Markovketten

Aus LNTwww
Wechseln zu:Navigation, Suche

Betrachtetes Szenario


Wir betrachten nun den Fall,  dass man ein Zufallsexperiment fortlaufend durchführt und dass zu jedem diskreten Zeitpunkt  $(ν = 1, 2, 3, \text{...})$  ein neues Ereignis  $E_ν$  eintritt.  Hierbei soll gelten:

Mögliche Ereignisse und Ereignisfolge
$$E_\nu \in G = \{ E_{\rm 1}, E_{\rm 2}, \hspace{0.1cm}\text{...}\hspace{0.1cm}, E_\mu , \hspace{0.1cm}\text{...}\hspace{0.1cm}, E_M \}.$$

Diese mathematisch nicht ganz saubere Nomenklatur bedeutet  (siehe Grafik):

  • Die  $M$  möglichen Ereignisse werden mit dem Laufindex  $μ$  durchnummeriert.
  • Der Index  $ν$  benennt die diskreten Zeitpunkte,  zu denen Ereignisse auftreten.


Zur einfacheren Darstellung beschränken wir uns im Folgenden auf den Fall  $M = 2$  mit der Grundmenge  $G = \{ A, \ B \}$.  Weiter soll gelten:

  • Die Wahrscheinlichkeit des Ereignisses  $E_ν$  kann durchaus von allen vorherigen Ereignissen abhängen – also von den Ereignissen  $E_{ν\hspace{0.05cm}-1},\ E_{ν\hspace{0.05cm}-2},\ E_{ν\hspace{0.05cm}-3},$  usw.
  • Diese Aussage bedeutet auch,  dass wir in diesem Kapitel eine  Ereignisfolge mit inneren statistischen Bindungen  betrachten.


Dieses Szenario ist ein Sonderfall eines zeit- und wertdiskreten Zufallsprozesses, der im Kapitel  Zufallsprozesse   noch ausführlich behandelt wird.

$\text{Beispiel 1:}$  Aus einem Kartenstapel mit  $32$  Karten  (darunter vier Asse)  werden nacheinander Karten gezogen.  Mit den Ereignissen

  • $A\text{ :}=$  „die gezogene Karte ist ein Ass”,  und
  • $B = \overline{A}:=$  „die gezogene Karte ist kein Ass”  lauten die Wahrscheinlichkeiten zum Zeitpunkt  $ν = 1$:
$${\rm Pr} (A_{\rm 1}) ={4}/{32}= {1}/{8}, \hspace{0.5cm}{\rm Pr} (B_{\rm 1}) = {28}/{32}= {7}/{8}.$$

Die Wahrscheinlichkeit  ${\rm Pr} (A_{\rm 2})$,  dass als zweite Karte  $(ν = 2)$  ein Ass gezogen wird,  hängt nun davon ab,

  • ob zum Zeitpunkt  $ν = 1$  ein Ass gezogen wurde   ⇒   ${\rm Pr} (A_{\rm 2}) = 3/31 < 1/8$,  oder
  • ob zum Zeitpunkt  $ν = 1$  kein Ass gezogen wurde   ⇒   ${\rm Pr} (A_{\rm 2}) = 4/31 > 1/8$.


Auch die Wahrscheinlichkeiten  ${\rm Pr} (A_{\nu})$  zu späteren Zeitpunkten  $ν$   hängen stets vom Eintreffen bzw. Nichteintreffen aller vorherigen Ereignisse  $E_1, \hspace{0.1cm}\text{...}\hspace{0.1cm} ,E_{ν\hspace{0.05cm}–1}$  ab.

Allgemeine Definition einer Markovkette


In Sonderfällen, die allerdings sehr häufig vorkommen, kann das oben beschriebene Szenario durch eine Markovkette beschrieben werden.

$\text{Definition:}$  Eine  Markovkette  $k$-ter Ordnung  (englisch:  "Markov Chain")  dient als Modell für zeit- und wertdiskrete Vorgänge, bei denen die Ereigniswahrscheinlichkeiten zum Zeitpunkt  $ν$ 

  1.   von den vorherigen Ereignissen  $E_{ν\hspace{0.05cm}–1}, \hspace{0.1cm}\text{...}\hspace{0.1cm}, E_{ν\hspace{0.05cm}–k}$  abhängen,  und
  2.  durch  $M^{k+1}$  bedingte Wahrscheinlichkeiten ausgedrückt werden können.

Das Schaubild verdeutlicht diesen Sachverhalt am Beispiel  $k = 2$.

Markovkette zweiter Ordnung

Für  $M = 2$  gibt es deshalb  $2^{k+1}$  solche bedingten Wahrscheinlichkeiten. 

$${\rm Pr} ( E_\nu \hspace {0.05cm}\vert \hspace {0.05cm}E_{\nu {\rm -1 } },\hspace {0.15cm}\text{...}\hspace {0.15cm}, E_{\nu { -k } }).$$

Mit  $E_{\nu }\in \{ A, B \}, \hspace {0.1cm}\text{...}\hspace {0.15cm}, E_{\nu { -k } } \in \{ A, B \}$  lauten diese:

  • ${\rm Pr} ( A_\nu \hspace {0.05cm}\vert \hspace {0.05cm}A_{\nu {\rm -1 } }, A_{\nu { -2 } })$,     ${\rm Pr} ( B_\nu \hspace {0.05cm}\vert \hspace {0.05cm}A_{\nu {\rm -1 } }, A_{\nu { -2 } })$,  
  • ${\rm Pr} ( A_\nu \hspace {0.05cm}\vert \hspace {0.05cm}A_{\nu {\rm -1 } },B_{\nu { -2 } })$,     ${\rm Pr} ( B_\nu \hspace {0.05cm}\vert \hspace {0.05cm}A_{\nu {\rm -1 } }, B_{\nu { -2 } })$,  
  • ${\rm Pr} ( A_\nu \hspace {0.05cm}\vert \hspace {0.05cm}B_{\nu {\rm -1 } }, A_{\nu { -2 } })$,     ${\rm Pr} ( B_\nu \hspace {0.05cm}\vert \hspace {0.05cm}B_{\nu {\rm -1 } }, A_{\nu { -2 } })$,  
  • ${\rm Pr} ( A_\nu \hspace {0.05cm}\vert \hspace {0.05cm}B_{\nu {\rm -1 } }, B_{\nu { -2 } })$,     ${\rm Pr} ( B_\nu \hspace {0.05cm}\vert \hspace {0.05cm}B_{\nu {\rm -1 } }, B_{\nu { -2 } })$.


$\text{Beispiel 2:}$  Natürliche Sprachen sind oft durch Markovketten beschreibbar, wobei allerdings die Ordnung  $k$  gegen Unendlich strebt.  In diesem Beispiel werden Texte allerdings lediglich durch Markovketten zweiter Ordnung angenähert.

Synthetisch erzeugte Texte (deutsch und englisch)

Die Grafik zeigt beispielhaft zwei synthetisch erzeugte Texte:

  • Der linke Text wurde ausgehend von einer deutschen Buchvorlage mit Bindungen bis zu zweiter Ordnung synthetisch erzeugt.
  • Beim rechten Text wurde eine englische Vorlage verwendet.


Man erkennt trotz der Beschränkung auf  $k = 2$  viele (kurze) deutsche bzw. englische Wörter und auch,    dass deutsche Wörter im Mittel länger sind als englische. 

Es ergibt sich zwar kein sinnvoller Inhalt,  aber die Struktur der jeweiligen Sprache ist durchaus erkennbar.

Markovkette erster Ordnung


Im Folgenden beschränken wir uns stets auf den Sonderfall  $k =1$ .

$\text{Definition:}$ 

  • Bei einer  Markovkette erster Ordnung  (englisch:  "First Order Markov Chain")  wird lediglich die statistische Bindung zum letzten Ereignis berücksichtigt,  die in der Praxis meist auch am stärksten ist.
  • Eine binäre Markovkette erster Ordnung   ⇒   Grundmenge  $G = \{ A, \ B \}$  weist zum Zeitpunkt  $\nu$   folgende Ereigniswahrscheinlichkeiten auf:
$${\rm Pr}(A_\nu) = {\rm Pr}(A_\nu \hspace{0.05cm} \vert \hspace{0.05cm}A_{\nu - 1}) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) \cdot {\rm Pr}(B_{\nu - 1}) ,$$
$${\rm Pr}(B_\nu) = {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}A_{\nu - 1}) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) \cdot {\rm Pr}(B_{\nu - 1}) .$$


Zu diesen Gleichungen ist anzumerken:

  • ${\rm Pr}(A_\nu)$  steht als Abkürzung für die Wahrscheinlichkeit,  dass zur Zeit  $ν$   das Ereignis  $E_ν = A = \overline{B}$  auftritt,  und es gilt:
$${\rm Pr}(B_\nu) = 1 - {\rm Pr}(A_\nu).$$
  • Zu jedem Zeitpunkt gibt es vier Übergangswahrscheinlichkeiten  ${\rm Pr}(E_ν\hspace{0.05cm} |\hspace{0.05cm} E_{ν–1})$,  von denen jedoch nur zwei unabhängig sind,  denn es gilt:
$${\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}) = 1 - {\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}A_{\nu - 1}), \hspace{0.5cm}{\rm Pr}(A_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}) = 1 - {\rm Pr}(B_\nu \hspace{0.05cm} | \hspace{0.05cm}B_{\nu - 1}).$$
  • Durch Verallgemeinerung dieser letzten Aussage gelangt man zu dem Ergebnis,  dass es bei einer Markovkette mit  $M$ Ereignissen  zu jedem Zeitpunkt  $ν$   genau  $M · (M – 1)$  voneinander unabhängige Übergangswahrscheinlichkeiten gibt.


$\text{Beispiel 3:}$  Mit den vorgegebenen Übergangswahrscheinlichkeiten

$${\rm Pr}(A_ν\hspace{0.05cm}\vert\hspace{0.05cm} A_{ν–1}) = 0.2 \hspace{0.3cm}\text{und}\hspace{0.3cm} {\rm Pr}(B_ν\hspace{0.05cm} \vert\hspace{0.05cm} B_{ν–1}) = 0.4$$

sind auch die beiden anderen Übergangswahrscheinlichkeiten eindeutig festgelegt:

$${\rm Pr}(B_ν\hspace{0.05cm} \vert\hspace{0.05cm} A_{ν–1}) = 1- 0.2 = 0.8 \hspace{0.3cm}\text{und}\hspace{0.3cm} {\rm Pr}(A_ν\hspace{0.05cm} \vert\hspace{0.05cm} B_{ν–1}) = 1- 0.4 = 0.6.$$

Homogene Markovketten


Eine Anwendbarkeit der Markovketten auf praktische Probleme ist meist nur bei weiteren einschränkenden Voraussetzungen gegeben.

$\text{Definition:}$ 

  • Sind alle Übergangswahrscheinlichkeiten unabhängig vom betrachteten Zeitpunkt  $ν$,  so ist die Markovkette  homogen  (englisch:  "homogeneous").
  • Im Fall  $M = 2$  verwenden wir hierfür folgende Abkürzungen:
$${\rm Pr}(A \hspace{0.05cm} \vert \hspace{0.05cm}A) = {\rm Pr}(A_\nu \hspace{0.05cm}\vert \hspace{0.05cm}A_{\nu - 1}) , \hspace{0.5cm} {\rm Pr}(A \hspace{0.05cm} \vert\hspace{0.05cm}B) = {\rm Pr}(A_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) ,$$
$${\rm Pr}(B \hspace{0.05cm} \vert\hspace{0.05cm}A) = {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}A_{\nu - 1}) , \hspace{0.5cm} {\rm Pr}(B \hspace{0.05cm} \vert \hspace{0.05cm}B) = {\rm Pr}(B_\nu \hspace{0.05cm} \vert \hspace{0.05cm}B_{\nu - 1}) .$$


Damit lauten die Ereigniswahrscheinlichkeiten einer binären homogenen Markovkette, die absolute Wahrscheinlichkeiten darstellen im Gegensatz zu den bedingten Übergangswahrscheinlichkeiten :

Homogene Markovkette erster Ordnung
$${\rm Pr}(A_\nu) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B_{\nu - 1}) ,$$
$${\rm Pr}(B_\nu) = {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A_{\nu - 1}) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B_{\nu - 1}) .$$

Auch aus dem Markovdiagramm kann man ablesen:

  • Die Summe der  abgehenden Pfeile  eines Ereignisses ist stets Eins:
$${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) =1,$$
$${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) =1.$$
  • Für die Summen der  ankommenden Pfeile  gilt diese Einschränkung nicht:
$$ 0 < {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) + {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)< 2,$$
$$0 < {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B)< 2.$$

Sie können das „Einschwingverhalten” der Ereigniswahrscheinlichkeiten einer solchen binären Markovkette mit dem interaktiven SWF–Applet  Ereigniswahrscheinlichkeiten einer Markovkette erster Ordnung  berechnen und anzeigen lassen.

Stationäre Wahrscheinlichkeiten


Wichtige Eigenschaften von Zufallsprozessen sind  Stationarität  und  Ergodizität.  Obwohl diese Begriffe erst im vierten Hauptkapitel  „Zufallsgrößen mit statistischen Bindungen”  definiert werden,  wenden wir sie hier bereits vorausgreifend auf Markovketten an.

$\text{Definition:}$ 

  • Sind bei einer Markovkette neben den Übergangswahrscheinlichkeiten auch alle Ereigniswahrscheinlichkeiten unabhängig von der Zeit  $ν$,   so bezeichnet man die Markovkette als  stationär  (englisch:  "stationary").  Man verzichtet dann auf den Index  $ν$   und schreibt im binären Fall:
$${\rm Pr}(A_\nu ) = {\rm Pr}(A ) \hspace{0.5 cm} {\rm bzw.} \hspace{0.5 cm} {\rm Pr}(B_\nu ) = {\rm Pr}(B).$$
  • Diese Größen nennt man auch die  ergodischen Wahrscheinlichkeiten  der Markovkette.


Stationäre Markovketten weisen die nachfolgend genannten Besonderheiten auf:

  • Zur Berechnung der ergodischen Wahrscheinlichkeiten einer binären Markovkette  $(M =2)$  kann man folgende Gleichungen verwenden:
$${\rm Pr}(A) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B) ,$$
$${\rm Pr}(B) = {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \cdot {\rm Pr}(B) .$$
  • Da diese Gleichungen linear voneinander abhängen,  darf man nur eine hiervon benutzen.  Als zweite Bestimmungsgleichung kann man beispielsweise verwenden:
$${\rm Pr}(A) + {\rm Pr}(B) = 1.$$
  • Die ergodischen Wahrscheinlichkeiten ergeben sich daraus zu
$${\rm Pr}(A) = \frac {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) }{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }\hspace{0.1cm}, $$
$${\rm Pr}(B) = \frac {{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B) + {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) }.$$

$\text{Beispiel 4:}$  Wir betrachten eine binäre Markovkette mit den Ereignissen  $A$  und $B$  und den Übergangswahrscheinlichkeiten  ${\rm Pr}(A \hspace{0.05cm} \vert\hspace{0.05cm}A) = 0.4$  und  ${\rm Pr}(B \hspace{0.05cm} \vert \hspace{0.05cm}B) = 0.8$.

Zum Einschwingen der Ereigniswahrscheinlichkeiten
  • Weiterhin setzen wir voraus,  dass jede Realisierung dieser Kette zum Startzeitpunkt  $ν = 0$   mit dem Ereignis  $A$  beginnt.
  • Man erhält dann die nachfolgend aufgelisteten Ereigniswahrscheinlichkeiten  (mit drei Nachkommastellen):


Es handelt sich hier im strengen Sinne um eine nichtstationäre Markovkette,  die jedoch schon nach kurzer Zeit (nahezu) eingeschwungen ist:

  • Zu späteren Zeiten  $(ν > 5)$  werden die Ereigniswahrscheinlichkeiten  ${\rm Pr}(A_ν) \approx 1/4$  und  ${\rm Pr}(B_ν) \approx 3/4$  nicht mehr gravierend verändert.
  • Aus der Angabe  ${\rm Pr}(A_{ν=5}) = 0.250$  und  ${\rm Pr}(B_{ν=5}) = 0.750$  sollte allerdings nicht geschlossen werden,  dass die Markovkette zum Zeitpunkt  $ν = 5$  schon vollkommen eingeschwungen ist.
  • Die exakten Werte sind nämlich  ${\rm Pr}(A_{ν=5}) = 0.25024$  und  ${\rm Pr}(B_{ν=5}) = 0.74976$.


$\text{Fazit:}$  Bei einer stationären Markovkette treten sehr lange nach Einschalten der Kette  $(ν → ∞)$  mit guter Näherung stets die ergodischen Wahrscheinlichkeiten auf, unabhängig von den Startbedingungen  ${\rm Pr}(A_0)$  und  ${\rm Pr}(B_0) = 1 - {\rm Pr}(A_0)$.

Matrix-Vektordarstellung


Homogene Markovketten können mit Vektoren und Matrizen sehr kompakt dargestellt werden.  Dies empfiehlt sich insbesondere bei mehr als zwei Ereignissen:

$$E_\nu \in G = \{ E_{\rm 1}, E_{\rm 2}, \hspace{0.1cm}\text{...}\hspace{0.1cm}, E_\mu , \hspace{0.1cm}\text{...}\hspace{0.1cm}, E_M \}.$$

Für die Matrix-Vektorendarstellung verwenden wir folgende Nomenklatur:

  • Die  $M$  Wahrscheinlichkeiten zum Zeitpunkt  $ν$  fassen wir in einem Spaltenvektor zusammen:
$${\mathbf{p}^{(\nu)}} = \left[ \begin{array}{c} {p_{\rm 1}}^{(\nu)} \\ \dots \\ {p_{M}}^{(\nu)} \end{array} \right] \hspace{0.5cm}{\rm mit} \hspace{0.5cm} {p_{\mu}}^{(\nu)} = {\rm Pr}(E_\nu = E_\mu ).$$
  • Die Übergangswahrscheinlichkeiten werden durch eine  $M \times M$-Matrix ausgedrückt:
$${\mathbf{P}} =\left( p_{ij} \right) = \left[ \begin{array}{cccc} p_{11} & p_{12} & \cdots & p_{1M} \\ p_{21} & p_{22}& \cdots & p_{2M} \\ \dots & \dots & \dots & \dots \\ p_{M1} & p_{M2} & \cdots & p_{MM} \end{array} \right] \hspace{0.5cm}{\rm mit} \hspace{0.5cm} {p_{ij}} = {\rm Pr}(E_{\nu +1 } = E_j \hspace{0.05cm}| \hspace{0.05cm} E_{\nu } = E_i).$$

Die nebenstehende Abbildung verdeutlicht diese Nomenklatur am Beispiel  $M = 2$.  Der neue Ereigniswahrscheinlichkeitsvektor nach einem Schritt lautet:

Zur Bezeichnung der Übergangswahrscheinlichkeiten
$${\mathbf{p}^{(\nu + 1)}} = {\mathbf{P}}^{\rm T} \cdot {\mathbf{p}^{(\nu )}} .$$

${\mathbf{P}^{\rm T}}$  bezeichnet hierbei die zu  $\mathbf{P}$  "transponierte Matrix".  Nach  $n$  Schritten ergibt sich somit

$${\mathbf{p}^{(\nu +{\it n})}} = \left( {\mathbf{P}}^{\rm T} \right)^n \cdot {\mathbf{p}^{(\nu )}} .$$

Im Grenzübergang  $(n → ∞)$  erreicht man dann stets die Stationarität der Markovkette:

$$\lim_{n \to\infty}\hspace{0.1cm}{\mathbf{p}^{(\nu + n)}} = \lim_{n \to\infty} \left( {\mathbf{P}}^{\rm T} \right)^n \cdot {\mathbf{p}^{(\nu )}} = {\mathbf{p}}_{\rm erg}= \left[ \begin{array}{c} {p_{\rm 1}} \\ \dots \\ {p_{M}} \end{array} \right] .$$

$\text{Definition:}$ 

  • Multipliziert man die Übergangsmatrix  ${\mathbf{P} }$  unendlich oft mit sich selbst und benennt das Ergebnis mit  ${\mathbf{P} }_{\rm erg}$, so besteht diese Matrix aus  $M$  gleichen Zeilen:
$${\mathbf{P} }_{\rm erg} = \lim_{n \to\infty} {\mathbf{P} }^n = \left[ \begin{array}{cccc} p_{1} & p_{2} & \cdots & p_{M} \\ p_{1} & p_{2}& \cdots & p_{M} \\ \dots & \dots & \dots & \dots \\ p_{1} & p_{2} & \cdots & p_{M} \end{array} \right] .$$
  • Die Wahrscheinlichkeiten  $p_1, \hspace{0.15cm}\text{...}\hspace{0.1cm},\hspace{0.05cm} p_M$  in jeder dieser Zeilen bezeichnet man als die  ergodischen Wahrscheinlichkeiten.


Markovdiagramm mit drei Ereignissen

$\text{Beispiel 5:}$  Wir betrachten beispelhaft eine Markovkette mit den Ereignissen  $E_1,\ E_2$  und  $E_3$   ⇒   $M=3$.  Die Grafik zeigt

  • links das Markovdiagramm,
  • rechts oben die Übergangsmatrix  $\mathbf{P}$ und
  • darunter deren Potenzen  $\mathbf{P}^2$  und  $\mathbf{P}^3$.


Im Markovdiagramm sind alle Übergangswahrscheinlichkeiten mit dem Zahlenwert  $1/2$  blau eingezeichnet;  grün kennzeichnet die Wahrscheinlichkeit  $1/4$.

  • Beim Start  $(ν =0)$  seien alle Ereignisse gleichwahrscheinlich.  Für  $ν = 1$  gilt dann:
$${\mathbf{p}^{(1)} } = {\mathbf{P} }^{\rm T} \cdot {\mathbf{p}^{(0 )} }= \left[ \begin{array}{ccc} 1/2 & 1/2& 1/2 \\ 1/4 & 0 & 1/2 \\ 1/4& 1/2& 0 \end{array} \right] \left[ \begin{array}{c} 1/3 \\ 1/3 \\ 1/3 \end{array} \right] = \left[ \begin{array}{c} 1/2 \\ 1/4 \\ 1/4 \end{array} \right] .$$
Hieraus ist zu ersehen,  dass man von der Matrix  $\mathbf{P}$  durch den Austausch der Zeilen und Spalten zur transponierten Matrix  ${\mathbf{P}^{\rm T} }$  kommt.
  • Zum Zeitpunkt  $ν =2$  (und auch zu allen späteren Zeiten)  ergeben sich die gleichen Wahrscheinlichkeiten:
$${\mathbf{p}^{(2)} } = {\mathbf{P} }^{\rm T} \cdot {\mathbf{p}^{(1 )} }= \left[ \begin{array}{ccc} 1/2 & 1/2& 1/2 \\ 1/4 & 0 & 1/2 \\ 1/4& 1/2& 0 \end{array} \right] \left[ \begin{array}{c} 1/2 \\ 1/4 \\ 1/4 \end{array} \right] = \left[ \begin{array}{c} 1/2 \\ 1/4 \\ 1/4 \end{array} \right] .$$
Das bedeutet:  Die ergodischen Wahrscheinlichkeiten der drei Ereignisse sind  $1/2$  $($für  $E_1)$,  $1/4$  $($für  $E_2)$,  und $1/4$  $($für  $E_3)$.
  • Dieses Ergebnis hätte man auch direkt aus der ergodischen Matrix ablesen können:
$${\mathbf{P} }_{\rm erg} = \lim_{n \to\infty} {\mathbf{P} }^n = \left[ \begin{array}{ccc} 1/2 & 1/4 & 1/4 \\ 1/2 & 1/4 & 1/4 \\ 1/2 & 1/4 & 1/4 \end{array} \right] .$$
  • Diese ergibt sich durch fortlaufende Multiplikation der Übergangsmatrix mit sich selbst.  Im obigen Bild sind die Potenzen  $\mathbf{P}^2$  und  $\mathbf{P}^3$  angegeben, die sich der Matrix  $\mathbf{P}_{\rm erg}$  annähern.

Aufgaben zum Kapitel

Aufgabe 1.6: Übergangswahrscheinlichkeiten

Aufgabe 1.6Z: Ergodische Wahrscheinlichkeiten

Aufgabe 1.7: Ternäre Markovkette

Aufgabe 1.7Z: BARBARA-Generator