Signaldarstellung/Gleichsignal - Grenzfall eines periodischen Signals: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 10: Zeile 10:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$ 
 
$\text{Definition:}$ 
Ein  '''Gleichsignal'''  ist ein deterministisches Signal, dessen Augenblickswerte für alle Zeiten  $t$  von  $-\infty$  bis  $+\infty$  konstant sind. Ein solches Signal ist der Grenzfall einer  [[Signaldarstellung/Harmonische_Schwingung|harmonischen Schwingung]], wobei die Periodendauer  $T_{0}$  einen unendlich großen Wert besitzt.}}
+
Ein  $\text{Gleichsignal}$  ist ein deterministisches Signal, dessen Augenblickswerte für alle Zeiten  $t$  von  $-\infty$  bis  $+\infty$  konstant sind.  Ein solches Signal ist der Grenzfall einer  [[Signaldarstellung/Harmonische_Schwingung|harmonischen Schwingung]], wobei die Periodendauer  $T_{0}$  einen unendlich großen Wert besitzt.}}
  
  
 
[[Datei:Sig_T_2_2_S1a_Version2.png|right|frame|Gleichsignal im Zeitbereich]]
 
[[Datei:Sig_T_2_2_S1a_Version2.png|right|frame|Gleichsignal im Zeitbereich]]
Entsprechend dieser Definition reicht ein Gleichsignal immer von  $t = -\infty$  bis  $t = +\infty$.  
+
Entsprechend dieser Definition reicht ein Gleichsignal immer von  $t = -\infty$  bis  $t = +\infty$. 
Wird das Signal erst zum Zeitpunkt  $t = 0$  eingeschaltet, so liegt kein Gleichsignal vor.
+
Wird das Signal erst zum Zeitpunkt  $t = 0$  eingeschaltet, so liegt also kein Gleichsignal vor.
  
*Ein Gleichsignal kann niemals Träger von Information im nachrichtentechnischen Sinne sein, doch können Nachrichtensignale durchaus einen  ''Gleichsignalanteil''  besitzen.  
+
*Ein Gleichsignal kann niemals Träger von Information im nachrichtentechnischen Sinne sein, doch können Nachrichtensignale durchaus einen  „Gleichsignalanteil”  besitzen.  
 
*Alle im Folgenden für das Gleichsignal getroffenen Aussagen gelten in gleicher Weise auch für einen solchen Gleichsignalanteil.
 
*Alle im Folgenden für das Gleichsignal getroffenen Aussagen gelten in gleicher Weise auch für einen solchen Gleichsignalanteil.
 
<br clear=all>
 
<br clear=all>
Zeile 23: Zeile 23:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
Für den&nbsp; '''Gleichsignalanteil'''&nbsp; $A_{0}$ eines beliebigen Signals&nbsp; $x(t)$&nbsp; gilt:
+
Für den&nbsp; $\text{Gleichsignalanteil}$&nbsp; $A_{0}$ eines beliebigen Signals&nbsp; $x(t)$&nbsp; gilt:
 
   
 
   
 
:$$A_0  =  \lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\,{\rm d} t. $$
 
:$$A_0  =  \lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\,{\rm d} t. $$
Zeile 41: Zeile 41:
 
==Spektraldarstellung==
 
==Spektraldarstellung==
 
<br>
 
<br>
Wir betrachten nun den Sachverhalt im Frequenzbereich. Aus der Zeitfunktion ist bereits ersichtlich, dass diese – spektral gesehen – nur eine einzige (physikalische) Frequenz beinhaltet, nämlich die Frequenz&nbsp; $f=0$.  
+
Wir betrachten nun den Sachverhalt im Frequenzbereich.&nbsp; Aus der Zeitfunktion ist bereits ersichtlich, dass diese – spektral gesehen – nur eine einzige (physikalische) Frequenz beinhaltet, nämlich die Frequenz&nbsp; $f=0$.  
  
Dieses Ergebnis soll nun mathematisch hergeleitet werden.
+
Dieses Ergebnis soll nun mathematisch hergeleitet werden.&nbsp;
 
Im Vorgriff auf das Kapitel&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fouriertransformation]]&nbsp;  wird bereits hier der Zusammenhang zwischen dem Zeitsignal&nbsp; $x(t)$&nbsp; und dem korrespondierenden Spektrum&nbsp; $X(f)$&nbsp; angegeben:
 
Im Vorgriff auf das Kapitel&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fouriertransformation]]&nbsp;  wird bereits hier der Zusammenhang zwischen dem Zeitsignal&nbsp; $x(t)$&nbsp; und dem korrespondierenden Spektrum&nbsp; $X(f)$&nbsp; angegeben:
  
Zeile 59: Zeile 59:
  
 
mit folgenden Eigenschaften:
 
mit folgenden Eigenschaften:
*Das Integral divergiert für&nbsp; $f=0$, das heißt, es liefert einen unendlich großen Wert (Integration über den konstanten Wert 1).  
+
*Das Integral divergiert für&nbsp; $f=0$, das heißt, es liefert einen unendlich großen Wert&nbsp; $($Integration über den konstanten Wert&nbsp; $1)$.  
*Für eine Frequenz&nbsp; $f\ne 0$&nbsp; ist das Integral dagegen Null; der dazugehörige Beweis ist allerdings nicht trivial (siehe nächste Seite).
+
*Für eine Frequenz&nbsp; $f\ne 0$&nbsp; ist das Integral dagegen Null; der dazugehörige Beweis ist allerdings nicht trivial&nbsp; $($siehe nächste Seite$)$.
  
  
Zeile 69: Zeile 69:
 
:$$X(f) = A_0 \, \cdot \, \rm \delta(\it f).$$
 
:$$X(f) = A_0 \, \cdot \, \rm \delta(\it f).$$
  
*Man bezeichnet&nbsp; $\delta(f)$&nbsp; als&nbsp; '''Diracfunktion''', auch bekannt unter dem Namen „Distribution”.  
+
*Man bezeichnet&nbsp; $\delta(f)$&nbsp; als&nbsp; $\text{Diracfunktion}$, auch bekannt unter dem Namen „Distribution”.  
*$\delta(f)$&nbsp; ist eine mathematisch komplizierte Funktion; die Herleitung finden Sie auf der nächsten Seite.}}
+
*$\delta(f)$&nbsp; ist eine mathematisch komplizierte Funktion;&nbsp; die Herleitung finden Sie auf der nächsten Seite.}}
  
  
Zeile 88: Zeile 88:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
Die für die funktionale Beschreibung von nachrichtentechnischen Systemen äußerst wichtige&nbsp; '''Diracfunktion'''&nbsp; weist folgende Eigenschaften auf:
+
Die für die funktionale Beschreibung von nachrichtentechnischen Systemen äußerst wichtige&nbsp; $\text{Diracfunktion}$&nbsp; weist folgende Eigenschaften auf:
 
*Die Diracfunktion ist unendlich schmal, das heißt, es ist&nbsp; $\delta(f)=0$&nbsp; für&nbsp; $f \neq 0$.
 
*Die Diracfunktion ist unendlich schmal, das heißt, es ist&nbsp; $\delta(f)=0$&nbsp; für&nbsp; $f \neq 0$.
 
*Die Diracfunktion&nbsp; $\delta(f)$&nbsp; ist bei der Frequenz&nbsp; $f = 0$&nbsp; unendlich hoch.
 
*Die Diracfunktion&nbsp; $\delta(f)$&nbsp; ist bei der Frequenz&nbsp; $f = 0$&nbsp; unendlich hoch.
Zeile 101: Zeile 101:
 
Zur mathematischen Herleitung obiger Eigenschaften gehen wir von einem dimensionslosen Gleichsignal aus.  
 
Zur mathematischen Herleitung obiger Eigenschaften gehen wir von einem dimensionslosen Gleichsignal aus.  
  
Um die Konvergenz des Fourierintegrals zu erzwingen, wird das nicht energiebegrenzte Signal&nbsp; $x(t)$&nbsp; mit einer beidseitig abfallenden Exponentialfunktion multipliziert. Die Grafik zeigt das Signal&nbsp; $x(t)=1$&nbsp; und das energiebegrenzte Signal
+
*Um die Konvergenz des Fourierintegrals zu erzwingen, wird das nicht energiebegrenzte Signal&nbsp; $x(t)$&nbsp; mit einer beidseitig abfallenden Exponentialfunktion multipliziert.&nbsp; Die Grafik zeigt das Signal&nbsp; $x(t)=1$&nbsp; und das energiebegrenzte Signal
  
 
:$$x_{\varepsilon} (t) = \rm e^{\it -\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.01cm} t \hspace{0.01cm}\vert}{.}$$
 
:$$x_{\varepsilon} (t) = \rm e^{\it -\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.01cm} t \hspace{0.01cm}\vert}{.}$$
  
Hierbei gelte&nbsp; $\varepsilon > 0$. Im Grenzübergang&nbsp; $\varepsilon \to 0$&nbsp; geht&nbsp; $x_{\varepsilon}(t)$&nbsp; in&nbsp; $x(t)=1$&nbsp; über.
+
:Hierbei gelte&nbsp; $\varepsilon > 0$.&nbsp; Im Grenzübergang&nbsp; $\varepsilon \to 0$&nbsp; geht&nbsp; $x_{\varepsilon}(t)$&nbsp; in&nbsp; $x(t)=1$&nbsp; über.
  
Zur Spektraldarstellung kommt man durch Anwendung des vorne angegebenen Fourierintegrals:
+
*Zur Spektraldarstellung kommt man durch Anwendung des vorne angegebenen Fourierintegrals:
 
   
 
   
 
:$$X_\varepsilon (f)=\int_{-\infty}^{0} {\rm e}^{\varepsilon{t} }\, {\cdot}\, {\rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t \hspace{0.2cm}+ \hspace{0.2cm} \int_{0}^{+\infty} {\rm e}^{-\varepsilon t} \,{\cdot}\, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
 
:$$X_\varepsilon (f)=\int_{-\infty}^{0} {\rm e}^{\varepsilon{t} }\, {\cdot}\, {\rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t \hspace{0.2cm}+ \hspace{0.2cm} \int_{0}^{+\infty} {\rm e}^{-\varepsilon t} \,{\cdot}\, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
  
Nach Integration und Zusammenfassen beider Anteile erhalten wir die rein reelle Spektralfunktion des energiebegrenzten Signals&nbsp; $x_{\varepsilon}(t)$:
+
*Nach Integration und Zusammenfassen beider Anteile erhalten wir die rein reelle Spektralfunktion des energiebegrenzten Signals&nbsp; $x_{\varepsilon}(t)$:
 
   
 
   
 
:$$X_\varepsilon (f)=\frac{1}{\varepsilon -\rm  j \cdot 2\pi \it f} + \frac{1}{\varepsilon+\rm j \cdot 2\pi \it  f} = \frac{2\varepsilon}{\varepsilon^2 + (\rm 2\pi {\it f}\hspace{0.05cm} ) \rm ^2} \, .$$
 
:$$X_\varepsilon (f)=\frac{1}{\varepsilon -\rm  j \cdot 2\pi \it f} + \frac{1}{\varepsilon+\rm j \cdot 2\pi \it  f} = \frac{2\varepsilon}{\varepsilon^2 + (\rm 2\pi {\it f}\hspace{0.05cm} ) \rm ^2} \, .$$
  
Die Fläche unter der&nbsp; $X_\varepsilon (f)$&ndash;Kurve ist unabhängig vom Parameter&nbsp; $\varepsilon$&nbsp; gleich&nbsp; $1$. Je kleiner&nbsp; $ε$&nbsp; gewählt wird, um so schmaler und höher wird die Funktion, wie das Lernvideo&nbsp; [[Herleitung_und_Visualisierung_der_Diracfunktion_(Lernvideo)|Herleitung und Visualisierung der Diracfunktion]]&nbsp; zeigt.
+
*Die Fläche unter der&nbsp; $X_\varepsilon (f)$&ndash;Kurve ist unabhängig vom Parameter&nbsp; $\varepsilon$&nbsp; gleich&nbsp; $1$.&nbsp; Je kleiner&nbsp; $ε$&nbsp; gewählt wird, um so schmaler und höher wird die Funktion, wie das Lernvideo&nbsp; [[Herleitung_und_Visualisierung_der_Diracfunktion_(Lernvideo)|Herleitung und Visualisierung der Diracfunktion]]&nbsp; zeigt.
  
Der Grenzübergang für&nbsp; $\varepsilon \to 0$&nbsp; liefert die Diracfunktion mit dem Gewicht&nbsp; $1$:
+
*Der Grenzübergang für&nbsp; $\varepsilon \to 0$&nbsp; liefert die Diracfunktion mit dem Gewicht&nbsp; $1$:
  
 
:$$\lim_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm} 0}X_\varepsilon (f)= \delta(f).$$}}
 
:$$\lim_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm} 0}X_\varepsilon (f)= \delta(f).$$}}

Aktuelle Version vom 12. April 2021, 15:27 Uhr


Zeitsignaldarstellung


$\text{Definition:}$  Ein  $\text{Gleichsignal}$  ist ein deterministisches Signal, dessen Augenblickswerte für alle Zeiten  $t$  von  $-\infty$  bis  $+\infty$  konstant sind.  Ein solches Signal ist der Grenzfall einer  harmonischen Schwingung, wobei die Periodendauer  $T_{0}$  einen unendlich großen Wert besitzt.


Gleichsignal im Zeitbereich

Entsprechend dieser Definition reicht ein Gleichsignal immer von  $t = -\infty$  bis  $t = +\infty$.  Wird das Signal erst zum Zeitpunkt  $t = 0$  eingeschaltet, so liegt also kein Gleichsignal vor.

  • Ein Gleichsignal kann niemals Träger von Information im nachrichtentechnischen Sinne sein, doch können Nachrichtensignale durchaus einen  „Gleichsignalanteil”  besitzen.
  • Alle im Folgenden für das Gleichsignal getroffenen Aussagen gelten in gleicher Weise auch für einen solchen Gleichsignalanteil.


$\text{Definition:}$  Für den  $\text{Gleichsignalanteil}$  $A_{0}$ eines beliebigen Signals  $x(t)$  gilt:

$$A_0 = \lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x(t)\,{\rm d} t. $$
  • Die Messdauer  $T_{\rm M}$  sollte stets möglichst groß gewählt werden (im Grenzfall unendlich).
  • Die angegebene Gleichung gilt allerdings nur dann, wenn  $T_{\rm M}$  symmetrisch um den Zeitpunkt  $t=0$  liegt.


Zufallssignal mit Gleichanteil

$\text{Beispiel 1:}$  Die Grafik zeigt ein stochastisches Signal  $x(t)$.

  • Der Gleichsignalanteil  $A_{0}$  ist hierbei  $2\ \rm V$.
  • Im Sinne der Statistik entspricht  $A_{0}$  dem linearen Mittelwert.


Spektraldarstellung


Wir betrachten nun den Sachverhalt im Frequenzbereich.  Aus der Zeitfunktion ist bereits ersichtlich, dass diese – spektral gesehen – nur eine einzige (physikalische) Frequenz beinhaltet, nämlich die Frequenz  $f=0$.

Dieses Ergebnis soll nun mathematisch hergeleitet werden.  Im Vorgriff auf das Kapitel  Fouriertransformation  wird bereits hier der Zusammenhang zwischen dem Zeitsignal  $x(t)$  und dem korrespondierenden Spektrum  $X(f)$  angegeben:

$$X(f)= \hspace{0.05cm}\int_{-\infty} ^{{+}\infty} x(t) \, \cdot \, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$

Man bezeichnet die so berechnete Spektralfunktion  $X(f)$  nach dem französischen Mathematiker  Jean Baptiste Joseph Fourier  als die Fouriertransformierte von  $x(t)$  und verwendet als Kurzbezeichnung für diesen Funktionalzusammenhang

$$X(f)\ \bullet\!\!-\!\!\!-\!\!\circ\,\ x(t).$$

Beschreibt  $x(t)$  beispielsweise einen Spannungsverlauf, so hat  $X(f)$  die Einheit „V/Hz“.

Wendet man diese Transformationsgleichung auf das Gleichsignal  $x(t)=A_{0}$  an, so erhält man die Spektralfunktion

$$X(f)= A_0 \cdot \int_{-\infty} ^{+\hspace{0.01cm}\infty}\rm e \it ^{-\rm {j 2\pi} \it ft} \,{\rm d}t.$$

mit folgenden Eigenschaften:

  • Das Integral divergiert für  $f=0$, das heißt, es liefert einen unendlich großen Wert  $($Integration über den konstanten Wert  $1)$.
  • Für eine Frequenz  $f\ne 0$  ist das Integral dagegen Null; der dazugehörige Beweis ist allerdings nicht trivial  $($siehe nächste Seite$)$.


$\text{Definition:}$  Die gesuchte Spektralfunktion  $X(f)$  wird kompakt durch folgende Gleichung ausgedrückt:

$$X(f) = A_0 \, \cdot \, \rm \delta(\it f).$$
  • Man bezeichnet  $\delta(f)$  als  $\text{Diracfunktion}$, auch bekannt unter dem Namen „Distribution”.
  • $\delta(f)$  ist eine mathematisch komplizierte Funktion;  die Herleitung finden Sie auf der nächsten Seite.


Gleichsignal und dessen Spektralfunktion

$\text{Beispiel 2:}$  Die Grafik zeigt den Funktionalzusammenhang

  • zwischen einem Gleichsignal  $x(t)=A_{0}$  und
  • der dazugehörigen Spektralfunktion  $X(f)=A_{0} \cdot \delta(f)$.


Die Diracfunktion bei der Frequenz  $f=0$  ist durch einen Pfeil dargestellt, der mit dem Gewicht  $A_{0}$  versehen ist.


Diracfunktion im Frequenzbereich


$\text{Definition:}$  Die für die funktionale Beschreibung von nachrichtentechnischen Systemen äußerst wichtige  $\text{Diracfunktion}$  weist folgende Eigenschaften auf:

  • Die Diracfunktion ist unendlich schmal, das heißt, es ist  $\delta(f)=0$  für  $f \neq 0$.
  • Die Diracfunktion  $\delta(f)$  ist bei der Frequenz  $f = 0$  unendlich hoch.
  • Die Impulsfläche der Diracfunktion ergibt einen endlichen Wert, nämlich  $1$:
$$\int_\limits{-\infty} ^{+\infty} \delta( f)\,{\rm d}f =1.$$
  • Aus dieser letzten Eigenschaft folgt, dass  $\delta(f)$  die Einheit  ${\rm Hz}^{-1} = {\rm s}$  besitzt.


Zur Herleitung der Diracfunktion

$\text{Beweis:}$  Zur mathematischen Herleitung obiger Eigenschaften gehen wir von einem dimensionslosen Gleichsignal aus.

  • Um die Konvergenz des Fourierintegrals zu erzwingen, wird das nicht energiebegrenzte Signal  $x(t)$  mit einer beidseitig abfallenden Exponentialfunktion multipliziert.  Die Grafik zeigt das Signal  $x(t)=1$  und das energiebegrenzte Signal
$$x_{\varepsilon} (t) = \rm e^{\it -\varepsilon \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.01cm} t \hspace{0.01cm}\vert}{.}$$
Hierbei gelte  $\varepsilon > 0$.  Im Grenzübergang  $\varepsilon \to 0$  geht  $x_{\varepsilon}(t)$  in  $x(t)=1$  über.
  • Zur Spektraldarstellung kommt man durch Anwendung des vorne angegebenen Fourierintegrals:
$$X_\varepsilon (f)=\int_{-\infty}^{0} {\rm e}^{\varepsilon{t} }\, {\cdot}\, {\rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t \hspace{0.2cm}+ \hspace{0.2cm} \int_{0}^{+\infty} {\rm e}^{-\varepsilon t} \,{\cdot}\, { \rm e}^{-\rm j 2\pi \it ft} \,{\rm d}t.$$
  • Nach Integration und Zusammenfassen beider Anteile erhalten wir die rein reelle Spektralfunktion des energiebegrenzten Signals  $x_{\varepsilon}(t)$:
$$X_\varepsilon (f)=\frac{1}{\varepsilon -\rm j \cdot 2\pi \it f} + \frac{1}{\varepsilon+\rm j \cdot 2\pi \it f} = \frac{2\varepsilon}{\varepsilon^2 + (\rm 2\pi {\it f}\hspace{0.05cm} ) \rm ^2} \, .$$
  • Die Fläche unter der  $X_\varepsilon (f)$–Kurve ist unabhängig vom Parameter  $\varepsilon$  gleich  $1$.  Je kleiner  $ε$  gewählt wird, um so schmaler und höher wird die Funktion, wie das Lernvideo  Herleitung und Visualisierung der Diracfunktion  zeigt.
  • Der Grenzübergang für  $\varepsilon \to 0$  liefert die Diracfunktion mit dem Gewicht  $1$:
$$\lim_{\varepsilon \hspace{0.05cm} \to \hspace{0.05cm} 0}X_\varepsilon (f)= \delta(f).$$


Aufgaben zum Kapitel


Aufgabe 2.2: Gleichsignalanteile

Aufgabe 2.2Z: Nichtlinearitäten