Frequenzmodulation (FM)
Inhaltsverzeichnis
- 1 Augenblicksfrequenz
- 2 Signalverläufe bei Frequenzmodulation
- 3 Frequenzmodulation eines Cosinussignals
- 4 WM–Spektrum einer harmonischen Schwingung
- 5 Einfluss einer Bandbegrenzung bei Winkelmodulation
- 6 Realisierung eines FM–Modulators
- 7 PLL–Realisierung eines FM–Demodulators
- 8 Aufgaben zum Kapitel
- 9 Quellenverzeichnis
Augenblicksfrequenz
Wir gehen wieder von einem winkelmodulierten Signal aus:
- s(t)=AT⋅cos[ψ(t)].
Alle Informationen über das Quellensignal q(t)
- sind damit ausschließlich in der Winkelfunktion ψ(t) enthalten,
- während die Hüllkurve a(t)=AT konstant ist.
Definitionen:
- Die Augenblickskreisfrequenz ist die Ableitung der Winkelfunktion nach der Zeit:
- ωA(t)=dψ(t)dt.
- Entsprechend gilt für die Augenblicksfrequenz:
- fA(t)=ωA(t)2π=12π⋅dψ(t)dt.
- Der Frequenzhub ist die maximale Abweichung ΔfA der zeitabhängigen Augenblicksfrequenz fA(t) von der konstanten Trägerfrequenz fT.
Bei einer Winkelmodulation mit der Trägerfrequenz fT schwankt die Augenblicksfrequenz im Bereich
- fT−ΔfA≤fA(t)≤fT+ΔfA.
Hervorzuheben ist, dass ein grundsätzlicher Unterschied zwischen der Augenblicksfrequenz fA(t) und dem mit einem Spektrum–Analyzer messbaren Spektrum S(f) eines winkelmodulierten Signals s(t) besteht, wie das nachfolgende Beispiel verdeutlichen soll.
Beispiel 1: Die Grafik zeigt oben das phasenmodulierte Signal
- s(t)=AT⋅cos[ψ(t)]=AT⋅cos[2πfTt+η⋅sin(2πfNt)]
sowie unten die Augenblicksfrequenz
- fA(t)=12π⋅dψ(t)dt=fT+ΔfA⋅cos(2πfNt).
Die Systemparameter sind dabei
- die Trägerfrequenz fT=50 kHz,
- die Nachrichtenfrequenz fN=5 kHz,
- der Modulationsindex η=3.
Daraus ergibt sich der Frequenzhub zu
- ΔfA=η·fN=15 kHz.
In der Mitte ist zur Orientierung der qualitative Verlauf des sinusförmigen Quellensignals q(t) skizziert.
Man erkennt aus diesen Grafiken:
- Die Augenblicksfrequenz fA(t) kann alle beliebigen Werte zwischen fT+ΔfA=65 kHz (bei t = 50\ \rm µ s,\ 250 \ µ s, usw.) und f_{\rm T} \ – Δf_{\rm A} = 35 \ \rm kHz (bei t = 150\ \rm µ s, \ 350 \ µ s, usw.) annehmen ⇒ grüne Markierungen.
- Zur Zeit t ≈ 16.7 \ \rm µ s gilt beispielsweise f_{\rm A}(t) = 57.5 \ \rm kHz ⇒ violetter Pfeil.
- Dagegen besteht die Spektralfunktion S(f) aus diskreten Bessellinien bei den Frequenzen ... , 30,\ 35,\ 40,\ 45,\ \mathbf{50},\ 55,\ 60,\ 65,\ 70, ... (jeweils in \rm kHz).
- Eine Spektrallinie bei f = 57.5 \ \rm kHz gibt es nicht im Gegensatz zu einer Spektrallinie bei f = 70 \ \rm kHz.
- Dagegen gilt zu keinem Zeitpunkt f_{\rm A}(t) = 70 \ \rm kHz.
\text{Ergo:}
Die Augenblicksfrequenz f_{\rm A}(t) ist also keine physikalisch messbare Frequenz im herkömmlichen Sinne, sondern nur eine fiktive, mathematische Größe, nämlich die Ableitung der Winkelfunktion ψ(t).
Signalverläufe bei Frequenzmodulation
Wie im Kapitel Phasenmodulation gehen wir weiterhin davon aus, dass das Trägersignal z(t) cosinusförmig verläuft und das Quellensignal q(t) spitzenwertbegrenzt ist.
\text{Definition:} Ist bei einem Übertragungssystem die Augenblickskreisfrequenz ω_{\rm A}(t) linear abhängig vom Momentanwert des Quellensignals q(t), so spricht man von Frequenzmodulation \rm (FM):
- \omega_{\rm A}(t) = 2 \pi \cdot f_{\rm A}(t) = \omega_{\rm T} + K_{\rm FM} \cdot q(t) \hspace{0.05cm}.
Hierbei bezeichnet K_{\rm FM} eine dimensionsbehaftete Konstante. Beschreibt q(t) einen Spannungsverlauf, so hat K_{\rm FM} die Einheit \rm V^{–1}s^{–1}.
Für die Winkelfunktion \psi(t) und das modulierte Signal s(t) erhält man bei der Frequenzmodulation:
- \psi(t) = \omega_{\rm T} \cdot t + K_{\rm FM} \cdot \int q(t)\hspace{0.1cm}{\rm d}t \hspace{0.05cm}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}s(t) = A_{\rm T} \cdot \cos \big[\psi(t)\big] \hspace{0.05cm}.
Aus dieser Gleichung lässt sich sofort ablesen:
- Auch bei der Frequenzmodulation bewegt sich das äquivalente Tiefpass–Signal wegen der konstanten Hüllkurve ⇒ a(t) = A_{\rm T} auf einem Kreisbogen.
- Ein Frequenzmodulator kann mit Hilfe eines Integrators und eines Phasenmodulators realisiert werden.
- Der FM–Demodulator besteht demzufolge aus PM–Demodulator und Differenzierer, wie im oberen Teil der folgenden Grafik dargestellt ist.
Die untere Grafik zeigt den umgekehrten Zusammenhang, nämlich die mögliche Beschreibung von PM–Modulator und –Demodulator durch die entsprechenden FM–Komponenten.
\text{Man erkennt aus der oben angegebenen Gleichung auch;}
- Die auf der Seite "Eine sehr einfache, leider nicht ganz richtige Modulatorgleichung" im ersten Kapitel dieses Buches angegebene Gleichung im Fall der Frequenzmodulation wird nur in Sonderfällen gültig sein.
- Bei Frequenzmodulation ist die Umwandlung
- s(t) = a(t) \cdot \cos (\omega (t) \cdot t + \phi(t)) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t) = A_{\rm T} \cdot \cos (\omega (t) \cdot t + \phi_{\rm T})
- nur manchmal erlaubt, zum Beispiel beim nichtlinearen digitalen Modulationsverfahren „Frequency Shift Keying” \rm (FSK) mit rechteckförmigem Grundimpuls.
Frequenzmodulation eines Cosinussignals
Bei cosinusförmigem Quellensignal q(t) und Frequenzmodulation gilt für die Augenblickskreisfrequenz:
- q(t) = A_{\rm N} \cdot \cos (\omega_{\rm N} \cdot t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \omega_{\rm A}(t) = \omega_{\rm T} + K_{\rm FM} \cdot A_{\rm N} \cdot \cos(\omega_{\rm N} \cdot t)\hspace{0.05cm}.
Integriert man diese über die Zeit, so erhält man die Winkelfunktion:
- \psi(t) = \omega_{\rm T} \cdot t + \frac {K_{\rm FM} \cdot A_{\rm N}}{\omega_{\rm N}} \cdot \sin (\omega_{\rm N} \cdot t) \hspace{0.05cm}.
Ein Vergleich mit den Aussagen im Kapitel Phasenmodulation macht deutlich:
- Die Frequenzmodulation eines Cosinussignals ergibt qualitativ das gleiche Sendesignal s(t) wie die Phasenmodulation eines sinusförmigen Quellensignals q(t). Voraussetzung hierfür ist allerdings, dass die Modulatorkonstanten entsprechend dem Verhältnis K_{\rm FM}/K_{\rm PM} = ω_{\rm N} aneinander angepasst sind.
- Das Sendesignal s(t) lässt sich somit bei den beiden Konstellationen „PM – Sinussignal” sowie „FM – Cosinussignal” einheitlich beschreiben:
- s(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm} \big[\omega_{\rm T} \cdot t + \eta \cdot \sin (\omega_{\rm N} \cdot t)\big] \hspace{0.05cm}.
- Allerdings sind bei Anwendung dieser Gleichung für den Modulationsindex η bei Phasen– und Frequenzmodulation unterschiedliche Gleichungen zu verwenden:
- \eta_{\rm PM} = {K_{\rm PM} \cdot A_{\rm N}},
- \eta_{\rm FM} = \frac {K_{\rm FM} \cdot A_{\rm N}}{\omega_{\rm N}} \hspace{0.05cm}.
- Ist das Quellensignal keine harmonische Schwingung, sondern setzt sich aus mehreren Frequenzen zusammen, so unterscheiden sich die Zeitsignale bei Phasen– und Frequenzmodulation auch qualitativ. Dies erkennt man beispielsweise beim früheren Vergleich von PSK und FSK.
\text{Beispiel 2:} Wir gehen nun von einem cosinusförmigen Quellensignal q(t) mit der Amplitude A_{\rm N} = 3 \ \rm V und der Frequenz f_{\rm N} = 5 \ \rm kHz aus und betrachten die Signalverläufe von Phasenmodulation \rm (PM) und Frequenzmodulation \rm (FM) bei gleichem Modulationsindex η = 1.5.
Die mittlere Grafik zeigt das phasenmodulierte Signal (rote Kurve) für die Modulatorparameter f_{\rm T} = 50 \ \rm kHz und K_{\rm PM} = \rm 0.5 V^{–1}:
- s_{\rm PM}(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm} \big[\omega_{\rm T} \cdot t + \eta \cdot \cos (\omega_{\rm N} \cdot t)\big ] \hspace{0.05cm}.
- Bei Phasenmodulation ergibt sich mit A_{\rm N} = 3 \ \rm V für den Phasenhub (Modulationsindex) η = 1.5 ≈ π/2.
- Die maximale Abweichung der Nulldurchgänge von ihren (äquidistanten) Solllagen beträgt somit etwa ein Viertel der Trägerperiode.
- Ist das Quellensignal q(t) > 0, so kommen die Nulldurchgänge verfrüht, bei q(t) < 0 verspätet.
Die untere Grafik zeigt das frequenzmodulierte Signal mit gleichem Modulationsindex η:
- s_{\rm FM}(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm} \big[\omega_{\rm T} \cdot t + \eta \cdot \sin (\omega_{\rm N} \cdot t)\big ] \hspace{0.05cm}.
Erreicht wird in diesem Fall η = 1.5 durch die Modulatorkonstante
- K_{\rm FM} = \frac {\eta \cdot \omega_{\rm N} }{A_{\rm N} } = {K_{\rm PM} \cdot \omega_{\rm N} }
- \Rightarrow \hspace{0.3cm} K_{\rm FM} = 0.5\,{\rm V}^{-1} \cdot 2 \pi \cdot 5\,{\rm kHz} = 15708\,{\rm V}^{-1}{\rm s}^{-1} \hspace{0.05cm}.
- Der Frequenzhub beträgt hier Δf_{\rm A} = η · f_{\rm N} = 7.5 \ \rm kHz, und es treten Augenblicksfrequenzen zwischen f_{\rm T}-Δf_{\rm A} = 42.5 und f_{\rm T}+Δf_{\rm A} =57.5 \ \rm kHz auf.
- Die Nulldurchgänge stimmen nun bei den Maxima und den Minima des Quellensignals q(t) mit denen des Trägersignals z(t) überein, während die maximalen Phasenabweichungen bei den Nulldurchgängen von q(t) zu erkennen sind. Dies ist genau umgekehrt wie bei der Phasenmodulation.
WM–Spektrum einer harmonischen Schwingung
Nun setzen wir für das Quellensignal allgemein eine harmonische Schwingung mit der Phase ϕ_{\rm N} voraus:
- q(t) = A_{\rm N} \cdot \cos \hspace{-0.1cm} \big[2 \pi f_{\rm N} \cdot t + \phi_{\rm N}\big ].
Uns interessiert die Spektralfunktion S(f). Zur einfacheren Darstellung betrachten wir im Folgenden das Betragsspektrum |S_+(f)| des analytischen Signals, aus dem |S(f)| in der bekannten Weise hergeleitet werden kann.
Für jede Art von Winkelmodulation in der hier beschriebenen Weise – egal, ob Phasen– oder Frequenzmodulation – gilt unabhängig von der Phase ϕ_{\rm N} des Quellensignals:
- |S_{\rm +}(f)| = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}|{\rm J}_n (\eta)| \cdot \delta \big[f - (f_{\rm T} + n \cdot f_{\rm N})\big]\hspace{0.05cm}.
Diese Gleichung lässt sich wie folgt begründen:
- Auf der Seite "Äquivalentes Tiefpass-Signal bei PM" wurde diese Gleichung für ein phasenmoduliertes Sinussignal abgeleitet, wobei η = A_{\rm N} · K_{\rm PM} den Modulationsindex bezeichnet und {\rm J}_n(η) die Besselfunkton erster Art und n–ter Ordnung. K_{\rm PM} ist die Modulatorkonstante.
- Durch eine andere Nachrichtenphase ϕ_{\rm N} ändert sich nur die Phasenfunktion {\rm arc} \ S_+(f), nicht aber das Betragsspektrum |S_+(f)|. Dieses wichtige Ergebnis wurde auch durch die Aufgabe 3.3Z bestätigt.
- Auf der Seite "Frequenzmodulation eines Cosinussignals" wurde gezeigt, dass ein FM–Signal in gleicher Weise wie ein PM–Signal dargestellt werden kann, wenn der Modulationsindex η = K_{\rm FM} · A_{\rm N}/ω_{\rm N} verwendet wird. Folgerichtig sind auch die Betragsspektren bei Phasen- und Frequenzmodulation in gleicher Form darstellbar.
Wir verweisen hier gerne auch auf den zweiten Teil des Lernvideos "Winkelmodulation – Frequenz– und Phasenmodulation".
\text{Beispiel 3:} Wir betrachten wieder eine harmonische Schwingung mit der Amplitude A_{\rm N} = 3 \ \rm V nach
- einer Phasenmodulation mit K_{\rm PM} = \rm 0.5 \ \rm V^{–1},
- einer Frequenzmodulation mit K_{\rm FM} = \rm 15708 \ \rm V^{–1}s^{–1}.
Die zugehörigen Signalverläufe sind im \text{Beispiel 2} dargestellt:
- Bei beiden Übertragungssystemen ergibt sich für f_{\rm N} = 5 \ \rm kHz ein Besselspektrum mit dem Modulationsindex η = 1.5.
- Die identischen Betragsspektren des analytischen Signals (nur positive Frequenzen) sind in den oberen Grafiken dargestellt.
- Bessellinien mit Werten kleiner als 0.03 sind hierbei in beiden Fällen vernachlässigt.
Die unteren Grafiken gelten für die Nachrichtenfrequenz f_{\rm N} = 3 \ \rm kHz:
- Bei der Phasenmodulation ergibt sich gegenüber f_{\rm N} = 5 \ \rm kHz nun eine schmalere Spektralfunktion, da der Abstand der Bessellinien nur mehr 3 \ \rm kHz beträgt (linke untere Grafik).
- Da sich der Modulationsindex η = 1.5 nicht ändert, ergeben sich die gleichen Besselgewichte wie bei f_{\rm N} = 5 \ \rm kHz (obere Grafik).
- Auch bei der Frequenzmodulation treten nun die Bessellinien im Abstand von 3 \ \rm kHz auf (rechte untere Grafik). Es gibt aber nun aufgrund des größeren η = 2.5 deutlich mehr Bessellinien als im rechten oberen (für η = 1.5 gültigen) Diagramm.
- Dies folgt aus der Tatsache, dass bei Frequenzmodulation η umgekehrt proportional zu f_{\rm N} ist.
Einfluss einer Bandbegrenzung bei Winkelmodulation
Fassen wir einige bisherige Resultate dieses Abschnittss kurz zusammen, wobei wir beispielhaft
- die Trägerfrequenz f_{\rm T} = 100 \ \rm kHz,
- die Nachrichtenfrequenz f_{\rm N} = 5 \ \rm kHz und
- den Modulationsindex η = π/2 \approx 1.5
voraussetzen:
- Das Spektrum einer winkelmodulierten Schwingung besteht aus Bessellinien um den Träger f_{\rm T} im Abstand f_{\rm N} der Nachrichtenfrequenz und ist theoretisch unendlich weit ausgedehnt.
- Selbst wenn man alle Spektrallinien mit Beträgen kleiner als 0.01 vernachlässigt, beträgt die dann endliche Bandbreite für η = π/2 noch immer B_{\rm HF} = 8 · f_{\rm N} = 40 \ \rm kHz.
- Die Ortskurve – also der Verlauf des äquivalenten Tiefpass–Signals in der komplexen Ebene – ist im Idealfall ein Kreisbogen mit einem Öffnungswinkel von ±1.57 \ {\rm rad} = ±90^\circ.
- Dieser Kreisbogen nach der vektoriellen Addition ergibt sich allerdings nur dann, wenn alle Bessellinien in der Ortskurve mit den richtigen Zeigerlängen, den richtigen Phasenlagen und den richtigen Kreisfrequenzen rotieren.
- Logischerweise wird die kreisbogenförmige Ortskurve verändert, wenn Spektrallinien verfälscht werden (zum Beispiel durch lineare Kanalverzerrungen) oder ganz fehlen (zum Beispiel durch eine Bandbegrenzung).
- Da der ideale Winkeldemodulator die Phase ϕ_r(t) des Empfangssignals detektiert und daraus das Sinkensignal v(t) gewinnt, wird dieses dadurch verfälscht und zwar sogar nichtlinear. Das heißt: Die Verzerrungen sind irreversibel und können nicht durch ein lineares Filter kompensiert werden.
- Das bedeutet gleichzeitig: Aufgrund linearer Verzerrungen auf dem Kanal kommt es zu nichtlinearen Verzerrungen im demodulierten Signal v(t) ⇒ dadurch entstehen neue Frequenzen (Oberwellen), die im Quellensignal q(t) nicht enthalten waren.
- Je kleiner die zur Verfügung stehende Bandbreite B_{\rm HF} ist und je größer der Modulationsindex η gewählt wird, desto größer wird der die nichtlinearen Verzerrungen beschreibende Klirrfaktor K.
- Als Faustformel für die erforderliche HF–Bandbreite für einen geforderten Klirrfaktor K gilt nach der so genannten „Carson–Regel”:
- K < 10\%\text{:}\hspace{0.6cm} B_{\rm HF} \ge 2 \cdot f_{\rm N} \cdot (\eta +1)\hspace{0.05cm},
- K < 1\%\text{:}\hspace{0.72cm} B_{\rm HF} \ge 2 \cdot f_{\rm N} \cdot(\eta +2)\hspace{0.05cm}.
\text{Beispiel 4:} Wir gehen weiterhin von den Systemparametern f_{\rm T} = 100 \ \rm kHz, f_{\rm N} = 5 \ \rm kHz und η = π/2 aus. Die Grafik zeigt für diesen Fall links das Betragsspektrum \vert S_{\rm TP}(f) \vert des äquivalenten Tiefpass–Signals und rechts die zugehörige komplexe Zeitfunktion s_{\rm TP}(t).
- Um den Klirrfaktor auf Werte K < 1\% zu begrenzen, ist nach der Carson–Regel eine HF–Bandbreite von B_{1 \%} ≈ 36 \ \rm kHz erforderlich.
- s_{\rm TP}(t) setzt sich dann aus der Konstanten D_0 und je drei entgegen dem Uhrzeigersinn (D_1, D_2, D_3) bzw. im Uhrzeigersinn (D_{-1}, D_{-2}, D_{-3}) drehenden Zeigern zusammen:
- \begin{align*}s_{\rm TP}(t) & = \sum_{n = - 3}^{+3}D_n \cdot{\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}n \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.02cm}\cdot \hspace{0.05cm} t }\end{align*}
- Die ockerfarbene Kurve in der Zeitbereichsdarstellung macht deutlich, dass sich das äquivalente Tiefpass-Signal durch diese Bandbegrenzung nur geringfügig vom verzerrungsfreien Halbkreis (dünne schwarze Linie) unterscheidet.
Gibt man sich mit einem Klirrfaktor K < 10\% zufrieden, so ist bereits die HF–Bandbreite B_{10 \%} ≈ 26\ \rm kHz ausreichend.
- Damit werden auch die beiden Fourierkoeffizienten D_3 und D_{-3} abgeschnitten und die violett dargestellte Ortskurve beschreibt einen Parabelabschnitt.
- Die Simulation dieses Fallbeispiels liefert den Klirrfaktor K ≈ 6\%. Man erkennt:
Die Carson–Regel liefert oft ein etwas zu pessimistisches Ergebnis (10\% anstelle von 6\%).
Realisierung eines FM–Modulators
Eine Frequenzmodulation erhält man dann, wenn die Schwingfrequenz eines Oszillators im Rhythmus des modulierenden Signals verändert wird. Als frequenzbestimmende Elemente dienen meist RC–Glieder oder Schwingkreise. Die linke Grafik zeigt eine schaltungstechnische Realisierungsform; die genaue Schaltungsbeschreibung finden Sie in [Mäu 88][1]. Rechts ist die idealisierte Frequenz–Spannungskennlinie dargestellt.
Hier sollen nur einige wenige Anmerkungen gemacht werden:
- Die anliegende Spannung u(t) setzt sich additiv aus dem Quellensignal q(t) und einem Gleichanteil A_0 zusammen, der den Arbeitspunkt festlegt.
- Die Kapazität C der Kapazitätsdiode ist näherungsweise proportional zu 1/u^{2}(t), so dass sich die Schwingfrequenz des LC–Oszillators abhängig von q(t) verändert.
- Bei nur kleiner Frequenzänderung hängen u(t) und f_{\rm A}(t) linear zusammen. Damit ist die Augenblickskreisfrequenz mit der Steigung K_{\rm FM} der Modulatorkennlinie wie folgt gegeben:
- \omega_{\rm A}(t) = \omega_{\rm T} + K_{\rm FM} \cdot q(t) \hspace{0.05cm}.
- Die Gegentaktschaltung aus den beiden Kapazitätsdioden dient unter Anderem zur Kompensation von Unsymmetrien und damit zur Verminderung der quadratischen Verzerrungen.
- Mit dem Eingang A_0+{\rm d}q(t)/{\rm d}t erhält man am Ausgang das frequenzmodulierte Signal s(t).
PLL–Realisierung eines FM–Demodulators
Die folgende Grafik zeigt eine zweite Realisierungsmöglichkeit des FM–Demodulators. Eine detaillierte Schaltungsbeschreibung dieses PLL–FM–Demodulators und weitere FM–Demodulatoren – zum Beispiel mittels Flankendiskriminator – finden Sie in [Mäu 88][1].
In Stichpunkten lässt sich diese Schaltung, die als Phasenregelschleife ("Phase–Locked–Loop", \rm PLL) arbeitet, wie folgt beschreiben:
- Der Phasendetektor ermittelt die Phasenunterschiede (Abstände der Nulldurchgänge) zwischen dem Empfangssignal r(t) und dem vom VCO bereitgestellten Vergleichssignal.
- Das Ausgangssignal v(t) nach Tiefpass–Filterung und Verstärkung ist dann näherungsweise gleich dem Quellensignal q(t), wenn dieses sendeseitig FM–moduliert wurde.
- Das Ausgangssignal v(t) wird gleichzeitig an den Eingang des spannungsgesteuerten Oszillators angelegt. Man bezeichnet diesen auch als "Voltage Controlled Oscillator", abgekürzt \rm VCO.
- Das Ausgangssignal des VCO wird permanent in der Weise nachgeregelt, dass dessen Frequenz möglichst der Augenblicksfrequenz f_{\rm A}(t) des Empfangssignals r(t) entspricht.
Aufgaben zum Kapitel
Aufgabe 3.5: PM und FM bei Rechtecksignalen
Aufgabe 3.5Z: Phasenmodulation eines Trapezsignals
Aufgabe 3.6: PM oder FM? Oder AM?
Aufgabe 3.7: Winkelmodulation einer harmonischen Schwingung
Aufgabe 3.8: Modulationsindex und Bandbreite
Aufgabe 3.9: Kreisbogen und Parabel
Quellenverzeichnis
- ↑ Hochspringen nach: 1,0 1,1 Mäusl, R.: Analoge Modulationsverfahren. Heidelberg: Dr. Hüthig, 1988.