Signaldarstellung/Fast-Fouriertransformation (FFT): Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 12: Zeile 12:
 
:$$\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d(\nu)\hspace{0.1cm} \rangle$$
 
:$$\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d(\nu)\hspace{0.1cm} \rangle$$
 
   
 
   
gemäß den in Kapitel [[Signaldarstellung/Diskrete_Fouriertransformation_(DFT)|Diskrete Fouriertransformation (DFT)]] angegebenen Gleichungen ist der große Rechenaufwand.  Wir betrachten als Beispiel  die DFT, also die Berechnung der $D(\mu)$ aus den $d(\nu)$:
+
gemäß den in Kapitel  [[Signaldarstellung/Diskrete_Fouriertransformation_(DFT)|Diskrete Fouriertransformation (DFT)]]  angegebenen Gleichungen ist der große Rechenaufwand.  Wir betrachten als Beispiel  die DFT, also die Berechnung der  $D(\mu)$  aus den  $d(\nu)$:
 
   
 
   
 
:$$N \cdot D(\mu)  =  \sum_{\nu = 0 }^{N-1}
 
:$$N \cdot D(\mu)  =  \sum_{\nu = 0 }^{N-1}
Zeile 19: Zeile 19:
 
   d(0) \cdot w^{\hspace{0.03cm}0} + d(1) \cdot w^{\hspace{0.03cm}\mu}+ d(2) \cdot w^{\hspace{0.03cm}2\mu}+\hspace{0.05cm}\text{ ...} \hspace{0.05cm}+ d(N-1) \cdot w^{\hspace{0.03cm}(N-1)\cdot \mu}$$
 
   d(0) \cdot w^{\hspace{0.03cm}0} + d(1) \cdot w^{\hspace{0.03cm}\mu}+ d(2) \cdot w^{\hspace{0.03cm}2\mu}+\hspace{0.05cm}\text{ ...} \hspace{0.05cm}+ d(N-1) \cdot w^{\hspace{0.03cm}(N-1)\cdot \mu}$$
  
Der hierfür erforderliche Rechenaufwand soll nun abgeschätzt werden, wobei wir davon ausgehen, dass die Potenzen des komplexen Drehfaktors $w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N}$ bereits in Real– und Imaginärteilform in einer Lookup–Tabelle vorliegen. Zur Berechnung eines einzelnen Koeffizienten benötigt man dann $N-1$ komplexe Multiplikationen und ebenso viele komplexe Additionen, wobei zu beachten ist:  
+
Der hierfür erforderliche Rechenaufwand soll abgeschätzt werden, wobei wir davon ausgehen, dass die Potenzen des komplexen Drehfaktors  $w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N}$  bereits in Real– und Imaginärteilform in einer Lookup–Tabelle vorliegen. Zur Berechnung eines einzelnen Koeffizienten benötigt man dann  $N-1$  komplexe Multiplikationen und ebenso viele komplexe Additionen, wobei zu beachten ist:  
 
*Jede komplexe Addition erfordert zwei reelle Additionen:
 
*Jede komplexe Addition erfordert zwei reelle Additionen:
 
:$$(R_1 + {\rm j} \cdot I_1) + (R_2 + {\rm j} \cdot I_2) = (R_1 +
 
:$$(R_1 + {\rm j} \cdot I_1) + (R_2 + {\rm j} \cdot I_2) = (R_1 +
Zeile 27: Zeile 27:
 
R_2 - I_1 \cdot I_2) + {\rm j} \cdot (R_1 \cdot I_2 + R_2 \cdot
 
R_2 - I_1 \cdot I_2) + {\rm j} \cdot (R_1 \cdot I_2 + R_2 \cdot
 
I_1)\hspace{0.05cm}.$$  
 
I_1)\hspace{0.05cm}.$$  
*Somit sind zur Berechnung aller $N$ Koeffizienten insgesamt die folgende Anzahl $M$ reeller Multiplikationen und die Anzahl $A$ reeller Additionen erforderlich:
+
*Somit sind zur Berechnung aller  $N$  Koeffizienten insgesamt die folgende Anzahl  $M$  reeller Multiplikationen und die Anzahl  $A$  reeller Additionen erforderlich:
 
:$$M = 4 \cdot N \cdot (N-1),$$
 
:$$M = 4 \cdot N \cdot (N-1),$$
 
:$$A = 2 \cdot N \cdot
 
:$$A = 2 \cdot N \cdot
 
(N-1)+2 \cdot N \cdot (N-1)=M \hspace{0.05cm}.$$  
 
(N-1)+2 \cdot N \cdot (N-1)=M \hspace{0.05cm}.$$  
*In heutigen Rechnern benötigen Multiplikationen und Additionen/Subtraktionen etwa die gleiche Rechenzeit. Es genügt, die Gesamtzahl $\mathcal{O} = M + A$ aller Operationen zu betrachten:
+
*In heutigen Rechnern benötigen Multiplikationen und Additionen/Subtraktionen etwa die gleiche Rechenzeit. Es genügt, die Gesamtzahl  $\mathcal{O} = M + A$  aller Operationen zu betrachten:
 
:$$\mathcal{O} = 8 \cdot N \cdot (N-1) \approx 8 \cdot N^2\hspace{0.05cm}.$$  
 
:$$\mathcal{O} = 8 \cdot N \cdot (N-1) \approx 8 \cdot N^2\hspace{0.05cm}.$$  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Fazit:}$   
 
$\text{Fazit:}$   
*Man benötigt bereits für eine ''Diskrete Fouriertransformation'' (DFT) mit $N = 1000$  knapp acht Millionen Rechenoperationen.
+
*Man benötigt bereits für eine  ''Diskrete Fouriertransformation''  (DFT) mit  $N = 1000$  knapp acht Millionen Rechenoperationen. Gleiches gilt für eine IDFT.  
*Gleiches gilt für eine IDFT.  
+
*Mit  $N =16 $  sind immerhin noch  $1920$  Rechenoperationen erforderlich.}}
*Mit $N =16 $ sind immerhin noch 1920 Rechenoperationen erforderlich.}}
 
  
  
Ist der Parameter $N$ eine Potenz zur Basis $2$, so können rechenzeitgünstigere Algorithmen angewendet werden. Die Vielzahl solcher aus der Literatur bekannten Verfahren werden unter dem Sammelbegriff '''Fast–Fouriertransformation''' – abgekürzt FFT – zusammengefasst. Alle diese Methoden basieren auf dem Überlagerungssatz der DFT.
+
Ist der Parameter  $N$  eine Potenz zur Basis  $2$, so können rechenzeitgünstigere Algorithmen angewendet werden. Die Vielzahl solcher aus der Literatur bekannten Verfahren werden unter dem Sammelbegriff  '''Fast–Fouriertransformation'''  – abgekürzt  '''FFT'''  – zusammengefasst. Alle diese Methoden basieren auf dem Überlagerungssatz der DFT.
 
   
 
   
 
==Überlagerungssatz der DFT==   
 
==Überlagerungssatz der DFT==   
 
<br>
 
<br>
Die Grafik verdeutlicht den so genannten Überlagerungssatz der DFT am Beispiel $N = 16$. Dargestellt ist hier der Übergang vom Zeit&ndash; in den Spektralbereich, also die Berechnung der Spektralbereichskoeffizienten aus den Zeitbereichskoeffizienten: &nbsp; &nbsp;  $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle.$
+
Die Grafik verdeutlicht den so genannten Überlagerungssatz der DFT am Beispiel&nbsp; $N = 16$. Dargestellt ist hier der Übergang vom Zeit&ndash; in den Spektralbereich, also die Berechnung der Spektralbereichskoeffizienten aus den Zeitbereichskoeffizienten: &nbsp;   $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle.$
  
 
[[Datei:P_ID1170__Sig_T_5_5_S2_v2.png|center|frame|Überlagerungssatz der DFT]]
 
[[Datei:P_ID1170__Sig_T_5_5_S2_v2.png|center|frame|Überlagerungssatz der DFT]]
  
 
Der dadurch beschriebene Algorithmus ist durch folgende Schritte gekennzeichnet:
 
Der dadurch beschriebene Algorithmus ist durch folgende Schritte gekennzeichnet:
*Die Folge  $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle$ der Länge $N$ wird in zwei Teilfolgen $\langle \hspace{0.1cm}d_1(\nu)\hspace{0.1cm}\rangle$ und $\langle \hspace{0.1cm} d_2(\nu)\hspace{0.1cm}\rangle$ jeweils halber Länge separiert (in der Garafik gelb bzw. grün hinterlegt). Mit $0 \le \nu \lt N/2$ erhält man so die Folgenelemente
+
*Die Folge&nbsp; $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle$&nbsp; der Länge&nbsp; $N$&nbsp; wird in zwei Teilfolgen&nbsp; $\langle \hspace{0.1cm}d_1(\nu)\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm} d_2(\nu)\hspace{0.1cm}\rangle$&nbsp; jeweils halber Länge separiert (in der Garafik gelb bzw. grün hinterlegt). Mit&nbsp; $0 \le \nu \lt N/2$&nbsp; erhält man so die Folgenelemente
 
:$$d_1(\nu) = d(2\nu), $$
 
:$$d_1(\nu) = d(2\nu), $$
 
:$$d_2(\nu) = d(2\nu+1)
 
:$$d_2(\nu) = d(2\nu+1)
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*Die Ausgangsfolgen $\langle \hspace{0.1cm}D_1(\mu )\hspace{0.1cm}\rangle$ und $\langle \hspace{0.1cm}D_2(\mu )\hspace{0.1cm}\rangle$ der beiden Teilblöcke ergeben sich daraus jeweils durch eine eigene DFT, aber nun nur noch mit halber Länge $N/2 = 8$:
+
*Die Ausgangsfolgen&nbsp; $\langle \hspace{0.1cm}D_1(\mu )\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm}D_2(\mu )\hspace{0.1cm}\rangle$&nbsp; der beiden Teilblöcke ergeben sich daraus jeweils durch eine eigene DFT, aber nun nur noch mit halber Länge&nbsp; $N/2 = 8$:
 
:$$\langle \hspace{0.1cm}D_1(\mu) \hspace{0.1cm}\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d_1(\nu) \hspace{0.1cm}\rangle , $$
 
:$$\langle \hspace{0.1cm}D_1(\mu) \hspace{0.1cm}\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d_1(\nu) \hspace{0.1cm}\rangle , $$
 
:$$ \langle \hspace{0.1cm}D_2(\mu)\hspace{0.1cm} \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d_2(\nu) \hspace{0.1cm}\rangle \hspace{0.05cm}.$$  
 
:$$ \langle \hspace{0.1cm}D_2(\mu)\hspace{0.1cm} \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d_2(\nu) \hspace{0.1cm}\rangle \hspace{0.05cm}.$$  
*Die Ausgangswerte $\langle \hspace{0.1cm} D_2(\mu )\hspace{0.1cm}\rangle$ der unteren (grünen) DFT (mit $0  \le \mu \lt N/2$) werden danach im rot umrandeten Block durch komplexe Drehfaktoren hinsichtlich der Phasenlage verändert:
+
*Die Ausgangswerte&nbsp; $\langle \hspace{0.1cm} D_2(\mu )\hspace{0.1cm}\rangle$&nbsp; der unteren (grünen) DFT $($mit&nbsp; $0  \le \mu \lt N/2)$&nbsp; werden danach im rot umrandeten Block durch komplexe Drehfaktoren hinsichtlich der Phasenlage verändert:
 
:$$D_2(\mu) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}, \hspace{0.2cm}{\rm wobei}\hspace{0.1cm}w =
 
:$$D_2(\mu) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}, \hspace{0.2cm}{\rm wobei}\hspace{0.1cm}w =
 
  {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N} \hspace{0.05cm}.$$  
 
  {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N} \hspace{0.05cm}.$$  
*Jeder einzelne '''Butterfly''' im blau umrandeten Block (in der Grafikmitte) liefert durch Addition bzw. Subtraktion zwei Elemente der gesuchten Ausgangsfolge. Mit $0  \le \mu \lt N/2$ gilt dabei:
+
*Jeder einzelne&nbsp; '''Butterfly'''&nbsp; im blau umrandeten Block (in der Grafikmitte) liefert durch Addition bzw. Subtraktion zwei Elemente der gesuchten Ausgangsfolge. Mit&nbsp; $0  \le \mu \lt N/2$&nbsp; gilt dabei:
 
:$$D(\mu) =  {1}/{2}\cdot \big[D_1(\mu) + D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big],$$
 
:$$D(\mu) =  {1}/{2}\cdot \big[D_1(\mu) + D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big],$$
 
:$$D(\mu +{N}/{2})  =  {1}/{2}\cdot \big[D_1(\mu) - D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big]\hspace{0.05cm}.$$  
 
:$$D(\mu +{N}/{2})  =  {1}/{2}\cdot \big[D_1(\mu) - D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big]\hspace{0.05cm}.$$  
  
 
+
Durch&nbsp; '''diese erste Anwendung des Überlagerungssatzes halbiert sich somit in etwa der Rechenaufwand'''.
Durch '''diese erste Anwendung des Überlagerungssatzes halbiert sich somit in etwa der Rechenaufwand'''.
 
 
 
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Beispiel 1:}$&nbsp;
 
$\text{Beispiel 1:}$&nbsp;
Die DFT–Koeffizienten $d(\nu)$ zur Beschreibung des Zeitverlaufs seien entsprechend der Zeile '''2''' der folgenden Tabelle „dreieckförmig” belegt. Beachten Sie hierbei die periodische Fortsetzung der DFT, so dass der lineare Anstieg für $t \lt 0$ durch die Koeffizienten $d(8), \hspace{0.05cm}\text{ ...} \hspace{0.05cm}, d(15)$ ausgedrückt wird.
+
Die DFT–Koeffizienten&nbsp; $d(\nu)$&nbsp; zur Beschreibung des Zeitverlaufs seien entsprechend der&nbsp; '''Zeile 2'''&nbsp; der folgenden Tabelle „dreieckförmig” belegt. Beachten Sie hierbei die periodische Fortsetzung der DFT, so dass der lineare Anstieg für&nbsp; $t \lt 0$&nbsp; durch die Koeffizienten&nbsp; $d(8), \hspace{0.05cm}\text{ ...} \hspace{0.05cm}, d(15)$&nbsp; ausgedrückt wird.
  
Durch Anwendung des DFT–Algorithmus mit $N = 16$ erhält man die in der Zeile '''3''' angegebenen Spektralkoeffizienten $D(\mu )$, die bei Vernachlässigung des Aliasingfehlers gleich $D(\mu ) = 4 \cdot \text{si}^2(\pi \cdot \mu/2)$ wären. Man erkennt, dass sich der Aliasingfehler nur auf die ungeradzahligen Koeffizienten auswirkt (schraffierte Felder). Beispielsweise müsste $D(1) = 16/ \pi^2 \approx 1.621\neq 1.642$ sein.
+
Durch Anwendung des DFT–Algorithmus mit&nbsp; $N = 16$&nbsp; erhält man die in der&nbsp; '''Zeile 3'''&nbsp; angegebenen Spektralkoeffizienten&nbsp; $D(\mu )$, die bei Vernachlässigung des Aliasingfehlers gleich&nbsp; $D(\mu ) = 4 \cdot \text{si}^2(\pi \cdot \mu/2)$&nbsp; wären. Man erkennt, dass sich der Aliasingfehler nur auf die ungeradzahligen Koeffizienten auswirkt (schraffierte Felder). Beispielsweise müsste&nbsp; $D(1) = 16/ \pi^2 \approx 1.621\neq 1.642$&nbsp; sein.
  
[[Datei:Sig_T_5_5_S2b_Version2.png|center|frame|Ergebnistabelle zum Beispiel 1 zum Überlagerungssatz der DFT]]
+
[[Datei:Sig_T_5_5_S2b_Version2.png|center|frame|Ergebnistabelle zum &nbsp;$\text{Beispiel 1}$&nbsp; zum Überlagerungssatz der DFT]]
  
Spaltet man die Gesamtfolge $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle$ in zwei Teilfolgen $\langle \hspace{0.1cm}{d_1}'(\nu)\hspace{0.1cm}\rangle$ und $\langle \hspace{0.1cm} {d_2}'(\nu)\hspace{0.1cm}\rangle$ auf, und zwar derart, dass die erste (gelb hinterlegte) Teilfolge nur geradzahlige Koeffizienten $(\nu = 0, 2, \hspace{0.03cm}\text{ ...} \hspace{0.1cm}, N–2)$ und die zweite (grün hinterlegt) nur ungeradzahlige Koeffizienten $(\nu = 1, 3, \hspace{0.03cm}\text{ ...} \hspace{0.1cm} , N–1)$ beinhalten und alle anderen zu Null gesetzt sind, so erhält man die zugehörigen Folgen im Spektralbereich:
+
Spaltet man die Gesamtfolge&nbsp; $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle$&nbsp; in zwei Teilfolgen&nbsp; $\langle \hspace{0.1cm}{d_1}'(\nu)\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm} {d_2}'(\nu)\hspace{0.1cm}\rangle$&nbsp; auf, und zwar derart, dass die erste (gelb hinterlegte) Teilfolge nur geradzahlige Koeffizienten&nbsp; $(\nu = 0, 2, \hspace{0.03cm}\text{ ...} \hspace{0.1cm}, N–2)$&nbsp; und die zweite (grün hinterlegt) nur ungeradzahlige Koeffizienten&nbsp; $(\nu = 1, 3, \hspace{0.03cm}\text{ ...} \hspace{0.1cm} , N–1)$&nbsp; beinhalten und alle anderen zu Null gesetzt sind, so erhält man die zugehörigen Folgen im Spektralbereich:
 
   
 
   
 
:$$ \langle \hspace{0.1cm}{D_1}'(\mu)\hspace{0.1cm} \rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} {d_1}'(\nu) \hspace{0.1cm}\rangle , $$
 
:$$ \langle \hspace{0.1cm}{D_1}'(\mu)\hspace{0.1cm} \rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} {d_1}'(\nu) \hspace{0.1cm}\rangle , $$
 
:$$ \langle \hspace{0.1cm}{D_2}'(\mu) \hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle\hspace{0.1cm} {d_2}'(\nu) \rangle \hspace{0.1cm}\hspace{0.05cm}.$$
 
:$$ \langle \hspace{0.1cm}{D_2}'(\mu) \hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle\hspace{0.1cm} {d_2}'(\nu) \rangle \hspace{0.1cm}\hspace{0.05cm}.$$
  
In den gelb bzw. grün hinterlegten Zeilen $4\hspace{0.05cm}\text{ ...} \hspace{0.05cm}7$ erkennt man:
+
In den gelb bzw. grün hinterlegten Zeilen&nbsp; $4\hspace{0.05cm}\text{ ...} \hspace{0.05cm}7$&nbsp; erkennt man:
*Wegen $d(\nu) = {d_1}'(\nu) + {d_2}'(\nu)$ gilt auch $D(\mu ) = {D_1}'(\mu ) + {D_2}'(\mu )$. Dies lässt sich zum Beispiel mit dem [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Multiplikation_mit_Faktor_-_Additionssatz|Additionstheorem linearer Systeme]] begründen.
+
*Wegen&nbsp; $d(\nu) = {d_1}'(\nu) + {d_2}'(\nu)$&nbsp; gilt auch&nbsp; $D(\mu ) = {D_1}'(\mu ) + {D_2}'(\mu )$. Dies lässt sich zum Beispiel mit dem&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Multiplikation_mit_Faktor_-_Additionssatz|Additionstheorem linearer Systeme]]&nbsp; begründen.
*Die Periode der Folge $\langle \hspace{0.1cm}{D_1}'(\mu )\hspace{0.1cm}\rangle$ beträgt aufgrund des Nullsetzens eines jeden zweiten Zeitkoeffizienten nun $N/2$ im Gegensatz zur Periode $N$ der Ursprungsfolge $\langle \hspace{0.1cm} D(\mu )\hspace{0.1cm}\rangle$:
+
*Die Periode der Folge&nbsp; $\langle \hspace{0.1cm}{D_1}'(\mu )\hspace{0.1cm}\rangle$&nbsp; ist aufgrund des Nullsetzens eines jeden zweiten Zeitkoeffizienten nun&nbsp; $N/2$&nbsp; im Gegensatz zur Periode&nbsp; $N$&nbsp; der Folge&nbsp; $\langle \hspace{0.1cm} D(\mu )\hspace{0.1cm}\rangle$:
 
:$${D_1}'(\mu + {N}/{2}) ={D_1}'(\mu)\hspace{0.05cm}.$$  
 
:$${D_1}'(\mu + {N}/{2}) ={D_1}'(\mu)\hspace{0.05cm}.$$  
* $\langle \hspace{0.1cm} {D_2}'(\mu )\hspace{0.1cm}\rangle$ beinhaltet zusätzlich einen Phasenfaktor (Verschiebung um einen Abtastwert), der einen Vorzeichenwechsel zweier um $N/2$ auseinanderliegender Koeffizienten bewirkt:
+
* $\langle \hspace{0.1cm} {D_2}'(\mu )\hspace{0.1cm}\rangle$&nbsp; beinhaltet zusätzlich einen Phasenfaktor (Verschiebung um einen Abtastwert), der einen Vorzeichenwechsel zweier um&nbsp; $N/2$&nbsp; auseinanderliegender Koeffizienten bewirkt:
 
:$${D_2}'(\mu + {N}/{2}) = - {D_2}'(\mu)\hspace{0.05cm}.$$  
 
:$${D_2}'(\mu + {N}/{2}) = - {D_2}'(\mu)\hspace{0.05cm}.$$  
*Die Berechnung von $\langle \hspace{0.1cm}{D_1}'(\mu )\hspace{0.1cm}\rangle$ und $\langle \hspace{0.1cm} {D_2}'(\mu )\hspace{0.1cm}\rangle$ ist aber jeweils ebenso aufwändig wie die Bestimmung von $\langle \hspace{0.1cm}D(\mu )\hspace{0.1cm}\rangle$ , da $\langle \hspace{0.1cm}{d_1}'(\nu)\hspace{0.1cm}\rangle$ und $\langle \hspace{0.1cm}{d_2}'(\nu)\hspace{0.1cm}\rangle$ ebenfalls aus $N$ Elementen bestehen, auch wenn einige Null sind.}}  
+
*Die Berechnung von&nbsp; $\langle \hspace{0.1cm}{D_1}'(\mu )\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm} {D_2}'(\mu )\hspace{0.1cm}\rangle$&nbsp; ist aber jeweils ebenso aufwändig wie die Bestimmung von&nbsp; $\langle \hspace{0.1cm}D(\mu )\hspace{0.1cm}\rangle$, da&nbsp; $\langle \hspace{0.1cm}{d_1}'(\nu)\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm}{d_2}'(\nu)\hspace{0.1cm}\rangle$&nbsp; ebenfalls aus&nbsp; $N$&nbsp; Elementen bestehen, auch wenn einige Null sind.}}  
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Beispiel 2:}$&nbsp;
 
$\text{Beispiel 2:}$&nbsp;
Zur Fortsetzung des ersten Beispiels wird nun die bisherige Tabelle um die Zeilen $8$ bis $12$ erweitert.
+
Zur Fortsetzung des ersten Beispiels wird nun die bisherige Tabelle um die Zeilen &nbsp;$8$&nbsp; bis &nbsp;$12$&nbsp; erweitert.
 
                        
 
                        
[[Datei:Sig_T_5_5_S2c_Version2.png|center|frame|Ergebnistabelle zum Beispiel 2 zum Überlagerungssatz der DFT]]
+
[[Datei:Sig_T_5_5_S2c_Version2.png|center|frame|Ergebnistabelle zum &nbsp;$\text{Beispiel 2}$&nbsp; zum Überlagerungssatz der DFT]]
  
Verzichtet man auf die Koeffizienten ${d_1}'(\nu) = 0$ mit ungeraden sowie auf ${d_2}'(\nu)  = 0$ mit geraden Indizes, so kommt man zu den Teilfolgen $\langle \hspace{0.1cm}d_1(\nu)\hspace{0.1cm}\rangle$ und $\langle \hspace{0.1cm}d_2(\nu)\hspace{0.1cm}\rangle$  entsprechend den  Zeilen $9$ und $11$. Man erkennt:
+
Verzichtet man auf die Koeffizienten&nbsp; ${d_1}'(\nu) = 0$&nbsp; mit ungeraden sowie auf&nbsp; ${d_2}'(\nu)  = 0$&nbsp; mit geraden Indizes, so kommt man zu den Teilfolgen&nbsp; $\langle \hspace{0.1cm}d_1(\nu)\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm}d_2(\nu)\hspace{0.1cm}\rangle$&nbsp; entsprechend den  Zeilen &nbsp;$9$&nbsp; und &nbsp;$11$&nbsp;. Man erkennt:
*Die beiden Zeitfolgen $\langle \hspace{0.1cm}{d_1}(\nu )\hspace{0.1cm}\rangle$ und $\langle \hspace{0.1cm}{d_2}(\nu )\hspace{0.1cm}\rangle$  weisen damit ebenso wie die dazugehörigen Spektralfolgen $\langle \hspace{0.1cm}{D_1}(\mu )\hspace{0.1cm}\rangle$ und $\langle \hspace{0.1cm}{D_2}(\mu )\hspace{0.1cm}\rangle$ nur noch die Dimension $N/2$ auf.
+
*Die Zeitfolgen&nbsp; $\langle \hspace{0.1cm}{d_1}(\nu )\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm}{d_2}(\nu )\hspace{0.1cm}\rangle$&nbsp; weisen ebenso wie die dazugehörigen Spektralfolgen&nbsp; $\langle \hspace{0.1cm}{D_1}(\mu )\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm}{D_2}(\mu )\hspace{0.1cm}\rangle$&nbsp; nur noch die Dimension $N/2$ auf.
*Ein Vergleich der Zeilen $5$, $7$, $10$ und $12$ zeigt für $0  \le \mu \lt  N/2$ folgenden Zusammenhang:
+
*Ein Vergleich der Zeilen&nbsp; $5$,&nbsp; $7$,&nbsp; $10$&nbsp; und&nbsp; $12$&nbsp; zeigt für&nbsp; $0  \le \mu \lt  N/2$&nbsp; folgenden Zusammenhang:
 
:$${D_1}'(\mu) = {1}/{2}\cdot {D_1}(\mu)\hspace{0.05cm},$$
 
:$${D_1}'(\mu) = {1}/{2}\cdot {D_1}(\mu)\hspace{0.05cm},$$
 
:$$ {D_2}'(\mu) = {1}/{2}\cdot {D_2}(\mu)\cdot w^{\hspace{0.04cm}\mu}\hspace{0.05cm}.$$  
 
:$$ {D_2}'(\mu) = {1}/{2}\cdot {D_2}(\mu)\cdot w^{\hspace{0.04cm}\mu}\hspace{0.05cm}.$$  
*Entsprechend erhält man für $N/2  \le \mu \lt  N$:
+
*Entsprechend ergibt sich für&nbsp; $N/2  \le \mu \lt  N$:
 
:$${D_1}'(\mu)  =  {1}/{2}\cdot {D_1}(\mu - {N}/{2})\hspace{0.05cm},$$
 
:$${D_1}'(\mu)  =  {1}/{2}\cdot {D_1}(\mu - {N}/{2})\hspace{0.05cm},$$
 
:$$ {D_2}'(\mu) =  {1}/{2}\cdot {D_2}(\mu {-} {N}/{2})\cdot w^{\hspace{0.04cm}\mu}
 
:$$ {D_2}'(\mu) =  {1}/{2}\cdot {D_2}(\mu {-} {N}/{2})\cdot w^{\hspace{0.04cm}\mu}
Zeile 107: Zeile 104:
 
$$
 
$$
  
*Zum Beispiel erhält man mit $N = 16$  &nbsp; ⇒  &nbsp;  $w = {\rm e}^{ – {\rm j}\hspace{0.04cm} \cdot \hspace{0.04cm}\pi/8}$ für die Indizes $\mu = 1$  bzw. $\mu = 9$:&nbsp;
+
*Zum Beispiel erhält man mit&nbsp; $N = 16$  &nbsp; ⇒  &nbsp;  $w = {\rm e}^{ – {\rm j}\hspace{0.04cm} \cdot \hspace{0.04cm}\pi/8}$&nbsp; für die Indizes&nbsp; $\mu = 1$&nbsp; bzw.&nbsp; $\mu = 9$:&nbsp;
 
:$${D_1}'(1)  =  {1.708}/{2} = 0.854,\hspace{0.8cm}
 
:$${D_1}'(1)  =  {1.708}/{2} = 0.854,\hspace{0.8cm}
 
  {D_2}'(1) ={1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}
 
  {D_2}'(1) ={1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}
Zeile 121: Zeile 118:
 
$\text{Fazit:}$&nbsp;   
 
$\text{Fazit:}$&nbsp;   
 
*Durch diese erste Anwendung des Überlagerungssatzes halbiert sich nahezu der Rechenaufwand.  
 
*Durch diese erste Anwendung des Überlagerungssatzes halbiert sich nahezu der Rechenaufwand.  
*Statt $\mathcal{O}= 1920$  benötigt man nur noch &nbsp;$\mathcal{O} = 2 · 448 + 8 \cdot (4+2) + 16 \cdot 2 = 976$&nbsp; reelle Operationen.  
+
*Statt&nbsp; $\mathcal{O}= 1920$&nbsp; benötigt man nur noch &nbsp;$\mathcal{O} = 2 · 448 + 8 \cdot (4+2) + 16 \cdot 2 = 976$&nbsp; reelle Operationen.  
*Der erste Summand berücksichtigt die beiden DFT–Berechnungen mit $N/2 = 8$.  
+
*Der erste Summand berücksichtigt die beiden DFT–Berechnungen mit&nbsp; $N/2 = 8$.  
*Der Rest wird für die acht komplexen Multiplikationen und die $16$ komplexen Additionen bzw. Subtraktionen benötigt.}}
+
*Der Rest wird für die acht komplexen Multiplikationen und die&nbsp; $16$&nbsp; komplexen Additionen bzw. Subtraktionen benötigt.}}
  
 
==Radix-2-Algorithmus nach Cooley und Tukey==   
 
==Radix-2-Algorithmus nach Cooley und Tukey==   

Version vom 16. Oktober 2019, 08:38 Uhr

Rechenaufwand von DFT bzw. IDFT


Ein Nachteil der direkten Berechnung der (im Allgemeinen komplexen) DFT–Zahlenfolgen

$$\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d(\nu)\hspace{0.1cm} \rangle$$

gemäß den in Kapitel  Diskrete Fouriertransformation (DFT)  angegebenen Gleichungen ist der große Rechenaufwand. Wir betrachten als Beispiel die DFT, also die Berechnung der  $D(\mu)$  aus den  $d(\nu)$:

$$N \cdot D(\mu) = \sum_{\nu = 0 }^{N-1} d(\nu) \cdot {w}^{\hspace{0.03cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} = d(0) \cdot w^{\hspace{0.03cm}0} + d(1) \cdot w^{\hspace{0.03cm}\mu}+ d(2) \cdot w^{\hspace{0.03cm}2\mu}+\hspace{0.05cm}\text{ ...} \hspace{0.05cm}+ d(N-1) \cdot w^{\hspace{0.03cm}(N-1)\cdot \mu}$$

Der hierfür erforderliche Rechenaufwand soll abgeschätzt werden, wobei wir davon ausgehen, dass die Potenzen des komplexen Drehfaktors  $w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N}$  bereits in Real– und Imaginärteilform in einer Lookup–Tabelle vorliegen. Zur Berechnung eines einzelnen Koeffizienten benötigt man dann  $N-1$  komplexe Multiplikationen und ebenso viele komplexe Additionen, wobei zu beachten ist:

  • Jede komplexe Addition erfordert zwei reelle Additionen:
$$(R_1 + {\rm j} \cdot I_1) + (R_2 + {\rm j} \cdot I_2) = (R_1 + R_2) + {\rm j} \cdot (I_1 + I_2)\hspace{0.05cm}.$$
  • Jede komplexe Multiplikation erfordert vier reelle Multiplikationen und zwei reelle Additionen (eine Subtraktion wird wie eine Addition behandelt):
$$(R_1 + {\rm j} \cdot I_1) (R_2 + {\rm j} \cdot I_2) = (R_1 \cdot R_2 - I_1 \cdot I_2) + {\rm j} \cdot (R_1 \cdot I_2 + R_2 \cdot I_1)\hspace{0.05cm}.$$
  • Somit sind zur Berechnung aller  $N$  Koeffizienten insgesamt die folgende Anzahl  $M$  reeller Multiplikationen und die Anzahl  $A$  reeller Additionen erforderlich:
$$M = 4 \cdot N \cdot (N-1),$$
$$A = 2 \cdot N \cdot (N-1)+2 \cdot N \cdot (N-1)=M \hspace{0.05cm}.$$
  • In heutigen Rechnern benötigen Multiplikationen und Additionen/Subtraktionen etwa die gleiche Rechenzeit. Es genügt, die Gesamtzahl  $\mathcal{O} = M + A$  aller Operationen zu betrachten:
$$\mathcal{O} = 8 \cdot N \cdot (N-1) \approx 8 \cdot N^2\hspace{0.05cm}.$$

$\text{Fazit:}$ 

  • Man benötigt bereits für eine  Diskrete Fouriertransformation  (DFT) mit  $N = 1000$  knapp acht Millionen Rechenoperationen. Gleiches gilt für eine IDFT.
  • Mit  $N =16 $  sind immerhin noch  $1920$  Rechenoperationen erforderlich.


Ist der Parameter  $N$  eine Potenz zur Basis  $2$, so können rechenzeitgünstigere Algorithmen angewendet werden. Die Vielzahl solcher aus der Literatur bekannten Verfahren werden unter dem Sammelbegriff  Fast–Fouriertransformation  – abgekürzt  FFT  – zusammengefasst. Alle diese Methoden basieren auf dem Überlagerungssatz der DFT.

Überlagerungssatz der DFT


Die Grafik verdeutlicht den so genannten Überlagerungssatz der DFT am Beispiel  $N = 16$. Dargestellt ist hier der Übergang vom Zeit– in den Spektralbereich, also die Berechnung der Spektralbereichskoeffizienten aus den Zeitbereichskoeffizienten:   $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle.$

Überlagerungssatz der DFT

Der dadurch beschriebene Algorithmus ist durch folgende Schritte gekennzeichnet:

  • Die Folge  $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle$  der Länge  $N$  wird in zwei Teilfolgen  $\langle \hspace{0.1cm}d_1(\nu)\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm} d_2(\nu)\hspace{0.1cm}\rangle$  jeweils halber Länge separiert (in der Garafik gelb bzw. grün hinterlegt). Mit  $0 \le \nu \lt N/2$  erhält man so die Folgenelemente
$$d_1(\nu) = d(2\nu), $$
$$d_2(\nu) = d(2\nu+1) \hspace{0.05cm}.$$
  • Die Ausgangsfolgen  $\langle \hspace{0.1cm}D_1(\mu )\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm}D_2(\mu )\hspace{0.1cm}\rangle$  der beiden Teilblöcke ergeben sich daraus jeweils durch eine eigene DFT, aber nun nur noch mit halber Länge  $N/2 = 8$:
$$\langle \hspace{0.1cm}D_1(\mu) \hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d_1(\nu) \hspace{0.1cm}\rangle , $$
$$ \langle \hspace{0.1cm}D_2(\mu)\hspace{0.1cm} \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d_2(\nu) \hspace{0.1cm}\rangle \hspace{0.05cm}.$$
  • Die Ausgangswerte  $\langle \hspace{0.1cm} D_2(\mu )\hspace{0.1cm}\rangle$  der unteren (grünen) DFT $($mit  $0 \le \mu \lt N/2)$  werden danach im rot umrandeten Block durch komplexe Drehfaktoren hinsichtlich der Phasenlage verändert:
$$D_2(\mu) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}, \hspace{0.2cm}{\rm wobei}\hspace{0.1cm}w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N} \hspace{0.05cm}.$$
  • Jeder einzelne  Butterfly  im blau umrandeten Block (in der Grafikmitte) liefert durch Addition bzw. Subtraktion zwei Elemente der gesuchten Ausgangsfolge. Mit  $0 \le \mu \lt N/2$  gilt dabei:
$$D(\mu) = {1}/{2}\cdot \big[D_1(\mu) + D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big],$$
$$D(\mu +{N}/{2}) = {1}/{2}\cdot \big[D_1(\mu) - D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big]\hspace{0.05cm}.$$

Durch  diese erste Anwendung des Überlagerungssatzes halbiert sich somit in etwa der Rechenaufwand.

$\text{Beispiel 1:}$  Die DFT–Koeffizienten  $d(\nu)$  zur Beschreibung des Zeitverlaufs seien entsprechend der  Zeile 2  der folgenden Tabelle „dreieckförmig” belegt. Beachten Sie hierbei die periodische Fortsetzung der DFT, so dass der lineare Anstieg für  $t \lt 0$  durch die Koeffizienten  $d(8), \hspace{0.05cm}\text{ ...} \hspace{0.05cm}, d(15)$  ausgedrückt wird.

Durch Anwendung des DFT–Algorithmus mit  $N = 16$  erhält man die in der  Zeile 3  angegebenen Spektralkoeffizienten  $D(\mu )$, die bei Vernachlässigung des Aliasingfehlers gleich  $D(\mu ) = 4 \cdot \text{si}^2(\pi \cdot \mu/2)$  wären. Man erkennt, dass sich der Aliasingfehler nur auf die ungeradzahligen Koeffizienten auswirkt (schraffierte Felder). Beispielsweise müsste  $D(1) = 16/ \pi^2 \approx 1.621\neq 1.642$  sein.

Ergebnistabelle zum  $\text{Beispiel 1}$  zum Überlagerungssatz der DFT

Spaltet man die Gesamtfolge  $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle$  in zwei Teilfolgen  $\langle \hspace{0.1cm}{d_1}'(\nu)\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm} {d_2}'(\nu)\hspace{0.1cm}\rangle$  auf, und zwar derart, dass die erste (gelb hinterlegte) Teilfolge nur geradzahlige Koeffizienten  $(\nu = 0, 2, \hspace{0.03cm}\text{ ...} \hspace{0.1cm}, N–2)$  und die zweite (grün hinterlegt) nur ungeradzahlige Koeffizienten  $(\nu = 1, 3, \hspace{0.03cm}\text{ ...} \hspace{0.1cm} , N–1)$  beinhalten und alle anderen zu Null gesetzt sind, so erhält man die zugehörigen Folgen im Spektralbereich:

$$ \langle \hspace{0.1cm}{D_1}'(\mu)\hspace{0.1cm} \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} {d_1}'(\nu) \hspace{0.1cm}\rangle , $$
$$ \langle \hspace{0.1cm}{D_2}'(\mu) \hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle\hspace{0.1cm} {d_2}'(\nu) \rangle \hspace{0.1cm}\hspace{0.05cm}.$$

In den gelb bzw. grün hinterlegten Zeilen  $4\hspace{0.05cm}\text{ ...} \hspace{0.05cm}7$  erkennt man:

  • Wegen  $d(\nu) = {d_1}'(\nu) + {d_2}'(\nu)$  gilt auch  $D(\mu ) = {D_1}'(\mu ) + {D_2}'(\mu )$. Dies lässt sich zum Beispiel mit dem  Additionstheorem linearer Systeme  begründen.
  • Die Periode der Folge  $\langle \hspace{0.1cm}{D_1}'(\mu )\hspace{0.1cm}\rangle$  ist aufgrund des Nullsetzens eines jeden zweiten Zeitkoeffizienten nun  $N/2$  im Gegensatz zur Periode  $N$  der Folge  $\langle \hspace{0.1cm} D(\mu )\hspace{0.1cm}\rangle$:
$${D_1}'(\mu + {N}/{2}) ={D_1}'(\mu)\hspace{0.05cm}.$$
  • $\langle \hspace{0.1cm} {D_2}'(\mu )\hspace{0.1cm}\rangle$  beinhaltet zusätzlich einen Phasenfaktor (Verschiebung um einen Abtastwert), der einen Vorzeichenwechsel zweier um  $N/2$  auseinanderliegender Koeffizienten bewirkt:
$${D_2}'(\mu + {N}/{2}) = - {D_2}'(\mu)\hspace{0.05cm}.$$
  • Die Berechnung von  $\langle \hspace{0.1cm}{D_1}'(\mu )\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm} {D_2}'(\mu )\hspace{0.1cm}\rangle$  ist aber jeweils ebenso aufwändig wie die Bestimmung von  $\langle \hspace{0.1cm}D(\mu )\hspace{0.1cm}\rangle$, da  $\langle \hspace{0.1cm}{d_1}'(\nu)\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm}{d_2}'(\nu)\hspace{0.1cm}\rangle$  ebenfalls aus  $N$  Elementen bestehen, auch wenn einige Null sind.


$\text{Beispiel 2:}$  Zur Fortsetzung des ersten Beispiels wird nun die bisherige Tabelle um die Zeilen  $8$  bis  $12$  erweitert.

Ergebnistabelle zum  $\text{Beispiel 2}$  zum Überlagerungssatz der DFT

Verzichtet man auf die Koeffizienten  ${d_1}'(\nu) = 0$  mit ungeraden sowie auf  ${d_2}'(\nu) = 0$  mit geraden Indizes, so kommt man zu den Teilfolgen  $\langle \hspace{0.1cm}d_1(\nu)\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm}d_2(\nu)\hspace{0.1cm}\rangle$  entsprechend den Zeilen  $9$  und  $11$ . Man erkennt:

  • Die Zeitfolgen  $\langle \hspace{0.1cm}{d_1}(\nu )\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm}{d_2}(\nu )\hspace{0.1cm}\rangle$  weisen ebenso wie die dazugehörigen Spektralfolgen  $\langle \hspace{0.1cm}{D_1}(\mu )\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm}{D_2}(\mu )\hspace{0.1cm}\rangle$  nur noch die Dimension $N/2$ auf.
  • Ein Vergleich der Zeilen  $5$,  $7$,  $10$  und  $12$  zeigt für  $0 \le \mu \lt N/2$  folgenden Zusammenhang:
$${D_1}'(\mu) = {1}/{2}\cdot {D_1}(\mu)\hspace{0.05cm},$$
$$ {D_2}'(\mu) = {1}/{2}\cdot {D_2}(\mu)\cdot w^{\hspace{0.04cm}\mu}\hspace{0.05cm}.$$
  • Entsprechend ergibt sich für  $N/2 \le \mu \lt N$:
$${D_1}'(\mu) = {1}/{2}\cdot {D_1}(\mu - {N}/{2})\hspace{0.05cm},$$
$$ {D_2}'(\mu) = {1}/{2}\cdot {D_2}(\mu {-} {N}/{2})\cdot w^{\hspace{0.04cm}\mu} = { - } {1}/{2}\cdot {D_2}(\mu-N/2)\cdot w^{\hspace{0.04cm}\mu {-} N/2}\hspace{0.05cm}. $$
  • Zum Beispiel erhält man mit  $N = 16$   ⇒   $w = {\rm e}^{ – {\rm j}\hspace{0.04cm} \cdot \hspace{0.04cm}\pi/8}$  für die Indizes  $\mu = 1$  bzw.  $\mu = 9$: 
$${D_1}'(1) = {1.708}/{2} = 0.854,\hspace{0.8cm} {D_2}'(1) ={1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi/8} = 0.788$$
$$\Rightarrow D(1) = {D_1}'(1)+ {D_2}'(1)= 1.642 \hspace{0.05cm}.$$
$${D_9}'(1) = {1.708}/{2} = 0.854,\hspace{0.8cm} {D_2}'(9) = - {1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi/8} = - 0.788$$
$$\Rightarrow D(9) = {D_1}'(9)+ {D_2}'(9)= 0.066 \hspace{0.05cm}.$$


$\text{Fazit:}$ 

  • Durch diese erste Anwendung des Überlagerungssatzes halbiert sich nahezu der Rechenaufwand.
  • Statt  $\mathcal{O}= 1920$  benötigt man nur noch  $\mathcal{O} = 2 · 448 + 8 \cdot (4+2) + 16 \cdot 2 = 976$  reelle Operationen.
  • Der erste Summand berücksichtigt die beiden DFT–Berechnungen mit  $N/2 = 8$.
  • Der Rest wird für die acht komplexen Multiplikationen und die  $16$  komplexen Additionen bzw. Subtraktionen benötigt.

Radix-2-Algorithmus nach Cooley und Tukey


Ebenso wie andere FFT–Algorithmen baut das hier vorgestellte Verfahren [CT65][1] von James W. Cooley und John W. Tukey auf dem Überlagerungssatz der DFT auf. Es funktioniert nur dann, wenn die Stützstellenzahl $N$ eine Zweierpotenz ist.

Radix-2-Algorithmus (Flussdiagramm)

Die Grafik verdeutlicht den Algorithmus für $N = 8$, wobei wieder die Transformation vom Zeit– in den Frequenzbereich dargestellt ist.

  • Vor dem eigentlichen FFT-Algorithmus müssen zunächst die Eingangswerte $d(0), \hspace{0.05cm}\text{...} \hspace{0.1cm}, d( N - 1)$ im grauen Block „Bitumkehroperation” umsortiert werden.
  • Die Berechnung erfolgt in $\text{log}_2 N = 3$ Stufen, wobei in jeder Stufe genau $N/2 = 4$ prinzipiell gleiche Berechnungen mit verschiedenen $\mu$–Werten (= Exponent des komplexen Drehfaktors) ausgeführt werden. Eine solche Basisoperation bezeichnet man auch als Butterfly.
  • Jeder Butterfly berechnet aus zwei (im Allgemeinen komplexen) Eingangsgrößen $A$ und $B$ die beiden Ausgangsgrößen $A + B \cdot w^{\mu}$ sowie $A – B \cdot w^{\mu}$ entsprechend der folgenden Skizze.
Butterfly des DFT-Algorithmus

$\text{Fazit:}$  Die komplexen Spektralkoeffizienten $D(0), \hspace{0.05cm}\text{...} \hspace{0.1cm}, D( N - 1)$ erhält man am Ausgang der letzten Stufe nach Division durch $N$.

  • Wie in der Aufgabe 5.5Z gezeigt wird, ergibt sich gegenüber der DFT eine deutlich kürzere Rechenzeit, zum Beispiel für $N = 1024$ um mehr als den Faktor $150$.
  • Die inverse DFT zur Berechnung der Zeitkoeffizienten aus den Spektralkoeffizienten lässt sich mit dem gleichen Algorithmus und nur geringfügigen Modifizierungen bewerkstelligen.


Radix-2-Algorithmus (C-Programm)

$\text{Beispiel 3:}$  Abschließend wird ein C–Programm

fft(N, Re, Im)

gemäß dem oben beschriebenen Radix–2–Algorithmus angegeben:

  • Beim Aufruf beinhalten die beiden Float–Arrays „Re” und „Im” die $N$ Real– und Imaginärteile der komplexen Zeitkoeffizienten $d(0)$, ... , $d( N - 1)$.
  • In den gleichen Feldern „Re” und „Im” werden die $N$ komplexen Spektralkoeffizienten $D(0)$, ... , $D( N - 1)$ am Programmende an das aufrufende Programm zurückgegeben.
  • Aufgrund der „In–Place”–Programmierung reichen für diesen Algorithmus $N$ komplexe Speicherplätze aus, allerdings nur, wenn zu Beginn die Eingangswerte umsortiert werden.
  • Dies geschieht durch das Programm „bitumkehr”, wobei die Inhalte von ${\rm Re}( \nu)$ und ${\rm Im}( \nu)$ in die Elemente ${\rm Re}( \kappa)$ und ${\rm Im}( \kappa)$ eingetragen werden. $\text{Beispiel 4}$ verdeutlicht die Vorgehensweise.


Radix-2-Algorithmus (Bitumkehroperation für $N = 8$)

$\text{Beispiel 4: Bitumkehroperation}$ 

  • Der neue Index $\kappa$ ergibt sich, wenn man den Index $\nu$ als Dualzahl schreibt und anschließend die $\text{log}_2 \hspace{0.05cm} N$ Bits in umgekehrter Reihenfolge darstellt.
  • Zum Beispiel wird aus $\nu = 3$ der neue Index $\kappa = 6$.


Aufgaben zum Kapitel


Aufgabe 5.5: Fast-Fouriertransformation

Aufgabe 5.5Z: Rechenaufwand für die FFT

Quellenverzeichnis

  1. Cooley, J.W.; Tukey, J.W.: An Algorithm for the Machine Calculation of Complex Fourier Series. In: Mathematics of Computation, Vol. 19, No. 90. (Apr., 1965), pp. 297-301.