Vom Zufallsexperiment zur Zufallsgröße

Aus LNTwww
Wechseln zu:Navigation, Suche

Zum Begriff der Zufallsgröße

In Kapitel 1.1 wurde bereits der Begriff Zufallsexperiment erläutert. Darunter versteht man einen unter gleichen Bedingungen beliebig oft wiederholbaren Versuch mit ungewissem Ergebnis $E$, bei dem jedoch die Menge { $E_μ$} der möglichen Ergebnisse angebbar ist.

Häufig sind die Versuchsergebnisse Zahlenwerte, z. B. beim Zufallsexperiment Werfen eines Würfels. Dagegen liefert das Experiment Münzwurf die zwei möglichen Ergebnisse Zahl und Bild.

Zur einheitlichen Beschreibung verschiedenartiger Experimente und auch wegen der besseren Handhabbarkeit verwendet man den Begriff Zufallsgröße, oft auch als Zufallsvariable bezeichnet.

Eine Zufallsgröße $z$ ist eine ein-eindeutige Abbildung der Ergebnismenge { $E_μ$} auf die Menge der reellen Zahlen. Ergänzend zu dieser Definition wird noch zugelassen, dass die Zufallsgröße neben dem Zahlenwert auch eine Einheit besitzt.


Zur Definition der Zufallsgröße


Nachfolgend werden einige Beispiele für Zufallsgrößen genannt:

  • Beim Zufallsexperiment Werfen einer Roulettekugel hat eine Unterscheidung zwischen $E$ und $z$ keine praktischen Auswirkungen, kann aber aus formalen Gründen durchaus sinnvoll sein. So bezeichnet $„E_μ =$ 8”, dass die Kugel in der mit „8“ markierten Vertiefung der Roulettescheibe zum Liegen gekommen ist. Arithmetische Operationen (zum Beispiel eine Erwartungswertbildung) sind anhand der Ergebnisse nicht möglich. Dagegen bezeichnet die Zufallsgröße $z$ tatsächlich einen Zahlenwert (hier ganzzahlig zwischen 0 und 36), aus dem der zu erwartende Mittelwert der Zufallsgröße (hier 18) ermittelt werden kann. Durchaus möglich, aber nicht sinnvoll wäre zum Beispiel die Zuordnung $E_μ =$ 8 ⇔ $z_μ ≠$ 8.
  • Beim Experiment Münzwurf sind die möglichen Ergebnisse Zahl und Bild, worauf keine arithmetische Operationen angewendet werden können. Erst durch die zwar willkürliche, aber ein-eindeutige Zuordnung zwischen der Ereignismenge { $E_μ$} = {Zahl, Bild} und der Zahlenmenge { $z_μ$} = {0, 1} kann hier überhaupt ein Kennwert angegeben werden. Ebenso könnte man die Zuordnung „Bild ⇔ 0; Zahl ⇔ 1” festlegen.
  • In der Schaltungstechnik bezeichnet man die beiden möglichen logischen Zustände einer Speicherzelle – z. B. eines Flipflops – gemäß den möglichen Spannungspegeln mit L (Low) und H (High). Diese Bezeichnungen übernehmen wir hier auch für Binärsymbole. Für praktische Arbeiten bildet man diese Symbole meist wieder auf Zufallsgrößen ab, wobei auch diese Zuordnung willkürlich ist, aber sinnvoll sein sollte. In der Codierungstheorie wird sinnvollerweise {L, H} auf {0, 1} abgebildet, um die Möglichkeiten der Modulo-Algebra nutzen zu können. Zur Beschreibung der Modulation mit bipolaren (antipodalen) Signalen wählt man dagegen besser die Zuordnung {L, H} ⇔ {–1, +1}.

Kontinuierliche und diskrete Zufallsgrößen

Nach den möglichen Zahlenwerten $z_μ = z(E_μ)$ unterscheiden wir hier zwischen kontinuierlichen und diskreten Zufallsgrößen:

  • Eine kontinuierliche Zufallsgröße $z$ kann – zumindest in gewissen Bereichen – unendlich viele verschiedene Werte annehmen. Genauer gesagt: Die Menge der zulässigen Werte ist bei solchen Größen auch nicht abzählbar. Beispiele für kontinuierliche Zufallsgrößen sind die Geschwindigkeit eines Autos (bei angemessener Fahrweise zwischen 0 und 120 km/h) oder auch die Rauschspannung bei einem Nachrichtensystem. Beide Zufallsgrößen haben neben einem Zahlenwert auch eine Einheit.
  • Ist dagegen die Menge { $z_μ$} abzählbar, so bezeichnet man die Zufallsgröße als diskret. Meist ist die Zahl der möglichen Werte von $z$ auf $M$ begrenzt. In der Nachrichtentechnik nennt man $M$ den Symbolumfang (im Sinne der Codierungs- und Informationstheorie) bzw. die Stufenzahl (aus Sicht der Übertragungstechnik).


Zunächst beschränken wir uns auf diskrete, $M$-stufige Zufallsgrößen ohne innere statistischen Bindungen, die gemäß Kapitel 1.1 durch die $M$ Auftrittswahrscheinlichkeiten $p_μ =$ Pr( $z = z_μ$) vollständig charakterisiert sind. Per Definition ist die Summe über alle $M$ Wahrscheinlichkeiten gleich 1.

Dagegen ist die Wahrscheinlichkeit Pr( $z = z_μ$) dafür, dass eine kontinuierliche Zufallsgröße $z$ einen ganz bestimmten Wert $z_μ$ annimmt, identisch Null. Hier muss, wie im folgenden Kapitel „Kontinuierliche Zufallsgrößen” beschrieben wird, auf die Wahrscheinlichkeitsdichtefunktion (WDF) übergegangen werden. Weitere Informationen hierüber finden Sie in Kapitel 3.