0) = X_2(f = 0)$, weil das Integral über den Gaußimpuls  $x_1(t)$  gleich dem Integral über den Rechteckimpuls  $x_2(t)$  ist.


(2)   Vergleichen Sie den roten Gaußimpuls  $(A_1 = 1, \Delta t_1 = 1)$  mit dem blauen Rechteckimpuls  $(A_2 = 1,\Delta t_2)$.
          Variieren Sie die äquivalente Impulsdauer  $\Delta t_2$  zwischen  $0.5$  und  $2$.  Interpretieren Sie die dargestellten Graphen.

  • Man erkennt das Reziprozitätsgesetz von Bandbreite und Impulsdauer.  Je größer  $\Delta t_2$  ist, um so höher und schmäler ist die Spektralfunktion  $X_2(f)$.
  • Bei jeder Einstellung von  $\Delta t_2$  sind die Zeitsignalwerte  $x_1(t= 0)$  und  $x_2(t=0)$  gleich   ⇒   Auch die Integrale über  $X_1(f)$  und  $X_2(f)$  sind identisch.


(3)   Vergleichen Sie den roten Rechteckimpuls  $(A_1 = 1, \Delta t_1 = 1)$  mit dem blauen Rechteckimpuls  $(A_2 = 1,\Delta t_2 = 0.5)$.
          Variieren Sie  $\Delta t_2$  zwischen  $0.05$  und  $2$.  Interpretieren Sie die dargestellten Graphen und extrapolieren Sie das Ergebnis.


  • Mit $\Delta t_2 = 0.5$ ist $X_2(f = 0) = X_1(f = 0) = 1$. Das blaue Spektrum ist aber nun doppelt so breit, das heißt, dass sie erste Nullstelle von $X_2(f)$ erst bei $f =2$ auftritt, während $X_1(f)$ die $x$–Achse schon bei $f =1$ schneidet.
  • Verkleinert man $\Delta t_2$ immer mehr, so wird $X_2(f)$ immer niedriger und breiter. Bei $\Delta t_2 = 0.05$ ist $X_2(f = 0)= 0.1$ und es ergibt sich ein sehr flacher Verlauf. Beispielsweise ist $X_2(f = \pm 3)= 0.096$.
  • Würde man $\Delta t_2 = \varepsilon$ wählen (was bei dem Programm nicht möglich ist), so wäre im Grenzübergang $\varepsilon \to 0$ das Spektrum $X_2(f)=2 \cdot \varepsilon$ (für $A=2$) bzw. $X_2(f)=\varepsilon$ (für $A=1$) nahezu konstant, aber sehr klein.
  • Erhöht man dafür die Amplitude auf $A=1/\varepsilon$, so ergibt sich die konstante Spektralfunktion $X_2(f) = 1$ der Diracfunktion $\delta(t)$ (im Zeitbereich).
  • Das bedeutet, dass $\delta(t)$ durch ein Rechteck der Breite $\Delta t = \varepsilon \to 0$ und der Höhe $A = 1/\varepsilon \to \infty$ approximiert werden kann. Die Impulsfläche ist dann Eins, was dem Gewicht der Diracfunktion entspricht:   $x(t) = 1 \cdot \delta (t)$.


(4)   Vergleichen Sie den roten Rechteckimpuls $(A_1 = 1, \Delta t_1 = 1)$ mit dem blauen Dreieckimpuls $(A_2 = 1,\Delta t_2 = 1)$ und interpretieren Sie deren Spektalfunktionen.


  • Das (normierte) Spektrum des Rechteckimpulses $x_1(t)$ mit den (normierte) Parametern $A_1 = 1$ und $\Delta t_1 = 1$ lautet $X_1(f)= {\rm si}(\pi\cdot f)$.
  • Faltet man den Rechteckimpuls $x_1(t)$ mit sich selbst, so kommt man zum Dreieckimpuls $x_2(t) = x_1(t) \star x_1(t)$. Nach dem Faltungssatz gilt dann $X_2(f) = X_1(f) \cdot X_1(f) = X_1(f)^2 $.
  • Durch das Quadrieren der $\rm si$–förmigen Spektralfunktion $X_1(f)$ bleiben die Nullstellen in $X_2(f)$ erhalten. Es gilt aber nun $X_2(f) \ge 0$.


(5)   Vergleichen Sie den roten Trapezimpuls $(A_1 = 1, \Delta t_1 = 1, r_1 = 0.5)$ mit dem blauen Dreieckimpuls $(A_2 = 1,\Delta t_2 = 1)$ und und variieren Sie $r_1$ zwischen $0$ und $1$. Interpretieren Sie die Spektalfunktion $X_1(f)$.


  • Der Trapezimpuls mit dem Rolloff-Faktor $r= 0$ ist identsisch mit dem Rechteckimpuls und das „normierte Spektrum” lautet: $X_1(f)= {\rm si}(\pi\cdot f)$.
  • Der Trapezimpuls mit dem Rolloff-Faktor $r= 1$ ist identsisch mit dem Dreieckimpuls und das „normierte Spektrum” lautet: $X_1(f)= {\rm si}^2(\pi\cdot f)$.
  • In beiden Fällen besitzt $X_1(f)$ äquidistante Nulldurchgänge bei $\pm 1$, $\pm 2$, ... Sonst gibt es keine Nulldurchgänge.

Mit $0 < r_1 < 1$ gibt es dagegen zusätzliche Nulldurchgänge, deren Lagen von $r_1$ abhängen.


(6)   Vergleichen Sie den roten Trapezimpuls $(A_1 = 1, \Delta t_1 = 1, r_1 = 0.5)$ mit dem blauen Cosinus-Rolloff-Impuls $(A_2 = 1,\Delta t_2 = 1.0, r_1 = 0.5)$ und und variieren Sie $r_2$ zwischen $0$ und $1$. Interpretieren Sie die Spektalfunktion $X_2(f)$ für $r_2 = 0.7$.


  • Der Vergleich von Trapezimpuls $x_1(t)$ und Cosinus-Rolloff-Impuls $x_2(t)$ bei gleichem Rolloff-Faktor $r= 0.5$ zeigt, dass $X_2(f)$ für $f > 1$ größere betragsmäßige Anteile besitzt als ist $X_1(f)$.
  • Bei gleichem Rolloff-Faktor $r_1 = r_2= 0.5$ verläuft der Flankenabfall des Cosinus-Rolloff-Impulses $x_2(t)$ um die Frequenz $f = 0.5$ steiler als der Flankenabfall des Trapezimpulses $x_2(t)$. Mit $r_1 = 0.5$ und $r_2 = 0.7$ gilt $x_1(t) \approx x_2(t)$ und damit auch $X_1(f) \approx X_2(f)$.


(7)   Vergleichen Sie den roten Trapezimpuls $(A_1 = 1, \Delta t_1 = 1, r_1 = 1)$ mit dem blauen Cosinus-Rolloff-Impuls $(A_2 = 1,\Delta t_2 = 1.0, r_1 = 1)$. Interpretieren Sie die Funktionen $x_1(t)$ und $X_1(f)$.


  • Es handelt sich bei $x_1(t) = \cos^2(|t|\cdot \pi/2) \ \ \text{für} \ |t| \le 1$ um den Cosinus-Quadrat-Impuls.
  • Wegen $\Delta t = 1$ besitzt $X_1(f)$ Nulldurchgänge bei $\pm 1$, $\pm 2$, ...
  • Weitere Nulldurchgänge gibt es bei $f=\pm 1.5$, $\pm 2.5$, $\pm 3.5$, ... , nicht jedoch bei $\pm 0.5$.
  • Für die Frequenz $f=\pm 0.5$ erhält man die Spektralwerte $0.5$.
  • Der asymptotische Abfall von $X_1(f)$ verläuft in diesem Sonderfall mit $1/f^3$.


Zur Handhabung des Programms


Spektrum version1.png

    (A)     Bereich der graphischen Darstellung für $x(t)$

    (B)     Bereich der graphischen Darstellung für $X(f)$

    (C)     Variationsmöglichkeit für die graphischen Darstellungen

    (D)     Parametereingabe per Slider
                      links (rot): „Pulse 1”,         rechts (blau): „Pulse 2”

    (E)     Parameter entsprechend der Voreinstellung   ⇒   „Reset”

    (F)     Einstellung von $t_*$ und $f_*$ für Numerikausgabe

    (G)     Numerikausgabe von $x(t_*)$ und $X(f_*)$
                      links (rot): „Pulse 1”,         rechts (blau): „Pulse 2”



Details zum obigen Punkt (C)

    (*)   Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern) und $\rm o$ (Zurücksetzen)

    (*)   Verschiebe–Funktionen „$\leftarrow$” (Bildausschnitt nach links, Ordinate nach rechts) sowie „$\uparrow$” „$\downarrow$” „$\rightarrow$”


Andere Möglichkeiten:

  • Bei gedrückter Shifttaste und Scrollen kann im Koordinatensystem gezoomt werden.
  • Bei gedrückter Shifttaste und gedrückter linker Maustaste kann das Koordinatensystem verschoben werden.



Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2005 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder und Klaus Eichin).
  • 2017 wurde „Impulse & Spektren” von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen