Stochastische Signaltheorie/Momente einer diskreten Zufallsgröße: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{Header |Untermenü=Diskrete Zufallsgrößen |Vorherige Seite=Wahrscheinlichkeit und relative Häufigkeit |Nächste Seite=Binomialverteilung }} ==Berechnung…“)
 
Zeile 18: Zeile 18:
  
 
==Linearer Mittelwert - Gleichanteil==
 
==Linearer Mittelwert - Gleichanteil==
 +
Mit $k =$ 1 erhält man aus der allgemeinen Gleichung für die Momente den linearen Mittelwert:
 +
$$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu.$$
 +
Der linke Teil dieser Gleichung beschreibt die Scharmittelung (über alle möglichen Werte), während die rechte Gleichung die Bestimmung als Zeitmittelwert angibt. In Zusammenhang mit Signalen wird diese Größe auch als der Gleichanteil bezeichnet.
  
 +
{{Beispiel}}
 +
Ein Binärsignal mit den beiden Amplitudenwerten 1V (für das Symbol '''L''') und 3V (für das Symbol '''H''') sowie den Auftrittswahrscheinlichkeiten $p_{\rm L} =$ 0.2 bzw. $p_{\rm H} =$ 0.8 besitzt den linearen Mittelwert
 +
$$m_1 = 0.2 \cdot 1\,{\rm V}+ 0.8 \cdot 3\,{\rm V}= 2.6 \,{\rm V}. $$
 +
Dieser Gleichanteil ist in der Grafik als rote Linie eingezeichnet.
 +
 +
[[Datei:P_ID49__Sto_T_2_2_S2_neu.png | Gleichanteil eines Binärsignals]]
 +
 +
Bestimmt man diese Kenngröße durch Zeitmittelung über die dargestellten $N =$ 12 Signalwerte, so wird man einen etwas kleineren Wert erhalten:
 +
$$m_1' = 1/3 \cdot 1\,{\rm V}+ 2/3 \cdot 3\,{\rm V}= 2.33 \,{\rm V}. $$
 +
Hier wurden die Auftrittswahrscheinlichkeiten $p_{\rm L} =$ 0.2 bzw. $p_{\rm H} =$ 0.8 durch die entsprechenden Häufigkeiten $h_{\rm L} =$ 4/12 und $h_{\rm H} =$ 8/12 ersetzt. Der relative Fehler aufgrund der unzureichenden Folgenlänge $N$ ist im Beispiel größer als 10%.
 +
{{end}}
 +
 +
==Quadratischer Mittelwert – Varianz – Streuung==
 +
Analog zum linearen Mittelwert erhält man mit $k =$ 2 für den quadratischen Mittelwert:
  
  

Version vom 25. Mai 2016, 23:38 Uhr

Berechnung als Schar- bzw. Zeitmittelwert

Die Wahrscheinlichkeiten bzw. die relativen Häufigkeiten liefern weitreichende Informationen über eine diskrete Zufallsgröße. Reduzierte Informationen erhält man durch die so genannten Momente $m_k$, wobei $k$ eine natürliche Zahl darstellt.

Unter der hier stillschweigend vorausgesetzten Ergodizität gibt es für das Moment $k$-ter Ordnung zwei unterschiedliche Berechnungsmöglichkeiten:

  • die Scharmittelung bzw. Erwartungswertbildung (Mittelung über alle möglichen Werte):

$$m_k = \rm E \it [z^k] = \sum_{\mu = \rm 1}^{\it M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm mit \hspace{0.1cm} {\rm E[...]:} \hspace{0.1cm} \rm Erwartungswert ,$$

  • die Zeitmittelung über die Zufallsfolge 〈 $z_ν$〉 mit der Laufvariablen $ν =$ 1 , ... , $N$:

$$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm mit\hspace{0.1cm}\ddot{u}berstreichender\hspace{0.1cm}Linie:\hspace{0.1cm}Zeitmittelwert.$$


Beide Berechnungsarten führen für genügend große Werte von $N$ zum gleichen asymptotischen Ergebnis. Bei endlichem $N$ ergibt sich ein vergleichbarer Fehler, als wenn die Wahrscheinlichkeit durch die relative Häufigkeit angenähert wird.

Linearer Mittelwert - Gleichanteil

Mit $k =$ 1 erhält man aus der allgemeinen Gleichung für die Momente den linearen Mittelwert: $$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu.$$ Der linke Teil dieser Gleichung beschreibt die Scharmittelung (über alle möglichen Werte), während die rechte Gleichung die Bestimmung als Zeitmittelwert angibt. In Zusammenhang mit Signalen wird diese Größe auch als der Gleichanteil bezeichnet.

Ein Binärsignal mit den beiden Amplitudenwerten 1V (für das Symbol L) und 3V (für das Symbol H) sowie den Auftrittswahrscheinlichkeiten $p_{\rm L} =$ 0.2 bzw. $p_{\rm H} =$ 0.8 besitzt den linearen Mittelwert $$m_1 = 0.2 \cdot 1\,{\rm V}+ 0.8 \cdot 3\,{\rm V}= 2.6 \,{\rm V}. $$ Dieser Gleichanteil ist in der Grafik als rote Linie eingezeichnet.

Gleichanteil eines Binärsignals

Bestimmt man diese Kenngröße durch Zeitmittelung über die dargestellten $N =$ 12 Signalwerte, so wird man einen etwas kleineren Wert erhalten: $$m_1' = 1/3 \cdot 1\,{\rm V}+ 2/3 \cdot 3\,{\rm V}= 2.33 \,{\rm V}. $$ Hier wurden die Auftrittswahrscheinlichkeiten $p_{\rm L} =$ 0.2 bzw. $p_{\rm H} =$ 0.8 durch die entsprechenden Häufigkeiten $h_{\rm L} =$ 4/12 und $h_{\rm H} =$ 8/12 ersetzt. Der relative Fehler aufgrund der unzureichenden Folgenlänge $N$ ist im Beispiel größer als 10%.

Quadratischer Mittelwert – Varianz – Streuung

Analog zum linearen Mittelwert erhält man mit $k =$ 2 für den quadratischen Mittelwert: