Stochastische Signaltheorie/Binomialverteilung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 13: Zeile 13:
 
Zur Herleitung der Binomialverteilung gehen wir davon aus, dass $I$ binäre und statistisch voneinander unabhängige Zufallsgrößen $b_i$ jeweils
 
Zur Herleitung der Binomialverteilung gehen wir davon aus, dass $I$ binäre und statistisch voneinander unabhängige Zufallsgrößen $b_i$ jeweils
 
*den Wert $1$ mit der Wahrscheinlichkeit ${\rm Pr}(b_i = 1) = p$, und  
 
*den Wert $1$ mit der Wahrscheinlichkeit ${\rm Pr}(b_i = 1) = p$, und  
*den Wert  $0$ mit der Wahrscheinlichkeit ${\rm Pr}(b_i = 0) = 1-p$ annehmen können.
+
*den Wert  $0$ mit der Wahrscheinlichkeit ${\rm Pr}(b_i = 0) = 1-p$  
  
 +
annehmen können.
  
 
Dann ist die Summe $z$ ebenfalls eine diskrete Zufallsgröße mit dem Symbolvorrat $\{0, 1, 2,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}, I\}$, die man als binomialverteilt bezeichnet:
 
Dann ist die Summe $z$ ebenfalls eine diskrete Zufallsgröße mit dem Symbolvorrat $\{0, 1, 2,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}, I\}$, die man als binomialverteilt bezeichnet:
Zeile 33: Zeile 34:
 
$\text{Berechnungsvorschrift:}$ 
 
$\text{Berechnungsvorschrift:}$ 
 
Für die '''Wahrscheinlichkeiten der Binomialverteilung''' gilt mit $μ = 0, \hspace{0.1cm}\text{...} \hspace{0.1cm}, I$:
 
Für die '''Wahrscheinlichkeiten der Binomialverteilung''' gilt mit $μ = 0, \hspace{0.1cm}\text{...} \hspace{0.1cm}, I$:
:$$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p^\mu\cdot ({\rm 1}-p)^{I-\mu}.$$
+
:$$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$
Der erste Term gibt hierbei die Anzahl der Kombinationen (sprich: $I\text{ über }μ$) an:  
+
Der erste Term gibt hierbei die Anzahl der Kombinationen an  (sprich: $I\text{ über }μ$):
 
:$${I \choose \mu}=\frac{I !}{\mu !\cdot (I-\mu) !}=\frac{ {I\cdot (I- 1) \cdot \ \cdots \ \cdot (I-\mu+ 1)} }{ 1\cdot  2\cdot \ \cdots \ \cdot  \mu}.$$}}
 
:$${I \choose \mu}=\frac{I !}{\mu !\cdot (I-\mu) !}=\frac{ {I\cdot (I- 1) \cdot \ \cdots \ \cdot (I-\mu+ 1)} }{ 1\cdot  2\cdot \ \cdots \ \cdot  \mu}.$$}}
  
Zeile 49: Zeile 50:
  
 
Dagegen ergeben sich für $I = 6$ und $p = 0.5$ die folgenden Binomialwahrscheinlichkeiten:  
 
Dagegen ergeben sich für $I = 6$ und $p = 0.5$ die folgenden Binomialwahrscheinlichkeiten:  
$$\begin{align*}{\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}0)  & =  {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}6)\hspace{-0.05cm} =\hspace{-0.05cm} 1/64\hspace{-0.05cm} = \hspace{-0.05cm}0.015625 ,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}1)  & =  {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}5) \hspace{-0.05cm}= \hspace{-0.05cm}6/64 \hspace{-0.05cm}=\hspace{-0.05cm} 0.09375,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}2)  & =  {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}4)\hspace{-0.05cm} = \hspace{-0.05cm}15/64 \hspace{-0.05cm}= \hspace{-0.05cm}0.234375 ,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}3)  & =  20/64 \hspace{-0.05cm}= \hspace{-0.05cm} 0.3125 .\end{align*}$$
+
:$$\begin{align*}{\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}0)  & =  {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}6)\hspace{-0.05cm} =\hspace{-0.05cm} 1/64\hspace{-0.05cm} = \hspace{-0.05cm}0.015625 ,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}1)  & =  {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}5) \hspace{-0.05cm}= \hspace{-0.05cm}6/64 \hspace{-0.05cm}=\hspace{-0.05cm} 0.09375,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}2)  & =  {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}4)\hspace{-0.05cm} = \hspace{-0.05cm}15/64 \hspace{-0.05cm}= \hspace{-0.05cm}0.234375 ,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}3)  & =  20/64 \hspace{-0.05cm}= \hspace{-0.05cm} 0.3125 .\end{align*}$$
  
Diese sind symmetrisch bezüglich des Abszissenwertes  $\mu = I/2$.}}
+
Diese sind symmetrisch bezüglich des Abszissenwertes  $\mu = I/2 = 3$.}}
  
  
Zeile 74: Zeile 75:
 
:$$p_2 = \rm 45\cdot 0.01^2\cdot 0.99^8\approx 0.0041.$$
 
:$$p_2 = \rm 45\cdot 0.01^2\cdot 0.99^8\approx 0.0041.$$
  
Kann ein Blockcode bis zu zwei Fehlern korrigieren, so ist die Restfehlerwahrscheinlichkeit
+
Kann ein Blockcode bis zu zwei Fehler korrigieren, so ist die Restfehlerwahrscheinlichkeit
 
:$$p_{\rm R} = \it p_{\rm 3} \rm +\hspace{0.1cm}\text{ ...} \hspace{0.1cm} \rm + \it p_{\rm 10}\approx \rm 10^{-4},$$
 
:$$p_{\rm R} = \it p_{\rm 3} \rm +\hspace{0.1cm}\text{ ...} \hspace{0.1cm} \rm + \it p_{\rm 10}\approx \rm 10^{-4},$$
 
oder
 
oder
Zeile 80: Zeile 81:
  
 
*Man erkennt, dass die zweite Berechnungsmöglichkeit über das Komplement für große Werte vin $I$ schneller zum Ziel führt.  
 
*Man erkennt, dass die zweite Berechnungsmöglichkeit über das Komplement für große Werte vin $I$ schneller zum Ziel führt.  
*Man könnte aber auch berücksichtigen, dass bei diesen Zahlenwerten $p_{\rm R} ≈ p_3$ gilt. }}
+
*Man könnte aber auch als Näherung berücksichtigen, dass bei diesen Zahlenwerten $p_{\rm R} ≈ p_3$ gilt. }}
  
  
Mit dem Berechnungstool [[Applets:Binomial-_und_Poissonverteilung_(Applet)|Binomial– und Poissonverteilung]] können Sie die Binomialwahrscheinlichkeiten für beliebige $I$ und $p$ ermitteln.
+
Mit dem interaktiven Applet [[Applets:Binomial-_und_Poissonverteilung_(Applet)|Binomial– und Poissonverteilung]] können Sie die Binomialwahrscheinlichkeiten für beliebige $I$ und $p$ ermitteln.
  
  
 
==Momente der Binomialverteilung==
 
==Momente der Binomialverteilung==
 
<br>
 
<br>
Die Momente können mit den Gleichungen im Kapitel [[Stochastische_Signaltheorie/Momente_einer_diskreten_Zufallsgröße|Momente einer diskreten Zufallsgröße]]  und den  [[Stochastische_Signaltheorie/Binomialverteilung#Wahrscheinlichkeiten_der_Binomialverteilung|Wahrscheinlichkeiten der Binomialverteilung]]  allgemein berechnet werden.  
+
Die Momente kann man mit den Gleichungen in den Kapiteln [[Stochastische_Signaltheorie/Momente_einer_diskreten_Zufallsgröße|Momente einer diskreten Zufallsgröße]]  und [[Stochastische_Signaltheorie/Binomialverteilung#Wahrscheinlichkeiten_der_Binomialverteilung|Wahrscheinlichkeiten der Binomialverteilung]]  allgemein berechnen.  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Berechnungsvorschriften:}$&nbsp;
+
$\text{Berechnungsvorschriften:} $&nbsp; Für das '''Moment $k$-ter Ordnung''' einer binomialverteilten Zufallsgröße gilt allgemein:  
Für das '''Moment $k$-ter Ordnung''' einer binomialverteilten Zufallsgröße gilt allgemein:  
+
:$$m_k={\rm E}\big[z^k\big]=\sum_{\mu={\rm 0} }^{I}\mu^k\cdot{I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$
:$$m_k={\rm E}[z^k]=\sum_{\mu={\rm 0} }^{I}\mu^k\cdot{I \choose \mu}\cdot p^\mu\cdot ({\rm 1}-p)^{I-\mu}.$$
 
  
 
Daraus erhält man nach einigen Umformungen für  
 
Daraus erhält man nach einigen Umformungen für  
 
*den linearen Mittelwert:  
 
*den linearen Mittelwert:  
:$$m_1 = I\cdot p,$$
+
:$$m_1 ={\rm E}\big[z\big]= I\cdot p,$$
 
*den quadratischen Mittelwert:  
 
*den quadratischen Mittelwert:  
:$$m_2 = (I^2-I)\cdot p^2+I\cdot p.$$
+
:$$m_2 ={\rm E}\big[z^2\big]= (I^2-I)\cdot p^2+I\cdot p.$$
 
Die Varianz und die Streuung erhält man durch Anwendung des &bdquo;Steinerschen Satzes&rdquo;:
 
Die Varianz und die Streuung erhält man durch Anwendung des &bdquo;Steinerschen Satzes&rdquo;:
 
:$$\sigma^2 = {m_2-m_1^2} = {I \cdot p\cdot (1-p)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$\sigma^2 = {m_2-m_1^2} = {I \cdot p\cdot (1-p)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
Zeile 115: Zeile 115:
 
$\text{Beispiel 4:}$&nbsp;
 
$\text{Beispiel 4:}$&nbsp;
 
Wir betrachten wie im $\text{Beispiel 3}$ einen Block von $I =10$ Binärsymbolen, die jeweils mit der Wahrscheinlichkeit $p = 0.01$ unabhängig voneinander verfälscht werden. Dann gilt:  
 
Wir betrachten wie im $\text{Beispiel 3}$ einen Block von $I =10$ Binärsymbolen, die jeweils mit der Wahrscheinlichkeit $p = 0.01$ unabhängig voneinander verfälscht werden. Dann gilt:  
*Die mittlere Anzahl von Fehlern pro Block ist gleich $m_f  = {\rm E}[ f] = I · p = 0.1$.
+
*Die mittlere Anzahl von Fehlern pro Block ist gleich $m_f  = {\rm E}\big[ f\big] = I · p = 0.1$.
 
*Die Streuung (Standardabweichung) der Zufallsgröße $f$  beträgt $σ_f  = \sqrt{0.1 \cdot 0.99}≈ 0.315$.
 
*Die Streuung (Standardabweichung) der Zufallsgröße $f$  beträgt $σ_f  = \sqrt{0.1 \cdot 0.99}≈ 0.315$.
  

Version vom 7. August 2018, 10:04 Uhr

Allgemeine Beschreibung der Binomialverteilung


$\text{Definition:}$  Die Binomialverteilung stellt einen wichtigen Sonderfall für die Auftrittswahrscheinlichkeiten einer diskreten Zufallsgröße dar.

Zur Herleitung der Binomialverteilung gehen wir davon aus, dass $I$ binäre und statistisch voneinander unabhängige Zufallsgrößen $b_i$ jeweils

  • den Wert $1$ mit der Wahrscheinlichkeit ${\rm Pr}(b_i = 1) = p$, und
  • den Wert $0$ mit der Wahrscheinlichkeit ${\rm Pr}(b_i = 0) = 1-p$

annehmen können.

Dann ist die Summe $z$ ebenfalls eine diskrete Zufallsgröße mit dem Symbolvorrat $\{0, 1, 2,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}, I\}$, die man als binomialverteilt bezeichnet:

$$z=\sum_{i=1}^{I}b_i.$$

Der Symbolumfang beträgt somit $M = I + 1.$


$\text{Beispiel 1:}$  Die Binomialverteilung findet in der Nachrichtentechnik ebenso wie in anderen Disziplinen mannigfaltige Anwendungen:

  • Sie beschreibt die Verteilung von Ausschussstücken in der statistischen Qualitätskontrolle.
  • Sie erlaubt die Berechnung der Restfehlerwahrscheinlichkeit bei blockweiser Codierung.
  • Auch die per Simulation gewonnene Bitfehlerquote eines digitalen Übertragungssystems ist eigentlich eine binomialverteilte Zufallsgröße.

Wahrscheinlichkeiten der Binomialverteilung


$\text{Berechnungsvorschrift:}$  Für die Wahrscheinlichkeiten der Binomialverteilung gilt mit $μ = 0, \hspace{0.1cm}\text{...} \hspace{0.1cm}, I$:

$$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$

Der erste Term gibt hierbei die Anzahl der Kombinationen an  (sprich: $I\text{ über }μ$):

$${I \choose \mu}=\frac{I !}{\mu !\cdot (I-\mu) !}=\frac{ {I\cdot (I- 1) \cdot \ \cdots \ \cdot (I-\mu+ 1)} }{ 1\cdot 2\cdot \ \cdots \ \cdot \mu}.$$


Weitere Hinweise:

  • Für sehr große Werte von $I$ kann die Binomialverteilung durch die im nächsten Abschnitt beschriebene Poissonverteilung angenähert werden.
  • Ist gleichzeitig das Produkt $I · p \gg 1$, so geht nach dem Grenzwertsatz von de Moivre-Laplace die Poissonverteilung (und damit auch die Binomialverteilung) in eine diskrete Gaußverteilung über.


Wahrscheinlichkeiten der Binomialverteilung

$\text{Beispiel 2:}$  Die Grafik zeigt die Wahrscheinlichkeiten der Binomialverteilung sind für $I =6$ und $p =0.4$. Von Null verschieden sind somit $M = I+1=7$ Wahrscheinlichkeiten.

Dagegen ergeben sich für $I = 6$ und $p = 0.5$ die folgenden Binomialwahrscheinlichkeiten:

$$\begin{align*}{\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}0) & = {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}6)\hspace{-0.05cm} =\hspace{-0.05cm} 1/64\hspace{-0.05cm} = \hspace{-0.05cm}0.015625 ,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}1) & = {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}5) \hspace{-0.05cm}= \hspace{-0.05cm}6/64 \hspace{-0.05cm}=\hspace{-0.05cm} 0.09375,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}2) & = {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}4)\hspace{-0.05cm} = \hspace{-0.05cm}15/64 \hspace{-0.05cm}= \hspace{-0.05cm}0.234375 ,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}3) & = 20/64 \hspace{-0.05cm}= \hspace{-0.05cm} 0.3125 .\end{align*}$$

Diese sind symmetrisch bezüglich des Abszissenwertes $\mu = I/2 = 3$.


Ein weiteres Beispiel für die Anwendung der Binomialverteilung ist die Berechnung der Blockfehlerwahrscheinlichkeit bei digitaler Übertragung.

$\text{Beispiel 3:}$  Überträgt man jeweils Blöcke von $I =10$ Binärsymbolen über einen Kanal, der

  • mit der Wahrscheinlichkeit $p = 0.01$ ein Symbol verfälscht   ⇒   Zufallsgröße $e_i = 1$, und
  • entsprechend mit der Wahrscheinlichkeit $1 – p = 0.99$ das Symbol unverfälscht überträgt   ⇒   Zufallsgröße $e_i = 0$,


so gilt für die neue Zufallsgröße $f$ („Fehler pro Block”):

$$f=\sum_{i=1}^{I}e_i.$$

Diese Zufallsgröße $f$ kann nun alle ganzzahligen Werte zwischen $0$ (kein Symbol verfälscht) und $I$ (alle Symbole falsch) annehmen. Die Wahrscheinlichkeiten für $\mu$ Verfälschungen bezeichnen wir mit $p_μ$.

  • Der Fall, dass alle $I$ Symbole richtig übertragen werden, tritt mit der Wahrscheinlichkeit $p_0 = 0.99^{10} ≈ 0.9044$ ein. Dies ergibt sich auch aus der Binomialformel für $μ = 0$ unter Berücksichtigung der Definition $10\text{ über }0 = 1$.
  • Ein einziger Symbolfehler $(f = 1)$ tritt mit folgender Wahrscheinlichkeit auf:
$$p_1 = \rm 10\cdot 0.01\cdot 0.99^9\approx 0.0914.$$
Der erste Faktor berücksichtigt, dass es für die Position eines einzigen Fehlers genau $10\text{ über }1 = 10$ Möglichkeiten gibt. Die beiden weiteren Faktoren beücksichtigen, dass ein Symbol verfälscht und neun richtig übertragen werden müssen, wenn $f =1$ gelten soll.
  • Für $f =2$ gibt es deutlich mehr Kombinationen, nämlich$10\text{ über }2 = 45$, und man erhält
$$p_2 = \rm 45\cdot 0.01^2\cdot 0.99^8\approx 0.0041.$$

Kann ein Blockcode bis zu zwei Fehler korrigieren, so ist die Restfehlerwahrscheinlichkeit

$$p_{\rm R} = \it p_{\rm 3} \rm +\hspace{0.1cm}\text{ ...} \hspace{0.1cm} \rm + \it p_{\rm 10}\approx \rm 10^{-4},$$

oder

$$p_{\rm R} = \rm 1-\it p_{\rm 0}-\it p_{\rm 1}-p_{\rm 2}\approx \rm 10^{-4}.$$
  • Man erkennt, dass die zweite Berechnungsmöglichkeit über das Komplement für große Werte vin $I$ schneller zum Ziel führt.
  • Man könnte aber auch als Näherung berücksichtigen, dass bei diesen Zahlenwerten $p_{\rm R} ≈ p_3$ gilt.


Mit dem interaktiven Applet Binomial– und Poissonverteilung können Sie die Binomialwahrscheinlichkeiten für beliebige $I$ und $p$ ermitteln.


Momente der Binomialverteilung


Die Momente kann man mit den Gleichungen in den Kapiteln Momente einer diskreten Zufallsgröße und Wahrscheinlichkeiten der Binomialverteilung allgemein berechnen.

$\text{Berechnungsvorschriften:} $  Für das Moment $k$-ter Ordnung einer binomialverteilten Zufallsgröße gilt allgemein:

$$m_k={\rm E}\big[z^k\big]=\sum_{\mu={\rm 0} }^{I}\mu^k\cdot{I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$

Daraus erhält man nach einigen Umformungen für

  • den linearen Mittelwert:
$$m_1 ={\rm E}\big[z\big]= I\cdot p,$$
  • den quadratischen Mittelwert:
$$m_2 ={\rm E}\big[z^2\big]= (I^2-I)\cdot p^2+I\cdot p.$$

Die Varianz und die Streuung erhält man durch Anwendung des „Steinerschen Satzes”:

$$\sigma^2 = {m_2-m_1^2} = {I \cdot p\cdot (1-p)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \sigma = \sqrt{I \cdot p\cdot (1-p)}.$$


Die maximale Varianz $σ^2 = I/4$ ergibt sich für die charakteristische Wahrscheinlichkeit $p = 1/2$. In diesem Fall sind die Wahrscheinlichkeit symmetrisch um den Mittelwert $m_1 = I/2 \ ⇒ \ p_μ = p_{I–μ}$.

Je mehr die charakteristische Wahrscheinlichkeit $p$ vom Wert $1/2$ abweicht,

  • um so kleiner ist die Streuung $σ$, und
  • um so unsymmetrischer werden die Wahrscheinlichkeiten um den Mittelwert $m_1 = I · p$.


$\text{Beispiel 4:}$  Wir betrachten wie im $\text{Beispiel 3}$ einen Block von $I =10$ Binärsymbolen, die jeweils mit der Wahrscheinlichkeit $p = 0.01$ unabhängig voneinander verfälscht werden. Dann gilt:

  • Die mittlere Anzahl von Fehlern pro Block ist gleich $m_f = {\rm E}\big[ f\big] = I · p = 0.1$.
  • Die Streuung (Standardabweichung) der Zufallsgröße $f$ beträgt $σ_f = \sqrt{0.1 \cdot 0.99}≈ 0.315$.


Im vollständig gestörten Kanal   ⇒   Verfälschungswahrscheinlichkeit $p = 1/2$ ergeben sich demgegenüber die Werte

  • $m_f = 5$   ⇒   im Mittel sind fünf der zehn Bits innerhalb eines Blocks falsch,
  • $σ_f = \sqrt{I}/2 ≈1.581$   ⇒   maximale Streuung für $I = 10$.

Aufgaben zum Kapitel


Aufgabe 2.3: Summe von Binärzahlen

Aufgabe 2.4: Zahlenlotto (6 aus 49)