Exercise 2.8: COST Delay Models
On the right, four delay power density spectra are plotted logarithmically as a function of the delay time τ
- 10⋅lg(ΦV(τ)/Φ0),
Here the abbreviation ϕ0=ϕV(τ=0) is used. These are the so-called COST–delay models.
The upper sketch contains the two profiles RA (Rural Area) and TU (Typical Urban). Both of these are exponential:
- ΦV(τ)/Φ0=e−τ/τ0.
The value of the parameter τ0 (time constant of the ACF) should be determined from the graphic in subtask (1). Note the specified values of τ−30 for ΦV(τ−30)=−30 dB:
- RA:τ−30=0.75µs,TU:τ−30=6.9µs.
The lower graph applies to less favourable conditions in
- urban areas (Bad Urban, BU):
- ΦV(τ)/Φ0={e−τ/τ00.5⋅e(5μs−τ)/τ0if0<τ<5µs,τ0=1µs,if5µs<τ<10µs,τ0=1µs,
- in rural areas (Hilly Terrain, HT):
- ΦV(τ)/Φ0={e−τ/τ00.04⋅e(15μs−τ)/τ0if0<τ<2µs,τ0=0.286µs,if15µs<τ<20µs,τ0=1µs.
For the models RA, TU and BU the following parameters are to be determined:
- The delay spread TV is the standard deviation of the delay τ.
If the delaypower density spectrum ΦV(τ) has an exponential course as with the profiles RA and TU, then TV=τ0, see Exercise 2.7.
- The coherence bandwidth BK is the value of Δf at which the magnitude of the frequency correlation function φF(Δf) has dropped to half its value for the first time. With exponential ΦV(τ) as with RA and TU the product TVis⋅BK≈0.276, see Exercise 2.7.
Notes:
- This task belongs to chapter GWSSUS–Kanalmodell.
- The following integrals are given:
- 1τ0⋅∫∞0e−τ/τ0dτ=1,1τ0⋅∫∞0τ⋅e−τ/τ0dτ=τ0,1τ0⋅∫∞0τ2⋅e−τ/τ0dτ=2τ20.
Questionnaire
Sample solution
- 10⋅lg(ΦV(τ−30)Φ0)=10⋅lg[exp[−τ−30τ0]]!=−30dB
- ⇒lg[exp[−τ−30τ0]]=−3⇒ln[exp[−τ−30τ0]]=−3⋅ln(10)⇒τ0=τ−303⋅ln(10)≈τ−306.9.
Here τ−30 denotes the delay that leads to the logarithmic ordinate value −30 dB. Thus one obtains
- for rural area (RA) with \tau_{–30} = 0.75 \ \rm µ s:
- \tau_{\rm 0} = \frac{0.75\,{\rm \mu s}}{ 6.9} \hspace{0.1cm}\underline {\approx 0.109\,{\rm µ s}} \hspace{0.05cm},
- for urban and suburban areas (Typical Urban, TU) with \tau_{–30} = 6.9 \ \rm µ s:
- \tau_{\rm 0} = \frac{6.9\,{\rm \mu s}}{ 6.9} \hspace{0.1cm}\underline {\approx 1\,{\rm µ s}} \hspace{0.05cm},
(2) In Exercise 2.7, it was shown that the delay spread is T_{\rm V} =\tau_0 when the delay power density spectrum decreases exponentially according to {\rm e}^{-\tau/\tau_0}. Thus the following applies:
- for „Rural Area”: \hspace{0.4cm} T_{\rm V} \ \underline {= 0.109 \ \rm µ s},
- for „Typical Urban”: \hspace{0.4cm} T_{\rm V} \ \underline {= 1 \ \rm µ s}.
(3) In Exercise 2.7 it was also shown that for the coherence bandwidth B_{\rm K} \approx 0.276/\tau_0 applies. It follows:
- B_{\rm K} \ \underline {\approx 2500 \ \rm kHz} („Rural Area”),
- B_{\rm K} \ \underline {\approx 276 \ \ \rm kHz} („Typical Urban”)
(4) The second solution is correct:
- Frequency selectivity of the mobile radio channel is present if the signal bandwidth B_{\rm S} is larger than the coherence bandwidth B_{\rm K} (or at least of the same order of magnitude).
- The smaller B_{\rm K} is, the more often this happens.
(5) According to the given equation, we have {\it \Phi}_{\rm V}(\tau = 5.001 \ \rm µ s)/{\it \Phi}_0 \hspace{0.15cm}\underline{\approx0.5}.
- On the other hand, for slightly smaller \tau (for example \tau = 4,999 \ \rm µ s) we have approximately
- {{\it \Phi}_{\rm V}(\tau = 4.999\,{\rm \mu s})}/{{\it \Phi}_{\rm 0}} = {\rm e}^{ -{4.999\,{\rm µ s}}/{ 1\,{\rm \mu s}}} \approx {\rm e}^{-5} \hspace{0.1cm}\underline {= 0.00674 }\hspace{0.05cm}.
(6) The power P_1 of all signal components with delays between 0 and 5 \ \mu\rm s is:
- P_1 = {\it \Phi}_{\rm 0} \cdot \int_{0}^{5\,{\rm \mu s}} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm} {\it \Phi}_{\rm 0} \cdot \int_{0}^{\infty} {\rm e}^{ -{\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau = {\it \Phi}_{\rm 0} \cdot \tau_0 \hspace{0.05cm}.
- The power outside [0\;\mu \mathrm{s}, 5\;\mu \mathrm{s}] is
- P_2 = \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{5\,{\rm µ s}}^{\infty} {\rm exp}[ \frac{5\,{\rm µ s} -\tau}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm} \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{0}^{\infty} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau = \frac{{\it \Phi}_{\rm 0} \cdot \tau_0}{2} \hspace{0.05cm}.
- Correspondingly, the percentage of power between 0 and 5 \ \mu\rm s is
- \frac{P_1}{P_1+ P_2} = \frac{2}{3} \hspace{0.15cm}\underline {\approx 66.7\%}\hspace{0.05cm}.
The figure shows {\it \Phi}_{\rm V}(\tau) in linear scale:
- The areas P_1 and P_2 are labeled.
- The left graph is for {\rm BU}, the right graph is for {\rm HT}.
- For the latter, the power percentage of all later echoes (later than 15 \ \rm µ s) is only about 12\%.
(7) The area of the entire power density spectrum gives P = 1.5 \cdot \phi_0 \cdot \tau_0.
- Normalizing {\it \Phi}_{\rm V}(\tau) to this value yields the probability density function f_{\rm V}(\tau), as shown in the next graph (left diagram).
- With \tau_0 = 1 \ \ \rm µ s and \tau_5 = 5 \ \ \rm µ s, the mean is:
- m_{\rm V}= \int_{0}^{\infty} f_{\rm V}(\tau) \hspace{0.15cm}{\rm d} \tau
- \Rightarrow \hspace{0.3cm}m_{\rm V}= \frac{2}{3\tau_0} \cdot \int_{0}^{\tau_5} \tau \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau \ +
- \hspace{1.7cm}+\ \frac{1}{3\tau_0} \cdot \int_{\tau_5}^{\infty} \tau \cdot {\rm e}^{ (\tau_5 -\tau)/\tau_0}\hspace{0.15cm}{\rm d} \tau \hspace{0.05cm}.
- The first integral is equal to 2\tau_0/3 according to the provided expression.
- With the substitution \tau' = \tau \, -\tau_5 you finally obtain using the integral solutions given above:
- m_{\rm V} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2\tau_0}{3} + \frac{1}{3\tau_0} \cdot \int_{0}^{\infty} (\tau_5 + \tau') \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' = \frac{2\tau_0}{3} + \frac{\tau_5}{3\tau_0} \cdot \int_{0}^{\infty} \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' + \frac{1}{3\tau_0} \cdot \int_{0}^{\infty} \tau' \cdot \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau '
- \Rightarrow \hspace{0.3cm}m_{\rm V}= \frac{2\tau_0}{3} + \frac{\tau_5}{3}+ \frac{\tau_0}{3} = \tau_0 + \frac{\tau_5}{3} \hspace{0.15cm}\underline {\approx 2.667\,{\rm µ s}} \hspace{0.05cm}.
- The variance \sigma_{\rm V}^2 is equal to the second moment (mean of the square) of the zero-mean random variable \theta = \tau \, –m_{\rm V}, whose PDF is shown in the right graph
- From this T_{\rm V} = \sigma_{\rm V} can be specified.
- A second possibility is to first calculate the mean square value of the random variable \tau and from this the variance \sigma_{\rm V}^2 using Steiner's theorem.
- With the substitutions and approximations already described above, one obtains
- m_{\rm V2} \hspace{-0.1cm} \ \approx \ \hspace{-0.1cm} \frac{2}{3\tau_0} \cdot \int_{0}^{\infty} \tau^2 \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau + \frac{1}{3\tau_0} \cdot \int_{0}^{\infty} (\tau_5 + \tau')^2 \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau '
- \Rightarrow \hspace{0.3cm}m_{\rm V2} = \frac{2}{3} \cdot \int_{0}^{\infty} \frac{\tau^2}{\tau_0} \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau + \frac{\tau_5^2}{3} \cdot \int_{0}^{\infty} \frac{1}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' +\frac{2\tau_5}{3} \cdot \int_{0}^{\infty} \frac{\tau '}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' + \frac{1}{3} \cdot \int_{0}^{\infty} \frac{{\tau '}^2}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' \hspace{0.05cm}.
- With the integrals given above, we have
- m_{\rm V2} \approx \frac{2}{3} \cdot 2 \tau_0^2 + \frac{\tau_5^2}{3} \cdot 1 + \frac{2\tau_5}{3} \cdot \tau_0 + \frac{1}{3} \cdot 2 \tau_0^2 = 2 \tau_0^2 + \frac{\tau_5^2}{3} + \frac{2 \cdot \tau_0 \cdot \tau_5}{3}
- \Rightarrow \hspace{0.3cm} \sigma_{\rm V}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} m_{\rm V2} - m_{\rm V}^2 = 2 \tau_0^2 + \frac{\tau_5^2}{3} + \frac{2 \cdot \tau_0 \cdot \tau_5}{3} - (\tau_0 + \frac{\tau_5}{3})^2 =\tau_0^2 + \frac{2\tau_5^2}{9} = (1\,{\rm µ s})^2 + \frac{2\cdot (5\,{\rm µ s})^2}{9} = 6.55\,({\rm µ s})^2
- \Rightarrow \hspace{0.3cm} T_{\rm V} = \sigma_{\rm V} \hspace{0.15cm}\underline {\approx 2.56\,{\rm µ s}}\hspace{0.05cm}.
The above graph shows the parameters T_{\rm V} and \sigma_{\rm V}.