Signaldarstellung/Spektralanalyse: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 26: Zeile 26:
 
Rechts ist in logarithmierter Form (in dB) das frequenzdiskrete Spektrum $|D(\mu )|$ nach einer DFT mit $N$ = 32 Abtastwerten dargestellt, woraus sich die weiteren DFT–Parameter zu $T_P$ = 32 μs (Dauer des Zeitausschnitts) und $f_A$ = 1/ $T_P$ = 31.25 kHz (Rasterung der Frequenzachse) ergeben. Da durch die Intervallbreite $T_P$ ein ganzzahliges Vielfaches der Periodendauer $T_0$ erfasst wird, liefert die DFT das richtige Ergebnis. Die beiden Diracfunktionen liegen genau bei $\pm$4 $f_A$.
 
Rechts ist in logarithmierter Form (in dB) das frequenzdiskrete Spektrum $|D(\mu )|$ nach einer DFT mit $N$ = 32 Abtastwerten dargestellt, woraus sich die weiteren DFT–Parameter zu $T_P$ = 32 μs (Dauer des Zeitausschnitts) und $f_A$ = 1/ $T_P$ = 31.25 kHz (Rasterung der Frequenzachse) ergeben. Da durch die Intervallbreite $T_P$ ein ganzzahliges Vielfaches der Periodendauer $T_0$ erfasst wird, liefert die DFT das richtige Ergebnis. Die beiden Diracfunktionen liegen genau bei $\pm$4 $f_A$.
  
[[Datei:P_ID1160__Sig_T_5_4_S1_neu.png|250px|right|Beispiel für die Anwendung der Spektralanalyse]]
+
[[Datei:P_ID1160__Sig_T_5_4_S1_neu.png|Beispiel für die Anwendung der Spektralanalyse]]
  
 
Vermisst man mit der gleichen Anordnung eine Schwingung der Frequenz $f_0$ = 109.375 kHz (das heißt: $T_0 \approx$ 9.14 μs) entsprechend der unteren Grafik (b), so kommt es zu signifikanten Verfälschungen des Spektrums. Da nun $T_P/T_0$ = 3.5 nicht mehr ganzzahlig ist, entstehen durch die periodische Fortsetzung des Zeitausschnittes Phasensprünge, in unserem Beispiel um $\pi$.
 
Vermisst man mit der gleichen Anordnung eine Schwingung der Frequenz $f_0$ = 109.375 kHz (das heißt: $T_0 \approx$ 9.14 μs) entsprechend der unteren Grafik (b), so kommt es zu signifikanten Verfälschungen des Spektrums. Da nun $T_P/T_0$ = 3.5 nicht mehr ganzzahlig ist, entstehen durch die periodische Fortsetzung des Zeitausschnittes Phasensprünge, in unserem Beispiel um $\pi$.
Zeile 38: Zeile 38:
 
Das Zustandekommen solcher unerwünschter Seitenkeulen soll nun anhand der nachfolgenden Grafik systemtheoretisch erklärt werden.
 
Das Zustandekommen solcher unerwünschter Seitenkeulen soll nun anhand der nachfolgenden Grafik systemtheoretisch erklärt werden.
  
[[Datei:Rechteck- und Bartlett-Fenster|250px|right|Beispiel für die Anwendung der Spektralanalyse]]
+
[[Datei:Rechteck- und Bartlett-Fenster|Beispiel für die Anwendung der Spektralanalyse]]
  
 
Betrachten Sie zunächst die obere Grafik (a) für das Rechteckfenster.
 
Betrachten Sie zunächst die obere Grafik (a) für das Rechteckfenster.
Zeile 61: Zeile 61:
 
Die durch Begrenzung und periodische Fortsetzung entstehendenen Unstetigkeiten im Zeitbereich werden vermindert, wenn statt der konstanten Eins–Bewertung durch das Rechteck die beiden Randbereiche des Fensters schwächer gewichtet werden als die Mitte.
 
Die durch Begrenzung und periodische Fortsetzung entstehendenen Unstetigkeiten im Zeitbereich werden vermindert, wenn statt der konstanten Eins–Bewertung durch das Rechteck die beiden Randbereiche des Fensters schwächer gewichtet werden als die Mitte.
  
[[Datei:P_ID1162__Sig_T_5_4_S2_neu.png|250px|right|Rechteck- und Bartlett-Fenster]]
+
[[Datei:P_ID1162__Sig_T_5_4_S2_neu.png|Rechteck- und Bartlett-Fenster]]
  
 
Betrachten Sie die untere Grafik (b) für das Bartlett–Fenster – auch Dreieckfenster genannt:
 
Betrachten Sie die untere Grafik (b) für das Bartlett–Fenster – auch Dreieckfenster genannt:
Zeile 88: Zeile 88:
 
==Spezielle Fensterfunktionen==
 
==Spezielle Fensterfunktionen==
 
    
 
    
[[Datei:P_ID1165__Sig_T_5_4_S3_neu.png|250px|right|Hanning-, Hamming- und Kaiser-Bessel-Fenster]]  
+
[[Datei:P_ID1165__Sig_T_5_4_S3_neu.png|Hanning-, Hamming- und Kaiser-Bessel-Fenster]]  
 
Nun werden einige häufig eingesetzten Fensterfunktionen – nämlich das Hanning–, Hamming– und das Kaiser–Bessel–Fenster – anhand von Grafiken und Gleichungen beschrieben, wobei für die Laufvariable im Zeitbereich stets $–N/2 ≤ ν < N/2$ gilt. Die Eignung dieser Fensterfunktionen für verschiedenartige Aufgaben der Spektralanalyse nennen wir auf der nächsten Seite.
 
Nun werden einige häufig eingesetzten Fensterfunktionen – nämlich das Hanning–, Hamming– und das Kaiser–Bessel–Fenster – anhand von Grafiken und Gleichungen beschrieben, wobei für die Laufvariable im Zeitbereich stets $–N/2 ≤ ν < N/2$ gilt. Die Eignung dieser Fensterfunktionen für verschiedenartige Aufgaben der Spektralanalyse nennen wir auf der nächsten Seite.
  
Zeile 107: Zeile 107:
 
Diese wichtigsten Gütekriterien sind in der folgenden Tabelle durch rote Schrift hervorgehoben.
 
Diese wichtigsten Gütekriterien sind in der folgenden Tabelle durch rote Schrift hervorgehoben.
  
[[Datei:P_ID1163__Sig_T_5_4_S4_v4.png|250px|right|Gütekriterien von Fensterfunktionen]]
+
[[Datei:P_ID1163__Sig_T_5_4_S4_v4.png|Gütekriterien von Fensterfunktionen]]
  
 
In jeder Zeile sind eher günstige Fensterfunktionen grün und eher ungünstigste grau hinterlegt. Aus der Verteilung der grünen und grauen Flächen ist bereits ersichtlich, dass es die optimale Fensterfunktion nicht gibt.
 
In jeder Zeile sind eher günstige Fensterfunktionen grün und eher ungünstigste grau hinterlegt. Aus der Verteilung der grünen und grauen Flächen ist bereits ersichtlich, dass es die optimale Fensterfunktion nicht gibt.
Zeile 118: Zeile 118:
 
*Die '''6dB–Bandbreite''', die aus der logarithmierten Spektralfunktion abgelesen werden kann, ist ein wichtiges Maß für das Frequenzauflösungsvermögen. Zwei im Signal vorhandene Spektralanteile bei $f_1$ und $f_2$ können nur dann aufgelöst werden, wenn die Differenz $f_2 – f_1$ größer als die 6dB–Bandbreite der verwendeten Fensterfunktion ist (siehe rechte Grafik).
 
*Die '''6dB–Bandbreite''', die aus der logarithmierten Spektralfunktion abgelesen werden kann, ist ein wichtiges Maß für das Frequenzauflösungsvermögen. Zwei im Signal vorhandene Spektralanteile bei $f_1$ und $f_2$ können nur dann aufgelöst werden, wenn die Differenz $f_2 – f_1$ größer als die 6dB–Bandbreite der verwendeten Fensterfunktion ist (siehe rechte Grafik).
  
[[Datei:P_ID1164__Sig_T_5_4_S4b_neu.png|350px|right|Zur Verdeutlichung der 6dB-Bandbreite]]
+
[[Datei:P_ID1164__Sig_T_5_4_S4b_neu.png|Zur Verdeutlichung der 6dB-Bandbreite]]
  
 
Die Fensterfläche der Funktion $w(t)$ gibt zugleich die Höhe $W$(0) im Spektralbereich an. Bei allen Fenstern mit Ausnahme des Rechtecks ergibt sich aufgrund der Unterdrückung der äußeren Abtastwerte eine Fensterfläche kleiner 1 und damit ein Fehler in der Amplitude des DFT–Ergebnisses, der jedoch bei Kenntnis von $w(t)$ vollständig korrigierbar ist.
 
Die Fensterfläche der Funktion $w(t)$ gibt zugleich die Höhe $W$(0) im Spektralbereich an. Bei allen Fenstern mit Ausnahme des Rechtecks ergibt sich aufgrund der Unterdrückung der äußeren Abtastwerte eine Fensterfläche kleiner 1 und damit ein Fehler in der Amplitude des DFT–Ergebnisses, der jedoch bei Kenntnis von $w(t)$ vollständig korrigierbar ist.

Version vom 7. Oktober 2016, 10:28 Uhr

Spektraler Leckeffekt

Die Verfälschung des Spektrums eines periodischen und damit zeitlich unbegrenzten Signals aufgrund der impliziten Zeitbegrenzung der DFT bezeichnet man als den spektralen Leckeffekt. Dadurch werden zum Beispiel von einem Spektrumanalyzer

  • im Zeitsignal nicht vorhandene Frequenzanteile vorgetäuscht, und/oder
  • tatsächlich vorhandene Spektralkomponenten durch Seitenkeulen verdeckt.


Das nachfolgende Beispiel wird zeigen, dass bei einem periodischen Signal die Anwendung der Diskreten Fouriertransformation (DFT) ohne Zusatzmaßnahmen nicht sinnvoll ist. Die Güte der Spektralanalyse – das heißt die Richtigkeit des gefundenen Spektrums – wird hier hauptsächlich durch die (mehr oder weniger geglückte) Anpassung der DFT-Parameter an die vorliegenden Signalparameter bestimmt.

  • Ist zum Beispiel die Periodendauer $T_0$ des Signals $x(t)$ bekannt, so sollte die Dauer $T_P$ des für die DFT verwendeten Signalausschnittes ein ganzzahliges Vielfaches von $T_0$ betragen.
  • Aufgabe der Spektralanalyse ist aber gerade das Auffinden beliebiger Signalanteile, so dass die Kenntnis von $T_0$ im Allgemeinen nicht vorausgesetzt werden kann.
  • Eine Maßnahme zur Verbesserung des Spektralanalysenergebnisses ist die Fensterung mit einer „geeigneten” Zeitfunktion w(t). Analysiert wird dann das Produktsignal $x(t) \cdot w(t)$.
  • Aus der Literatur sind eine Vielzahl solcher Fensterfunktionen $w(t)$ bekannt, die je nach Aufgabenstellung zu guten oder weniger befriedigenden Ergebnissen führen.


Auf den nächsten Seiten wird der spektrale Leckeffekt an Beispielen verdeutlicht und es wird auf die Vorteile und Nachteile der verschiedenen Fensterfunktionen eingegangen. So viel vorneweg: Es gibt keine „beste” Fensterfunktion für alle Anwendungen.

Die obere Grafik zeigt das zeitdiskrete Signal $d(ν)$ einer harmonischen Schwingung mit der Frequenz $f_0$ = 125 kHz. Demzufolge beträgt die Periodendauer $T_0$ = 8 μs. Der Abstand zweier aufeinanderfolgender Zeitabtastwerte ist bei diesem Beispiel zu $T_A$ = 1 μs gewählt. Rechts ist in logarithmierter Form (in dB) das frequenzdiskrete Spektrum $|D(\mu )|$ nach einer DFT mit $N$ = 32 Abtastwerten dargestellt, woraus sich die weiteren DFT–Parameter zu $T_P$ = 32 μs (Dauer des Zeitausschnitts) und $f_A$ = 1/ $T_P$ = 31.25 kHz (Rasterung der Frequenzachse) ergeben. Da durch die Intervallbreite $T_P$ ein ganzzahliges Vielfaches der Periodendauer $T_0$ erfasst wird, liefert die DFT das richtige Ergebnis. Die beiden Diracfunktionen liegen genau bei $\pm$4 $f_A$.

Beispiel für die Anwendung der Spektralanalyse

Vermisst man mit der gleichen Anordnung eine Schwingung der Frequenz $f_0$ = 109.375 kHz (das heißt: $T_0 \approx$ 9.14 μs) entsprechend der unteren Grafik (b), so kommt es zu signifikanten Verfälschungen des Spektrums. Da nun $T_P/T_0$ = 3.5 nicht mehr ganzzahlig ist, entstehen durch die periodische Fortsetzung des Zeitausschnittes Phasensprünge, in unserem Beispiel um $\pi$. Der Spektralbereich besteht nun nicht mehr aus zwei Diracfunktionen wie im Beispiel (a), sondern aus einer annähernd „kontinuierlichen” Frequenzfunktion mit dem Maximum in der Nähe der tatsächlichen Signalfrequenz und einer Reihe weiterer Anteile, die man Seitenkeulen (englisch: Side Lobes) nennt.


Systemtheoretische Beschreibung der Fensterung

Das Zustandekommen solcher unerwünschter Seitenkeulen soll nun anhand der nachfolgenden Grafik systemtheoretisch erklärt werden.

Beispiel für die Anwendung der Spektralanalyse

Betrachten Sie zunächst die obere Grafik (a) für das Rechteckfenster.

  • Die in der DFT implizit enthaltene Zeitbegrenzung entspricht der Multiplikation des Signals $x(t)$ mit einer rechteckförmigen Fensterfunktion $w(t)$ der Höhe 1 und der Dauer $T_P$. Das linke obere Bild zeigt die zeitdiskrete Darstellung der Rechteckfunktion mit $ν = t/T_A$:

$${w} (\nu) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ \\ \end{array}\begin{array}{*{20}c} -N/2 \le \nu < N/2 \hspace{0.05cm}, \\ {\rm sonst} \hspace{0.05cm}. \\ \end{array}$$

  • Aus der Multiplikation $y(t) = x(t) \cdot w(t)$ der beiden Signale folgt für die Spektralfunktion $Y(f) = X(f) \ast W(f)$, wobei bei rechteckförmiger Fensterfunktion mit $f_A = 1/T_P$ gilt:

$$W(f) = T_{\rm P} \cdot {\rm si}(\pi \cdot f \cdot T_{\rm P}) = {1}/{f_{\rm A}}\cdot {\rm si}(\pi \cdot {f}/{f_{\rm A}})\hspace{0.05cm}.$$

Diese Funktion ist in der rechten oberen Grafik in logarithmierter Form dargestellt.

  • Liegen alle Spektralanteile des zu analysierenden Signals $x(t)$ im Frequenzraster $\mu \cdot f_A$, so bleiben die frequenzdiskreten Spektralwerte $D(\mu )$ durch die Faltung mit $W(f)$ unverändert. Andernfalls führt die Faltungsoperation mit $W(f)$ zu Verfälschungen, da die Nullstellen der si–Funktion nun nicht mehr zu den diskreten Werten des Eingangsspektrums passen.


Die durch Begrenzung und periodische Fortsetzung entstehendenen Unstetigkeiten im Zeitbereich werden vermindert, wenn statt der konstanten Eins–Bewertung durch das Rechteck die beiden Randbereiche des Fensters schwächer gewichtet werden als die Mitte.

Rechteck- und Bartlett-Fenster

Betrachten Sie die untere Grafik (b) für das Bartlett–Fenster – auch Dreieckfenster genannt:

  • Die zeitdiskrete Beschreibung des Bartlett–Fensters lautet mit $ν = t/T_A$:

$${w} (\nu) = \left\{ \begin{array}{c} 1 - {2 \hspace{0.05cm} \cdot \hspace{0.05cm} |\nu|}/{N} \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ \\ \end{array}\begin{array}{*{20}c} -N/2 \le \nu < N/2 \hspace{0.05cm}, \\ {\rm sonst} \hspace{0.05cm}. \\ \end{array}$$

Daraus folgt für die zeitkontinuierliche Fensterfunktion und die Spektraldarstellung:

$${w} (t) = \left\{ \begin{array}{c} 1 -{|t|}/{(T_{\rm P}/2)} \\ 0 \\ \end{array} \right.\hspace{0.05cm} \begin{array}{*{20}c} |t| \le T_{\rm P}/2\\ {\rm sonst} \\ \end{array}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}W(f) ={1}/({2f_{\rm A}})\cdot {\rm si}^2(\pi \cdot {f}/({2f_{\rm A}}))\hspace{0.05cm}.$$

  • Durch die geringere Bewertung der bei unbegrenzten Signalen besonders problematischen Randbereiche hat das (logarithmisch gezeichnete) Spektrum $W(f)$ geringere Seitenschwinger als die si–Funktion im obigen Bild, was zu geringeren Leckkomponenten führt.
  • Die bessere Unterdrückung der Seitenkeulen geht allerdings auf Kosten einer merkbaren Verkleinerung und Verbreiterung der Hauptkeule, wodurch das Auflösungsvermögen des Bartlett–Fensters gegenüber der Rechteck–Fensterung eingeschränkt wird.


Spezielle Fensterfunktionen

Hanning-, Hamming- und Kaiser-Bessel-Fenster Nun werden einige häufig eingesetzten Fensterfunktionen – nämlich das Hanning–, Hamming– und das Kaiser–Bessel–Fenster – anhand von Grafiken und Gleichungen beschrieben, wobei für die Laufvariable im Zeitbereich stets $–N/2 ≤ ν < N/2$ gilt. Die Eignung dieser Fensterfunktionen für verschiedenartige Aufgaben der Spektralanalyse nennen wir auf der nächsten Seite.

  • Beim Kaiser–Bessel–Fenster sind die Funktionen im Zeit– und Frequenzbereich jeweils für $\alpha$ = 3.5 dargestellt. $I_0(.)$ bezeichnet die Besselfunktion nullter Ordnung.
  • Weitere Fensterfunktionen wie das Blackman–Harris–Fenster, das Cosinus–Rolloff–Fenster (auch Tukey–Fenster genannt) und noch viele Andere mehr finden Sie in [Söd93].


Gütekriterien von Fensterfunktionen

Die Tabelle gibt Gütekriterien für die auf den letzten Seiten beschriebenen Fensterfunktionen wieder. Die detaillierte Beschreibung dieser Gütekriterien folgt auf der nächsten Seite. Die Auswahl einer geeigneten Fensterfunktion sollte nach folgenden Gesichtspunkten erfolgen:

  • Der minimale Abstand zwischen Hauptkeule und Seitenkeulen sollte groß sein, um den Einfluss des Leckeffektes gering zu halten und die Amplitudenauflösung zu verbessern.
  • Aus Gründen einer guten Frequenzselektivität sollte die 6dB–Bandbreite gering sein. Ist diese zu groß, so überdeckt eine dominante Spektrallinie kleinere Anteile in der Umgebung.
  • Der maximale Prozessverlust (in dB) beinhaltet den maximalen Skalierungsfehler und die äquivalente Rauschbandbreite. Diese Größe sollte auf keinen Fall 3.7 dB überschreiten.


Diese wichtigsten Gütekriterien sind in der folgenden Tabelle durch rote Schrift hervorgehoben.

Gütekriterien von Fensterfunktionen

In jeder Zeile sind eher günstige Fensterfunktionen grün und eher ungünstigste grau hinterlegt. Aus der Verteilung der grünen und grauen Flächen ist bereits ersichtlich, dass es die optimale Fensterfunktion nicht gibt.

  • Ein guter Kompromiss ist das Hanning–Fenster (in der Tabelle blau hervorgehoben), das bezüglich der drei Hauptkriterien (rote Markierungen) nie mit „Grau” abschneidet.
  • Das Hamming–Fenster unterscheidet sich hiervon im Zeitbereich nur geringfügig, aber im Spektralbereich beträchtlich. So beträgt der Seitenkeulenabfall pro Oktave nur mehr 6 dB.

Nun werden die in der Tabelle angegebenen Gütekriterien detailliert beschrieben.

  • Je größer der minimale Haupt–zu–Seitenkeulen–Abstand ⇒ Verhältnis der Hauptkeule zur höchsten Seitenkeule, desto besser ist die Amplitudenauflösung einer Fensterfunktion. Beim Rechteck ist dieser Abstand erwartungsgemäß am kleinsten (13 dB). Das beste Ergebnis liefert mit 92 dB das Blackman–Harris–Fenster vierter Ordnung.
  • Da jedoch nicht nur die höchste, sondern auch alle weiteren Seitenkeulen zum Leckeffekt beitragen, ist der Seitenkeulenabfall ein weiteres Maß für das Auflösungsvermögen. Von den angegebenen Fensterfunktionen weisen diesbezüglich das Hanning–Fenster sowie das Cosinus–Rolloff–Fenster mit Rolloff $r$ = 0.5 die günstigsten Werte auf (18 dB/Oktave).
  • Die 6dB–Bandbreite, die aus der logarithmierten Spektralfunktion abgelesen werden kann, ist ein wichtiges Maß für das Frequenzauflösungsvermögen. Zwei im Signal vorhandene Spektralanteile bei $f_1$ und $f_2$ können nur dann aufgelöst werden, wenn die Differenz $f_2 – f_1$ größer als die 6dB–Bandbreite der verwendeten Fensterfunktion ist (siehe rechte Grafik).

Zur Verdeutlichung der 6dB-Bandbreite

Die Fensterfläche der Funktion $w(t)$ gibt zugleich die Höhe $W$(0) im Spektralbereich an. Bei allen Fenstern mit Ausnahme des Rechtecks ergibt sich aufgrund der Unterdrückung der äußeren Abtastwerte eine Fensterfläche kleiner 1 und damit ein Fehler in der Amplitude des DFT–Ergebnisses, der jedoch bei Kenntnis von $w(t)$ vollständig korrigierbar ist.


Maximaler Prozessverlust

Dieses kombinierte Gütekriterium berücksichtigt den maximalen Skalierungsfehler ebenso wie die (normierte) äquivalente Rauschbandbreite. Es wird meist in dB angegeben:

$$10 \cdot {\rm lg}\hspace{0.15cm}V_{\rm P}\hspace{0.15cm}{\rm (in}\hspace{0.15cm}{\rm dB)}= 20 \cdot {\rm lg}\hspace{0.15cm} \frac{|W(f=0)|}{|W(f=f_{\rm A}/2)|} + 10 \cdot {\rm lg}\hspace{0.15cm} \frac{\int_{-\infty}^{\infty}|W(f)|^2\hspace{0.05cm}{\rm d}f}{f_{\rm A} \cdot |W(f=0)|^2} \hspace{0.05cm}.$$

Aus der Ergebnistabelle erkennt man, dass $V_P$ für die betrachteten Fensterfunktionen stets Werte zwischen 3 dB und 4 dB annimmt, wobei Fensterfunktionen mit $V_P$ > 3.7 dB (Rechteck, Blackman–Harris, Kaiser–Bessel) nicht verwendet werden sollten. Gerade diese sind aber bezüglich des Haupt–zu–Seitenkeulen–Abstands am besten. Die beiden Anteile sind wie folgt zu interpretieren:

  • Der maximale Skalierungsfehler ist das Verhältnis, um das sich die mit der DFT ermittelte Amplitude von der tatsächlichen Signalamplitude unterscheidet. Der Amplitudenfehler aufgrund einer Fensterfläche kleiner als 1 wird dabei als korrigiert vorausgesetzt.
  • Der Fehler ist am größten, wenn die Frequenz $f_0$ einer harmonischen Schwingung in der Mitte zwischen zwei DFT–Stützstellen liegt ⇒ Quotient $|W(f = 0)| / |W(f = f_A/2)|$. Je breiter die Hauptkeule der Fensterfunktion ist, um so kleiner ist dieser Skalierungsfehler.
  • Die äquivalente Rauschbreite der verwendeten Fensterfunktion – berechenbar als Breite des flächengleichen Rechtecks bezüglich dem Betragsquadrat $|W(f)|^2$ der Spektralfunktion – erfasst den störenden Einfluss von weißem Rauschen und sollte möglichst gering sein.
  • Die kleinste Rauschbandbreite ergibt sich für das Rechteck. Alle anderen Fensterfunktionen besitzen eine größere Rauschbandbreite und damit bei Vorhandensein von Rauschstörungen auch ein (deutlich) ungünstigeres Signal–zu–Rausch–Leistungsverhältnis.


Die Ergebnisse dieses Abschnitts lassen sich wie folgt zusammenfassen:

  • Eine ideale Fensterfunktion gibt es nicht. Je nach Aufgabenstellung (gute Amplituden– bzw. Frequenzauflösung) liefern unterschiedliche Fenster das jeweils beste Ergebnis.
  • Ein tragbarer Kompromiss hinsichtlich aller Kriterien ist das Hamming–Fenster, das lediglich beim Seitenkeulenabfall (nur 6 dB pro Oktave) einen ungünstigen Wert liefert.
  • Obwohl sich das Hanning–Fenster im Zeitbereich vom Hamming-Fenster nur mariginal unterscheidet, ist im Spektralbereich der Unterschied zwischen beiden beträchtlich.
  • Zu empfehlen ist, dass man zur Spektralanalyse stets mehrere Fensterfunktionen heranzieht oder zumindest eine Fensterfunktion mit verschiedenen Parametern verwendet.


Aufgaben zu Kapitel

5.4 Spektralanalyse