Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Exercise 2.8: COST Delay Models

Aus LNTwww
Wechseln zu:Navigation, Suche

COST–Verzögerungsmodelle

On the right, four delay power density spectra are plotted logarithmically as a function of the delay time  τ 

10lg(ΦV(τ)/Φ0),

Here the abbreviation  ϕ0=ϕV(τ=0)  is used. These are the so-called COST–delay models.

The upper sketch contains the two profiles  RA  (Rural Area) and  TU  (Typical Urban). Both of these are exponential:

ΦV(τ)/Φ0=eτ/τ0.

The value of the parameter  τ0  (time constant of the ACF) should be determined from the graphic in subtask (1). Note the specified values of   τ30 for  ΦV(τ30)=30 dB:

RA:τ30=0.75µs,TU:τ30=6.9µs.

The lower graph applies to less favourable conditions in

  • urban areas (Bad Urban,  BU):
ΦV(τ)/Φ0={eτ/τ00.5e(5μsτ)/τ0if0<τ<5µs,τ0=1µs,if5µs<τ<10µs,τ0=1µs,
  • in rural areas (Hilly Terrain,  HT):
ΦV(τ)/Φ0={eτ/τ00.04e(15μsτ)/τ0if0<τ<2µs,τ0=0.286µs,if15µs<τ<20µs,τ0=1µs.

For the models   RA,  TU  and     BU  the following parameters are to be determined:

  • The  delay spread  TV  is the standard deviation of the delay  τ.
    If the delaypower density spectrum  ΦV(τ)  has an exponential course as with the profiles  RA  and  TU, then  TV=τ0, see  Exercise 2.7.
  • The coherence bandwidth  BK  is the value of  Δf at which the magnitude of the frequency correlation function  φF(Δf)  has dropped to half its value for the first time. With exponential  ΦV(τ)  as with  RA  and  TU  the product  TVisBK0.276, see  Exercise 2.7.




Notes:

1τ00eτ/τ0dτ=1,1τ00τeτ/τ0dτ=τ0,1τ00τ2eτ/τ0dτ=2τ20.


Questionnaire

1

Specify the parameter  τ0  of the delay power density spectrum for the profiles  RA  and  TU .

RA: τ0 = 

 µs
TU: τ0 = 

 µs

2

How large is the delay spread  TV  of these channels?

RA: TV = 

 µs
TU: TV = 

 µs

3

What is the coherence bandwidth  BK  of these channels?

RA: BK = 

  kHz
TU: BK = 

  kHz

4

For which channel does frequency selectivity play a greater role?

Rural Area  (RA).
Typical urban  (TU).

5

How large is the (normalized) power density for „Bad Urban”  (BU)   with   τ=5,001 µs  and with   τ=4,999 µs?

ΦV(τ=5.001 µs) = 

 Φ0
ΦV(τ=4,999 µs) = 

 Φ0

6

We consider  BU again. Let P1 be the power of the signal between 0  and  5 µs, and let P2 be the remaining signal power. What percentage of the total signal power is 0  and  5 µs?

P1/(P1+P2) = 

 %

7

Calculate the delay spread  TV  of the profile  BU. Note: The average delay is  mV=E[τ]=2.667 µs.

TV = 

 µs


Sample solution

(1)  The following property can be seen from the graph:

10lg(ΦV(τ30)Φ0)=10lg[exp[τ30τ0]]!=30dB
lg[exp[τ30τ0]]=3ln[exp[τ30τ0]]=3ln(10)τ0=τ303ln(10)τ306.9.

Here τ30 denotes the delay that leads to the logarithmic ordinate value 30 dB. Thus one obtains

  • for rural area (RA) with \tau_{–30} = 0.75 \ \rm µ s:
\tau_{\rm 0} = \frac{0.75\,{\rm \mu s}}{ 6.9} \hspace{0.1cm}\underline {\approx 0.109\,{\rm µ s}} \hspace{0.05cm},
  • for urban and suburban areas (Typical Urban, TU) with \tau_{–30} = 6.9 \ \rm µ s:
\tau_{\rm 0} = \frac{6.9\,{\rm \mu s}}{ 6.9} \hspace{0.1cm}\underline {\approx 1\,{\rm µ s}} \hspace{0.05cm},


(2)  In Exercise 2.7, it was shown that the delay spread is T_{\rm V} =\tau_0 when the delay power density spectrum decreases exponentially according to {\rm e}^{-\tau/\tau_0}. Thus the following applies:

  • for „Rural Area”: \hspace{0.4cm} T_{\rm V} \ \underline {= 0.109 \ \rm µ s},
  • for „Typical Urban”: \hspace{0.4cm} T_{\rm V} \ \underline {= 1 \ \rm µ s}.


(3)  In Exercise 2.7 it was also shown that for the coherence bandwidth B_{\rm K} \approx 0.276/\tau_0 applies. It follows:

  • B_{\rm K} \ \underline {\approx 2500 \ \rm kHz} („Rural Area”),
  • B_{\rm K} \ \underline {\approx 276 \ \ \rm kHz} („Typical Urban”)



(4) The second solution is correct:

  • Frequency selectivity of the mobile radio channel is present if the signal bandwidth B_{\rm S} is larger than the coherence bandwidth B_{\rm K} (or at least of the same order of magnitude).
  • The smaller B_{\rm K} is, the more often this happens.


(5)  According to the given equation, we have {\it \Phi}_{\rm V}(\tau = 5.001 \ \rm µ s)/{\it \Phi}_0 \hspace{0.15cm}\underline{\approx0.5}.

  • On the other hand, for slightly smaller \tau (for example \tau = 4,999 \ \rm µ s) we have approximately
{{\it \Phi}_{\rm V}(\tau = 4.999\,{\rm \mu s})}/{{\it \Phi}_{\rm 0}} = {\rm e}^{ -{4.999\,{\rm µ s}}/{ 1\,{\rm \mu s}}} \approx {\rm e}^{-5} \hspace{0.1cm}\underline {= 0.00674 }\hspace{0.05cm}.


(6)  The power P_1 of all signal components with delays between 0 and 5 \ \mu\rm   s is:

P_1 = {\it \Phi}_{\rm 0} \cdot \int_{0}^{5\,{\rm \mu s}} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm} {\it \Phi}_{\rm 0} \cdot \int_{0}^{\infty} {\rm e}^{ -{\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau = {\it \Phi}_{\rm 0} \cdot \tau_0 \hspace{0.05cm}.
  • The power outside [0\;\mu \mathrm{s}, 5\;\mu \mathrm{s}] is
P_2 = \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{5\,{\rm µ s}}^{\infty} {\rm exp}[ \frac{5\,{\rm µ s} -\tau}{ \tau_0}] \hspace{0.15cm}{\rm d} \tau \hspace{0.15cm} \approx \hspace{0.15cm} \frac{{\it \Phi}_{\rm 0}}{2} \cdot \int_{0}^{\infty} {\rm exp}[ -{\tau}/{ \tau_0}] \hspace{0.15cm}{\rm d} \tau = \frac{{\it \Phi}_{\rm 0} \cdot \tau_0}{2} \hspace{0.05cm}.
  • Correspondingly, the percentage of power between 0 and 5 \ \mu\rm   s is
Delay power density of the COST profiles  {\rm BU}  and  {\rm HT}
\frac{P_1}{P_1+ P_2} = \frac{2}{3} \hspace{0.15cm}\underline {\approx 66.7\%}\hspace{0.05cm}.

The figure shows {\it \Phi}_{\rm V}(\tau) in linear scale:

  • The areas P_1 and P_2 are labeled.
  • The left graph is for  {\rm BU}, the right graph is for  {\rm HT}.
  • For the latter, the power percentage of all later echoes (later than 15 \ \rm µ s) is only about 12\%.


(7)  The area of the entire power density spectrum gives P = 1.5 \cdot \phi_0 \cdot \tau_0.

  • Normalizing {\it \Phi}_{\rm V}(\tau) to this value yields the probability density function f_{\rm V}(\tau), as shown in the next graph (left diagram).
Delay PDF of profile  {\rm BU}
  • With \tau_0 = 1 \ \ \rm µ s and   \tau_5 = 5 \ \ \rm µ s, the mean is:
m_{\rm V}= \int_{0}^{\infty} f_{\rm V}(\tau) \hspace{0.15cm}{\rm d} \tau
\Rightarrow \hspace{0.3cm}m_{\rm V}= \frac{2}{3\tau_0} \cdot \int_{0}^{\tau_5} \tau \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau \ +
\hspace{1.7cm}+\ \frac{1}{3\tau_0} \cdot \int_{\tau_5}^{\infty} \tau \cdot {\rm e}^{ (\tau_5 -\tau)/\tau_0}\hspace{0.15cm}{\rm d} \tau \hspace{0.05cm}.
  • The first integral is equal to 2\tau_0/3 according to the provided expression.
  • With the substitution \tau' = \tau \, -\tau_5 you finally obtain using the integral solutions given above:
m_{\rm V} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2\tau_0}{3} + \frac{1}{3\tau_0} \cdot \int_{0}^{\infty} (\tau_5 + \tau') \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' = \frac{2\tau_0}{3} + \frac{\tau_5}{3\tau_0} \cdot \int_{0}^{\infty} \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' + \frac{1}{3\tau_0} \cdot \int_{0}^{\infty} \tau' \cdot \cdot{\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau '
\Rightarrow \hspace{0.3cm}m_{\rm V}= \frac{2\tau_0}{3} + \frac{\tau_5}{3}+ \frac{\tau_0}{3} = \tau_0 + \frac{\tau_5}{3} \hspace{0.15cm}\underline {\approx 2.667\,{\rm µ s}} \hspace{0.05cm}.
  • The variance \sigma_{\rm V}^2 is equal to the second moment (mean of the square) of the zero-mean random variable \theta = \tau \, –m_{\rm V}, whose PDF is shown in the right graph
  • From this T_{\rm V} = \sigma_{\rm V} can be specified.
  • A second possibility is to first calculate the mean square value of the random variable \tau and from this the variance \sigma_{\rm V}^2 using Steiner's theorem.
  • With the substitutions and approximations already described above, one obtains
m_{\rm V2} \hspace{-0.1cm} \ \approx \ \hspace{-0.1cm} \frac{2}{3\tau_0} \cdot \int_{0}^{\infty} \tau^2 \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau + \frac{1}{3\tau_0} \cdot \int_{0}^{\infty} (\tau_5 + \tau')^2 \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau '
\Rightarrow \hspace{0.3cm}m_{\rm V2} = \frac{2}{3} \cdot \int_{0}^{\infty} \frac{\tau^2}{\tau_0} \cdot {\rm e}^{ - {\tau}/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau + \frac{\tau_5^2}{3} \cdot \int_{0}^{\infty} \frac{1}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' +\frac{2\tau_5}{3} \cdot \int_{0}^{\infty} \frac{\tau '}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' + \frac{1}{3} \cdot \int_{0}^{\infty} \frac{{\tau '}^2}{\tau_0} \cdot {\rm e}^{ - {\tau}'/{ \tau_0}} \hspace{0.15cm}{\rm d} \tau ' \hspace{0.05cm}.
  • With the integrals given above, we have
m_{\rm V2} \approx \frac{2}{3} \cdot 2 \tau_0^2 + \frac{\tau_5^2}{3} \cdot 1 + \frac{2\tau_5}{3} \cdot \tau_0 + \frac{1}{3} \cdot 2 \tau_0^2 = 2 \tau_0^2 + \frac{\tau_5^2}{3} + \frac{2 \cdot \tau_0 \cdot \tau_5}{3}
\Rightarrow \hspace{0.3cm} \sigma_{\rm V}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} m_{\rm V2} - m_{\rm V}^2 = 2 \tau_0^2 + \frac{\tau_5^2}{3} + \frac{2 \cdot \tau_0 \cdot \tau_5}{3} - (\tau_0 + \frac{\tau_5}{3})^2 =\tau_0^2 + \frac{2\tau_5^2}{9} = (1\,{\rm µ s})^2 + \frac{2\cdot (5\,{\rm µ s})^2}{9} = 6.55\,({\rm µ s})^2
\Rightarrow \hspace{0.3cm} T_{\rm V} = \sigma_{\rm V} \hspace{0.15cm}\underline {\approx 2.56\,{\rm µ s}}\hspace{0.05cm}.

The above graph shows the parameters T_{\rm V} and \sigma_{\rm V}.