Signaldarstellung/Fast-Fouriertransformation (FFT): Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(9 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 7: Zeile 7:
  
 
==Rechenaufwand von DFT bzw. IDFT==   
 
==Rechenaufwand von DFT bzw. IDFT==   
+
<br>
Ein Nachteil der direkten Berechnung der (im Allgemeinen komplexen) DFT–Zahlenfolgen
+
Ein Nachteil der direkten Berechnung der&nbsp; (im Allgemeinen komplexen)&nbsp; DFT–Zahlenfolgen
  
:$$\langle D(\mu)\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle d(\nu) \rangle$$
+
:$$\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d(\nu)\hspace{0.1cm} \rangle$$
 
   
 
   
gemäß den in Kapitel [[Signaldarstellung/Diskrete_Fouriertransformation_(DFT)|Diskrete Fouriertransformation (DFT)]] angegebenen Gleichungen ist der große Rechenaufwand.  Wir betrachten als Beispiel  die DFT, also die Berechnung der $D(\mu)$ aus den $d(\nu)$:
+
gemäß den in Kapitel&nbsp; [[Signaldarstellung/Diskrete_Fouriertransformation_(DFT)|Diskrete Fouriertransformation]]&nbsp;  angegebenen Gleichungen ist der große Rechenaufwand.&nbsp; Wir betrachten als Beispiel  die&nbsp; $\rm  DFT$, also die Berechnung der Spektralkoeffizienten&nbsp; $D(\mu)$&nbsp; aus den Zeitkoeffizienten&nbsp; $d(\nu)$:
 
   
 
   
 
:$$N \cdot D(\mu)  =  \sum_{\nu = 0 }^{N-1}
 
:$$N \cdot D(\mu)  =  \sum_{\nu = 0 }^{N-1}
 
  d(\nu) \cdot  {w}^{\hspace{0.03cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu}
 
  d(\nu) \cdot  {w}^{\hspace{0.03cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu}
 
  =  
 
  =  
   d(0) \cdot w^{\hspace{0.03cm}0} + d(1) \cdot w^{\hspace{0.03cm}\mu}+ d(2) \cdot w^{\hspace{0.03cm}2\mu}+\hspace{0.05cm}\text{ ...} \hspace{0.05cm}+ d(N-1) \cdot w^{\hspace{0.03cm}(N-1)\cdot \mu}$$
+
   d(0) \cdot w^{\hspace{0.03cm}0} + d(1) \cdot w^{\hspace{0.03cm}\mu}+ d(2) \cdot w^{\hspace{0.03cm}2\mu}+\hspace{0.05cm}\text{ ...} \hspace{0.05cm}+ d(N-1) \cdot w^{\hspace{0.03cm}(N-1)\cdot \mu}.$$
  
Der hierfür erforderliche Rechenaufwand soll nun abgeschätzt werden, wobei wir davon ausgehen, dass die Potenzen des komplexen Drehfaktors $w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N}$ bereits in Real– und Imaginärteilform in einer Lookup–Tabelle vorliegen. Zur Berechnung eines einzelnen Koeffizienten benötigt man dann $N-1$ komplexe Multiplikationen und ebenso viele komplexe Additionen, wobei zu beachten ist:  
+
Der hierfür erforderliche Rechenaufwand soll abgeschätzt werden, wobei wir davon ausgehen, dass die Potenzen des komplexen Drehfaktors&nbsp; $w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N}$&nbsp; bereits in Real– und Imaginärteilform in einer Lookup–Tabelle vorliegen.&nbsp;
 +
 
 +
Zur Berechnung eines einzelnen Koeffizienten benötigt man dann&nbsp; $N-1$&nbsp; komplexe Multiplikationen und ebenso viele komplexe Additionen, wobei zu beachten ist:  
 
*Jede komplexe Addition erfordert zwei reelle Additionen:
 
*Jede komplexe Addition erfordert zwei reelle Additionen:
 
:$$(R_1 + {\rm j} \cdot I_1) + (R_2 + {\rm j} \cdot I_2) = (R_1 +
 
:$$(R_1 + {\rm j} \cdot I_1) + (R_2 + {\rm j} \cdot I_2) = (R_1 +
Zeile 27: Zeile 29:
 
R_2 - I_1 \cdot I_2) + {\rm j} \cdot (R_1 \cdot I_2 + R_2 \cdot
 
R_2 - I_1 \cdot I_2) + {\rm j} \cdot (R_1 \cdot I_2 + R_2 \cdot
 
I_1)\hspace{0.05cm}.$$  
 
I_1)\hspace{0.05cm}.$$  
*Somit sind zur Berechnung aller $N$ Koeffizienten insgesamt die folgende Anzahl $M$ reeller Multiplikationen und die Anzahl $A$ reeller Additionen erforderlich:
+
*Somit sind zur Berechnung aller&nbsp; $N$&nbsp; Koeffizienten insgesamt die folgende Anzahl&nbsp; $M$&nbsp; reeller Multiplikationen und die Anzahl&nbsp; $A$&nbsp; reeller Additionen erforderlich:
 
:$$M = 4 \cdot N \cdot (N-1),$$
 
:$$M = 4 \cdot N \cdot (N-1),$$
 
:$$A = 2 \cdot N \cdot
 
:$$A = 2 \cdot N \cdot
 
(N-1)+2 \cdot N \cdot (N-1)=M \hspace{0.05cm}.$$  
 
(N-1)+2 \cdot N \cdot (N-1)=M \hspace{0.05cm}.$$  
*In heutigen Rechnern benötigen Multiplikationen und Additionen/Subtraktionen etwa die gleiche Rechenzeit. Es genügt, die Gesamtzahl $\mathcal{O} = M + A$ aller Operationen zu betrachten:
+
*In heutigen Rechnern benötigen Multiplikationen und Additionen/Subtraktionen etwa die gleiche Rechenzeit.&nbsp; Es genügt, die Gesamtzahl&nbsp; $\mathcal{O} = M + A$&nbsp; aller Operationen zu betrachten:
 
:$$\mathcal{O} = 8 \cdot N \cdot (N-1) \approx 8 \cdot N^2\hspace{0.05cm}.$$  
 
:$$\mathcal{O} = 8 \cdot N \cdot (N-1) \approx 8 \cdot N^2\hspace{0.05cm}.$$  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Fazit:}$&nbsp; Daraus folgt: Man benötigt bereits für eine ''Diskrete Fouriertransformation'' (DFT) mit $N = 1000$  knapp acht Millionen Rechenoperationen. Gleiches gilt für eine IDFT. Mit $N =16 $ sind immerhin noch 1920 Rechenoperationen erforderlich.
+
$\text{Fazit:}$&nbsp;  
 +
*Man benötigt bereits für eine&nbsp; Diskrete Fouriertransformation&nbsp; $\rm (DFT)$&nbsp; mit&nbsp; $N = 1000$&nbsp; knapp acht Millionen Rechenoperationen. Gleiches gilt für eine&nbsp; $\rm IDFT$.  
 +
*Mit&nbsp; $N =16 $&nbsp; sind immerhin noch &nbsp;$1920$&nbsp; Rechenoperationen erforderlich.}}
  
Ist der Parameter $N$ eine Potenz zur Basis $2$, so können rechenzeitgünstigere Algorithmen angewendet werden. Die Vielzahl solcher aus der Literatur bekannten Verfahren werden unter dem Sammelbegriff '''Fast–Fouriertransformation''' – abgekürzt FFT – zusammengefasst. Alle diese Methoden basieren auf dem Überlagerungssatz der DFT.}}
+
 
 +
Ist der Parameter&nbsp; $N$&nbsp; eine Potenz zur Basis&nbsp; $2$, so können rechenzeitgünstigere Algorithmen angewendet werden. Die Vielzahl solcher aus der Literatur bekannten Verfahren werden unter dem Begriff&nbsp; $\text{Fast–Fouriertransformation}$&nbsp; – abgekürzt&nbsp; $\text{FFT}$&nbsp; – zusammengefasst.&nbsp; Alle diese Methoden basieren auf dem Überlagerungssatz der DFT.
 
   
 
   
 
==Überlagerungssatz der DFT==   
 
==Überlagerungssatz der DFT==   
 +
<br>
 +
Die Grafik verdeutlicht den so genannten Überlagerungssatz der DFT am Beispiel&nbsp; $N = 16$.&nbsp; Dargestellt ist hier der Übergang vom Zeit&ndash; in den Spektralbereich, also die Berechnung der Spektralbereichskoeffizienten aus den Zeitbereichskoeffizienten: &nbsp;    $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle.$
  
Die Grafik verdeutlicht den so genannten Überlagerungssatz der DFT am Beispiel $N = 16$. Dargestellt ist hier der Übergang vom Zeit&ndash; in den Spektralbereich, also die Berechnung der $\langle D(\mu)\rangle$ aus den Zeitbereichskoeffizienten $\langle d(\nu)\rangle$ &nbsp; &rArr; &nbsp;  $\langle D(\mu)\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle d(\nu) \rangle.$
+
[[Datei:P_ID1170__Sig_T_5_5_S2_v2.png|right|frame|Überlagerungssatz der DFT]]
 
 
[[Datei:P_ID1170__Sig_T_5_5_S2_v2.png|center|frame|Überlagerungssatz der DFT]]
 
  
 
Der dadurch beschriebene Algorithmus ist durch folgende Schritte gekennzeichnet:
 
Der dadurch beschriebene Algorithmus ist durch folgende Schritte gekennzeichnet:
*Die Folge  $\langle d(\nu)\rangle$ der Länge $N$ wird in zwei Teilfolgen $\langle d_1(\nu)\rangle$ und $\langle d_2(\nu)\rangle$ jeweils halber Länge separiert (in der Garafik gelb bzw. grün hinterlegt). Mit $0 \le \nu \lt N/2$ erhält man so die Folgenelemente
+
*Die Folge&nbsp; $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle$&nbsp; der Länge&nbsp; $N$&nbsp; wird in zwei Teilfolgen&nbsp; $\langle \hspace{0.1cm}d_1(\nu)\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm} d_2(\nu)\hspace{0.1cm}\rangle$&nbsp; jeweils halber Länge separiert (in der Garafik gelb bzw. grün hinterlegt).&nbsp; Mit&nbsp; $0 \le \nu \lt N/2$&nbsp; erhält man so die Folgenelemente
 
:$$d_1(\nu) = d(2\nu), $$
 
:$$d_1(\nu) = d(2\nu), $$
 
:$$d_2(\nu) = d(2\nu+1)
 
:$$d_2(\nu) = d(2\nu+1)
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*Die Ausgangsfolgen $\langle D_1(\mu )\rangle$ und $\langle D_2(\mu )\rangle$ der beiden Teilblöcke ergeben sich daraus jeweils durch eine eigene DFT, aber nun nur noch mit halber Länge $N/2 = 8$:
+
*Die Ausgangsfolgen&nbsp; $\langle \hspace{0.1cm}D_1(\mu )\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm}D_2(\mu )\hspace{0.1cm}\rangle$&nbsp; der beiden Teilblöcke ergeben sich daraus jeweils durch eine eigene DFT, aber nun nur noch mit halber Länge&nbsp; $N/2 = 8$:
:$$\langle D_1(\mu) \rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle d_1(\nu) \rangle , $$
+
:$$\langle \hspace{0.1cm}D_1(\mu) \hspace{0.1cm}\rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d_1(\nu) \hspace{0.1cm}\rangle , $$
:$$ \langle D_2(\mu) \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle d_2(\nu) \rangle \hspace{0.05cm}.$$  
+
:$$ \langle \hspace{0.1cm}D_2(\mu)\hspace{0.1cm} \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d_2(\nu) \hspace{0.1cm}\rangle \hspace{0.05cm}.$$  
*Die Ausgangswerte $\langle D_2(\mu )\rangle$ der unteren (grünen) DFT (mit $0  \le \mu \lt N/2$) werden danach im rot umrandeten Block durch komplexe Drehfaktoren hinsichtlich der Phasenlage verändert:
+
*Die Ausgangswerte&nbsp; $\langle \hspace{0.1cm} D_2(\mu )\hspace{0.1cm}\rangle$&nbsp; der unteren, grünen DFT $($mit&nbsp; $0  \le \mu \lt N/2)$&nbsp; werden danach im rot umrandeten Block durch komplexe Drehfaktoren hinsichtlich der Phasenlage verändert:
 
:$$D_2(\mu) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}, \hspace{0.2cm}{\rm wobei}\hspace{0.1cm}w =
 
:$$D_2(\mu) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}, \hspace{0.2cm}{\rm wobei}\hspace{0.1cm}w =
 
  {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N} \hspace{0.05cm}.$$  
 
  {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N} \hspace{0.05cm}.$$  
*Jeder einzelne '''Butterfly''' im blau umrandeten Block (in der Grafikmitte) liefert durch Addition bzw. Subtraktion zwei Elemente der gesuchten Ausgangsfolge. Mit $0  \le \mu \lt N/2$ gilt dabei:
+
*Jeder einzelne&nbsp; $\text{Butterfly}$&nbsp; im blau umrandeten Block (in der Grafikmitte) liefert durch Addition bzw. Subtraktion zwei Elemente der gesuchten Ausgangsfolge.&nbsp; Mit&nbsp; $0  \le \mu \lt N/2$&nbsp; gilt dabei:
:$$D(\mu) =  {1}/{2}\cdot \left[D_1(\mu) + D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\right],$$
+
:$$D(\mu) =  {1}/{2}\cdot \big[D_1(\mu) + D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big],$$
:$$D(\mu +{N}/{2})  =  {1}/{2}\cdot \left[D_1(\mu) - D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\right]\hspace{0.05cm}.$$  
+
:$$D(\mu +{N}/{2})  =  {1}/{2}\cdot \big[D_1(\mu) - D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big]\hspace{0.05cm}.$$  
 
 
 
 
Durch '''diese erste Anwendung des Überlagerungssatzes halbiert sich somit in etwa der Rechenaufwand'''.
 
  
 +
'''Durch&nbsp; diese erste Anwendung des Überlagerungssatzes halbiert sich somit in etwa der Rechenaufwand'''.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Beispiel 1:}$&nbsp;
 
$\text{Beispiel 1:}$&nbsp;
Die DFT–Koeffizienten $d(\nu)$ zur Beschreibung des Zeitverlaufs seien entsprechend der Zeile 2 der folgenden Tabelle „dreieckförmig” belegt. Beachten Sie hierbei die periodische Fortsetzung der DFT, so dass der lineare Anstieg für $t \lt 0$ durch die Koeffizienten $d(8) \hspace{0.05cm}\text{ ...} \hspace{0.05cm}, d(15)$ ausgedrückt wird.
+
Die DFT–Koeffizienten&nbsp; $d(\nu)$&nbsp; zur Beschreibung des Zeitverlaufs seien entsprechend der&nbsp; '''Zeile 2'''&nbsp; der folgenden Tabelle „dreieckförmig” belegt. Beachten Sie hierbei die periodische Fortsetzung der DFT, so dass der lineare Anstieg für&nbsp; $t \lt 0$&nbsp; durch die Koeffizienten&nbsp; $d(8), \hspace{0.05cm}\text{ ...} \hspace{0.05cm}, d(15)$&nbsp; ausgedrückt wird.
  
Durch Anwendung des DFT–Algorithmus mit $N = 16$ erhält man die in der Zeile 3 angegebenen Spektralkoeffizienten $D(\mu )$, die bei Vernachlässigung des Aliasingfehlers gleich $D(\mu ) = 4 \cdot \text{si}^2(\pi \cdot \mu/2)$ wären. Man erkennt, dass sich der Aliasingfehler nur auf die ungeradzahligen Koeffizienten auswirkt (schraffierte Felder). Beispielsweise müsste $D$(1) = 16/ $\pi^2 \approx$ 1.621 $\neq$ 1.642 sein.
+
Durch Anwendung des DFT–Algorithmus mit&nbsp; $N = 16$&nbsp; erhält man die in der&nbsp; '''Zeile 3'''&nbsp; angegebenen Spektralkoeffizienten&nbsp; $D(\mu )$, die bei Vernachlässigung des Aliasingfehlers gleich&nbsp; $D(\mu ) = 4 \cdot \text{si}^2(\pi \cdot \mu/2)$&nbsp; wären.&nbsp; Man erkennt, dass sich der Aliasingfehler nur auf die ungeradzahligen Koeffizienten auswirkt (schraffierte Felder).&nbsp; Beispielsweise müsste&nbsp; $D(1) = 16/ \pi^2 \approx 1.621\neq 1.642$&nbsp; sein.
  
[[Datei:Sig_T_5_5_S2b_Version2.png|center|frame|Ergebnistabelle zum Beispiel 1 zum Überlagerungssatz der DFT]]
+
[[Datei:Sig_T_5_5_S2b_Version2.png|right|frame|Ergebnistabelle zum &nbsp;$\text{Beispiel 1}$&nbsp; zum Überlagerungssatz der DFT]]
  
Spaltet man die Gesamtfolge $\langle d(\nu)\rangle$ in zwei Teilfolgen $\langle {d_1}'(\nu)\rangle$ und $\langle {d_2}'(\nu)\rangle$ auf, und zwar derart, dass die erste (gelb hinterlegte) Teilfolge nur geradzahlige Koeffizienten ($\nu = 0, 2, \hspace{0.03cm}\text{ ...} \hspace{0.1cm}, N–2$) und die zweite (grün hinterlegt) nur ungeradzahlige Koeffizienten ($\nu = 1, 3, \hspace{0.03cm}\text{ ...} \hspace{0.1cm} , N–1$) beinhalten und alle anderen zu Null gesetzt sind, so erhält man die zugehörigen Folgen im Spektralbereich:
+
Spaltet man die Gesamtfolge&nbsp; $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle$&nbsp; in zwei Teilfolgen&nbsp; $\langle \hspace{0.1cm}{d_1}'(\nu)\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm} {d_2}'(\nu)\hspace{0.1cm}\rangle$&nbsp; auf, und zwar derart, dass die erste (gelb hinterlegte) Teilfolge nur geradzahlige Koeffizienten&nbsp; $(\nu = 0,\ 2, \hspace{0.03cm}\text{ ...} \hspace{0.1cm},\ N–2)$&nbsp; und die zweite (grün hinterlegt) nur ungeradzahlige Koeffizienten&nbsp; $(\nu = 1,\ 3,\ \hspace{0.03cm}\text{ ...} \hspace{0.1cm} ,\ N–1)$&nbsp; beinhalten und alle anderen zu Null gesetzt sind, so erhält man die zugehörigen Folgen im Spektralbereich:
 
   
 
   
:$$ \langle {D_1}'(\mu) \rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle {d_1}'(\nu) \rangle , $$
+
:$$ \langle \hspace{0.1cm}{D_1}'(\mu)\hspace{0.1cm} \rangle  \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} {d_1}'(\nu) \hspace{0.1cm}\rangle , $$
:$$ \langle {D_2}'(\mu) \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle {d_2}'(\nu) \rangle \hspace{0.05cm}.$$
+
:$$ \langle \hspace{0.1cm}{D_2}'(\mu) \hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle\hspace{0.1cm} {d_2}'(\nu) \rangle \hspace{0.1cm}\hspace{0.05cm}.$$
  
In den gelb bzw. grün hinterlegten Zeilen $4\hspace{0.05cm}\text{ ...} \hspace{0.05cm}7$ erkennt man:
+
In den gelb bzw. grün hinterlegten Zeilen&nbsp; $4\hspace{0.05cm}\text{ ...} \hspace{0.05cm}7$&nbsp; erkennt man:
*Wegen $d(\nu) = {d_1}'(\nu) + {d_2}'(\nu)$ gilt auch $D(\mu ) = {D_1}'(\mu ) + {D_2}'(\mu )$. Dies lässt sich zum Beispiel mit dem [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Multiplikation_mit_Faktor_-_Additionssatz|Additionstheorem linearer Systeme]] begründen.
+
*Wegen&nbsp; $d(\nu) = {d_1}'(\nu) + {d_2}'(\nu)$&nbsp; gilt auch:&nbsp;
*Die Periode der Folge $\langle {D_1}'(\mu )\rangle$ beträgt aufgrund des Nullsetzens eines jeden zweiten Zeitkoeffizienten nun $N/2$ im Gegensatz zur Periode $N$ der Ursprungsfolge $\langle D(\mu )\rangle$:
+
:$$D(\mu ) = {D_1}'(\mu ) + {D_2}'(\mu ).$$
 +
:Dies lässt sich zum Beispiel mit dem&nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Multiplikation_mit_Faktor_-_Additionssatz|Additionstheorem linearer Systeme]]&nbsp; begründen.
 +
*Die Periode der Folge&nbsp; $\langle \hspace{0.1cm}{D_1}'(\mu )\hspace{0.1cm}\rangle$&nbsp; ist aufgrund des Nullsetzens eines jeden zweiten Zeitkoeffizienten nun&nbsp; $N/2$&nbsp; im Gegensatz zur Periode&nbsp; $N$&nbsp; der Folge&nbsp; $\langle \hspace{0.1cm} D(\mu )\hspace{0.1cm}\rangle$:
 
:$${D_1}'(\mu + {N}/{2}) ={D_1}'(\mu)\hspace{0.05cm}.$$  
 
:$${D_1}'(\mu + {N}/{2}) ={D_1}'(\mu)\hspace{0.05cm}.$$  
* $\langle {D_2}'(\mu )\rangle$ beinhaltet zusätzlich einen Phasenfaktor (Verschiebung um einen Abtastwert), der einen Vorzeichenwechsel zweier um $N/2$ auseinanderliegender Koeffizienten bewirkt:
+
*Die Folge&nbsp;  $\langle \hspace{0.1cm} {D_2}'(\mu )\hspace{0.1cm}\rangle$&nbsp; beinhaltet zusätzlich einen Phasenfaktor&nbsp; (aufgrund der Verschiebung um einen Abtastwert), der einen Vorzeichenwechsel zweier um&nbsp; $N/2$&nbsp; auseinanderliegender Koeffizienten bewirkt:
:$${D_2}'(\mu + {N}/{2}) =-{D_2}'(\mu)\hspace{0.05cm}.$$  
+
:$${D_2}'(\mu + {N}/{2}) = - {D_2}'(\mu)\hspace{0.05cm}.$$  
*Die Berechnung von $\langle {D_1}'(\mu )\rangle$ und $\langle {D_2}'(\mu )\rangle$ ist aber jeweils ebenso aufwändig wie die Bestimmung von $\langle D(\mu )\rangle$ , da $\langle {d_1}'(\nu)\rangle$ und $\langle {d_2}'(\nu)\rangle$ ebenfalls aus $N$ Elementen bestehen, auch wenn einige Null sind.}}  
+
*Die Berechnung von&nbsp; $\langle \hspace{0.1cm}{D_1}'(\mu )\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm} {D_2}'(\mu )\hspace{0.1cm}\rangle$&nbsp; ist allerdings ebenso aufwändig wie die Bestimmung von&nbsp; $\langle \hspace{0.1cm}D(\mu )\hspace{0.1cm}\rangle$, da&nbsp; $\langle \hspace{0.1cm}{d_1}'(\nu)\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm}{d_2}'(\nu)\hspace{0.1cm}\rangle$&nbsp; ebenfalls aus&nbsp; $N$&nbsp; Elementen bestehen, auch wenn die Hälfte davon Nullen sind.}}  
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Beispiel 2:}$&nbsp;
 
$\text{Beispiel 2:}$&nbsp;
Zur Fortsetzung des ersten Beispiels wird nun die bisherige Tabelle um die Zeilen 8 bis 12 erweitert.
+
Zur Fortsetzung des ersten Beispiels wird nun die bisherige Tabelle um die Zeilen &nbsp;$8$&nbsp; bis &nbsp;$12$&nbsp; erweitert.
 
                        
 
                        
[[Datei:Sig_T_5_5_S2c_Version2.png|center|frame|Ergebnistabelle zum Beispiel 2 zum Überlagerungssatz der DFT]]
+
[[Datei:Sig_T_5_5_S2c_Version2.png|right|frame|Ergebnistabelle zum &nbsp;$\text{Beispiel 2}$&nbsp; zum Überlagerungssatz der DFT]]
  
Verzichtet man auf die Koeffizienten ${d_1}'(\nu) = 0$ mit ungeraden sowie auf ${d_2}'(\nu)  = 0$ mit geraden Indizes, so kommt man zu den Teilfolgen $\langle d_1(\nu)\rangle$ und $\langle d_2(\nu)\rangle$  entsprechend den  Zeilen 9 und 11. Man erkennt:
+
Verzichtet man auf die Koeffizienten&nbsp; ${d_1}'(\nu) = 0$&nbsp; mit ungeraden sowie auf&nbsp; ${d_2}'(\nu)  = 0$&nbsp; mit geraden Indizes, so kommt man zu den Teilfolgen&nbsp; $\langle \hspace{0.1cm}d_1(\nu)\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm}d_2(\nu)\hspace{0.1cm}\rangle$&nbsp; entsprechend den  Zeilen &nbsp;$9$&nbsp; und &nbsp;$11$&nbsp;. Man erkennt:
*Die beiden Zeitfolgen $\langle {d_1}(\nu )\rangle$ und $\langle {d_2}(\nu )\rangle$  weisen damit ebenso wie die dazugehörigen Spektralfolgen $\langle {D_1}(\mu )\rangle$ und $\langle {D_2}(\mu )\rangle$ nur noch die Dimension $N/2$ auf.
+
*Die Zeitfolgen&nbsp; $\langle \hspace{0.1cm}{d_1}(\nu )\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm}{d_2}(\nu )\hspace{0.1cm}\rangle$&nbsp; weisen ebenso wie die dazugehörigen Spektralfolgen&nbsp; $\langle \hspace{0.1cm}{D_1}(\mu )\hspace{0.1cm}\rangle$&nbsp; und&nbsp; $\langle \hspace{0.1cm}{D_2}(\mu )\hspace{0.1cm}\rangle$&nbsp; nur noch die Dimension $N/2$ auf.
*Ein Vergleich der Zeilen 5, 7, 10 und 12 zeigt für $0  \le \mu \lt  N/2$ folgenden Zusammenhang:
+
*Ein Vergleich der Zeilen&nbsp; $5$,&nbsp; $7$,&nbsp; $10$&nbsp; und&nbsp; $12$&nbsp; zeigt für&nbsp; $0  \le \mu \lt  N/2$&nbsp; folgenden Zusammenhang:
 
:$${D_1}'(\mu) = {1}/{2}\cdot {D_1}(\mu)\hspace{0.05cm},$$
 
:$${D_1}'(\mu) = {1}/{2}\cdot {D_1}(\mu)\hspace{0.05cm},$$
 
:$$ {D_2}'(\mu) = {1}/{2}\cdot {D_2}(\mu)\cdot w^{\hspace{0.04cm}\mu}\hspace{0.05cm}.$$  
 
:$$ {D_2}'(\mu) = {1}/{2}\cdot {D_2}(\mu)\cdot w^{\hspace{0.04cm}\mu}\hspace{0.05cm}.$$  
*Entsprechend erhält man für $N/2  \le \mu \lt  N$:
+
*Entsprechend ergibt sich für&nbsp; $N/2  \le \mu \lt  N$:
:$${D_1}'(\mu)  =  {1}/{2}\cdot {D_1}(\mu-{N}/{2})\hspace{0.05cm},$$
+
:$${D_1}'(\mu)  =  {1}/{2}\cdot {D_1}(\mu - {N}/{2})\hspace{0.05cm},$$
:$$ {D_2}'(\mu) =  {1}/{2}\cdot {D_2}(\mu-{N}/{2})\cdot w^{\hspace{0.04cm}\mu}
+
:$$ {D_2}'(\mu) =  {1}/{2}\cdot {D_2}(\mu {-} {N}/{2})\cdot w^{\hspace{0.04cm}\mu}$$
  =-{1}/{2}\cdot {D_2}(\mu-{N}/{2})\cdot w^{\hspace{0.04cm}\mu- N/2}\hspace{0.05cm}.$$  
+
:$$ \Rightarrow \hspace{0.3cm}{D_2}'(\mu) = { - } {1}/{2}\cdot {D_2}(\mu-N/2)\cdot w^{\hspace{0.04cm}\mu {-} N/2}\hspace{0.05cm}.
*Zum Beispiel erhält man mit $N = 16$  &nbsp; ⇒  &nbsp;  $w = {\rm e}^{–{\rm j}\hspace{0.04cm} \cdot \hspace{0.04cm}\pi/8}$ für die Indizes $\mu = 1$  bzw. $\mu = 9$:&nbsp;
+
$$
 +
 
 +
*Zum Beispiel erhält man mit&nbsp; $N = 16$  &nbsp; ⇒  &nbsp;  $w = {\rm e}^{ – {\rm j}\hspace{0.04cm} \cdot \hspace{0.04cm}\pi/8}$&nbsp; für die Indizes&nbsp; $\mu = 1$&nbsp; bzw.&nbsp; $\mu = 9$:&nbsp;
 
:$${D_1}'(1)  =  {1.708}/{2} = 0.854,\hspace{0.8cm}
 
:$${D_1}'(1)  =  {1.708}/{2} = 0.854,\hspace{0.8cm}
  {D_2}'(1) ={1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}
+
  {D_2}'(1) ={1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}
 
  \pi/8} = 0.788$$
 
  \pi/8} = 0.788$$
 
:$$\Rightarrow  D(1) = {D_1}'(1)+ {D_2}'(1)= 1.642 \hspace{0.05cm}.$$  
 
:$$\Rightarrow  D(1) = {D_1}'(1)+ {D_2}'(1)= 1.642 \hspace{0.05cm}.$$  
 
:$${D_9}'(1)  =  {1.708}/{2} = 0.854,\hspace{0.8cm}
 
:$${D_9}'(1)  =  {1.708}/{2} = 0.854,\hspace{0.8cm}
  {D_2}'(9) =-{1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}
+
  {D_2}'(9) = - {1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}
  \pi/8} = -0.788$$
+
  \pi/8} = - 0.788$$
 
:$$\Rightarrow  D(9) = {D_1}'(9)+ {D_2}'(9)= 0.066 \hspace{0.05cm}.$$}}
 
:$$\Rightarrow  D(9) = {D_1}'(9)+ {D_2}'(9)= 0.066 \hspace{0.05cm}.$$}}
 
   
 
   
Zeile 115: Zeile 122:
 
$\text{Fazit:}$&nbsp;   
 
$\text{Fazit:}$&nbsp;   
 
*Durch diese erste Anwendung des Überlagerungssatzes halbiert sich nahezu der Rechenaufwand.  
 
*Durch diese erste Anwendung des Überlagerungssatzes halbiert sich nahezu der Rechenaufwand.  
*Statt $\mathcal{O}= 1920$  benötigt man nur $\mathcal{O} = 2 · 448 + 8 \cdot (4+2) + 16 \cdot 2 = 976$ reelle Operationen.  
+
*Statt&nbsp; $\mathcal{O}= 1920$&nbsp; benötigt man nur noch &nbsp;$\mathcal{O} = 2 · 448 + 8 \cdot (4+2) + 16 \cdot 2 = 976$&nbsp; reelle Operationen.  
*Der erste Summand berücksichtigt die beiden DFT–Berechnungen mit $N/2 = 8$.  
+
*Der erste Summand berücksichtigt die beiden DFT–Berechnungen mit&nbsp; $N/2 = 8$.  
*Der Rest wird für die acht komplexen Multiplikationen und die $16$ komplexen Additionen bzw. Subtraktionen benötigt.}}
+
*Der Rest wird für die acht komplexen Multiplikationen und die&nbsp; $16$&nbsp; komplexen Additionen bzw. Subtraktionen benötigt.}}
  
 
==Radix-2-Algorithmus nach Cooley und Tukey==   
 
==Radix-2-Algorithmus nach Cooley und Tukey==   
+
<br>
Ebenso wie andere FFT–Algorithmen baut das hier vorgestellte Verfahren [CT65]<ref name ='CT65'>Cooley, J.W.; Tukey, J.W.: ''An Algorithm for the Machine Calculation of Complex Fourier Series''. In: Mathematics of Computation, Vol. 19, No. 90. (Apr., 1965), pp. 297-301.</ref> von [https://de.wikipedia.org/wiki/James_Cooley James W. Cooley] und [https://en.wikipedia.org/wiki/John_Tukey John W. Tukey] auf dem Überlagerungssatz der DFT auf. Es funktioniert nur dann, wenn die Stützstellenzahl $N$ eine Zweierpotenz ist.  
+
Ebenso wie andere FFT–Algorithmen baut das hier vorgestellte Verfahren&nbsp; [CT65]<ref name ='CT65'>Cooley, J.W.; Tukey, J.W.:&nbsp; An Algorithm for the Machine Calculation of Complex Fourier Series.&nbsp; <br>In:&nbsp; Mathematics of Computation, Vol. 19, No. 90. (Apr., 1965), pp. 297-301.</ref>&nbsp; von&nbsp; [https://de.wikipedia.org/wiki/James_Cooley James W. Cooley]&nbsp; und&nbsp; [https://en.wikipedia.org/wiki/John_Tukey John W. Tukey]&nbsp; auf dem Überlagerungssatz der DFT auf.&nbsp; Es funktioniert nur dann, wenn die Stützstellenzahl&nbsp; $N$&nbsp; eine Zweierpotenz ist.  
  
[[Datei:P_ID1173__Sig_T_5_5_S3a_neu.png|center|frame|frame|Radix-2-Algorithmus (Flussdiagramm)]]
+
Die Grafik verdeutlicht den Algorithmus für&nbsp; $N = 8$, wobei wieder die Transformation vom Zeit– in den Frequenzbereich dargestellt ist.
 +
[[Datei:P_ID1173__Sig_T_5_5_S3a_neu.png|right|frame|frame|Radix-2-Algorithmus (Flussdiagramm)]]
  
Die Grafik verdeutlicht den Algorithmus für $N = 8$, wobei wieder die Transformation vom Zeit– in den Frequenzbereich dargestellt ist.
+
*Vor dem eigentlichen FFT-Algorithmus müssen zunächst die Eingangswerte&nbsp; $d(0), \hspace{0.05cm}\text{...} \hspace{0.1cm}, d( N - 1)$&nbsp; im grauen Block &bdquo;Bitumkehroperation&rdquo; umsortiert werden.
 +
*Die Berechnung erfolgt in&nbsp; $\text{log}_2 N = 3$&nbsp; Stufen, wobei in jeder Stufe&nbsp; $N/2 = 4$&nbsp;  gleiche Berechnungen mit verschiedenen&nbsp; $\mu$&ndash;Werten&nbsp; (als Exponent des komplexen Drehfaktors)&nbsp; ausgeführt werden.&nbsp; Eine solche Basisoperation bezeichnet man auch als&nbsp; $\text{Butterfly}$.
 +
*Jeder Butterfly berechnet aus zwei&nbsp;  (im Allgemeinen komplexen)&nbsp;  Eingangsgrößen&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; die beiden Ausgangsgrößen&nbsp; $A + B \cdot w^{\mu}$&nbsp; sowie&nbsp; $A – B \cdot w^{\mu}$&nbsp; entsprechend der folgenden Skizze.
  
*Vor dem eigentlichen FFT-Algorithmus müssen zunächst die Eingangswerte $d(0), \hspace{0.05cm}\text{...} \hspace{0.1cm}, d( N - 1)$ im grauen Block &bdquo;Bitumkehroperation&rdquo; umsortiert werden.
 
*Die Berechnung erfolgt in $\text{log}_2 N = 3$ Stufen, wobei in jeder Stufe genau $N/2 = 4$ prinzipiell gleiche Berechnungen mit verschiedenen $\mu$&ndash;Werten (= Exponent des komplexen Drehfaktors) ausgeführt werden. Eine solche Basisoperation bezeichnet man auch als '''Butterfly'''.
 
*Jeder Butterfly berechnet aus zwei (im Allgemeinen komplexen) Eingangsgrößen $A$ und $B$ die beiden Ausgangsgrößen $A + B \cdot w^{\mu}$ sowie $A – B \cdot w^{\mu}$ entsprechend der folgenden Skizze:
 
:[[Datei:P_ID1174__Sig_T_5_5_S3b_neu.png|right|frame|Butterfly des DFT-Algorithmus]]
 
  
 +
[[Datei:P_ID1174__Sig_T_5_5_S3b_neu.png|center|frame|Butterfly des DFT-Algorithmus]]
  
 +
{{BlaueBox|TEXT=
 +
$\text{Fazit:}$&nbsp; 
 +
Die komplexen Spektralkoeffizienten&nbsp; $D(0), \hspace{0.05cm}\text{...} \hspace{0.1cm}, D( N - 1)$&nbsp; erhält man am Ausgang der letzten Stufe nach Division durch&nbsp; $N$.
 +
*Wie in der&nbsp; [[Aufgaben:Aufgabe_5.5Z:_Rechenaufwand_für_die_FFT|Aufgabe 5.5Z]]&nbsp; gezeigt wird, ergibt sich gegenüber der DFT eine deutlich kürzere Rechenzeit, zum Beispiel für&nbsp; $N = 1024$&nbsp; um mehr als den Faktor&nbsp; $150$.
  
*Die komplexen Spektralkoeffizienten $D(0), \hspace{0.1cm}... \hspace{0.1cm}, D( N - 1)$ erhält man am Ausgang der letzten Stufe nach Division durch $N$. Wie in [[Aufgabe Z5.5]] gezeigt wird, ergibt sich gegenüber der DFT eine deutlich kürzere Rechenzeit, zum Beispiel für $N = 1024$ um mehr als den Faktor 150.
+
*Die inverse DFT zur Berechnung der Zeitkoeffizienten aus den Spektralkoeffizienten geschieht mit dem gleichen Algorithmus und nur geringfügigen Modifikationen.}}
*Die inverse DFT zur Berechnung der Zeitkoeffizienten aus den Spektralkoeffizienten lässt sich mit dem gleichen Algorithmus und nur geringfügigen Modifizierungen bewerkstelligen.
 
  
  
Nachfolgend sehen Sie das C–Programm '''fft(N, Re, Im)''' gemäß dem oben beschriebenen Radix–2–Algorithmus:
+
[[Datei:P_ID1175__Sig_T_5_5_S3c_neu.png|right|frame|Radix-2-Algorithmus (C-Programm)]]
 +
{{GraueBox|TEXT=
 +
$\text{Beispiel 3:}$&nbsp; 
 +
Abschließend wird das C–Programm&nbsp; $\text{fft(N, Re, Im)}$&nbsp; gemäß dem oben beschriebenen Radix–2–Algorithmus angegeben:
  
[[Datei:P_ID1175__Sig_T_5_5_S3c_neu.png|center|frame|Radix-2-Algorithmus (C-Programm)]]
+
*Beim Aufruf beinhalten die beiden Float–Arrays „Re” und „Im” die jeweils&nbsp; $N$&nbsp; Real– und Imaginärteile der komplexen Zeitkoeffizienten&nbsp; $d(0)$, ... , $d( N - 1)$.
 +
*In den gleichen Feldern „Re” und „Im” werden am Programmende die komplexen Koeffizienten&nbsp; $D(0)$, ... , $D( N - 1)$&nbsp; an das aufrufende Programm zurückgegeben.
 +
*Aufgrund der „In–Place”–Programmierung reichen für diesen Algorithmus&nbsp; $N$&nbsp; komplexe Speicherplätze aus, allerdings nur, wenn zu Beginn die Eingangswerte umsortiert werden.
 +
*Dies geschieht durch das Programm „bitumkehr”, wobei die Inhalte von&nbsp; ${\rm Re}( \nu)$&nbsp; und&nbsp; ${\rm Im}( \nu)$&nbsp; in die Elemente&nbsp; ${\rm Re}( \kappa)$&nbsp; und&nbsp; ${\rm Im}( \kappa)$&nbsp; eingetragen werden.&nbsp; Das&nbsp; $\text{Beispiel 4}$&nbsp; verdeutlicht die Vorgehensweise.
  
*Beim Aufruf beinhalten die beiden Float–Arrays „Re” und „Im” die jeweils $N$ Real– und Imaginärteile der komplexen Zeitkoeffizienten $d(0), \hspace{0.1cm}... \hspace{0.1cm}, d( N - 1)$.
 
*In den gleichen Feldern „Re” und „Im” werden die $N$ komplexen Spektralkoeffizienten $D(0), \hspace{0.1cm}... \hspace{0.1cm}, D( N - 1)$ am Programmende an das aufrufende Programm zurückgegeben.
 
*Aufgrund dieser „In–Place”–Programmierung reichen für diesen Algorithmus $N$ komplexe Speicherplätze aus, allerdings nur, wenn zu Beginn die Eingangswerte umsortiert werden.
 
*Dies geschieht durch das Programm „bitumkehr”, wobei die Inhalte von ${\rm Re}( \nu)$ und ${\rm Im}( \nu)$ in die Elemente ${\rm Re}( \kappa)$ und ${\rm Im}( \kappa)$ eingetragen werden. Die folgende Tabelle gilt für $N = 8$.
 
  
:[[Datei:P_ID1176__Sig_T_5_5_S3d_neu.png|center|frame|Radix-2-Algorithmus (Bitumkehroperation)]]
 
  
Schreibt man den Index $\nu$ als Dualzahl und stellt die $\text{log}_2 \hspace{0.05cm} N$ Bits in umgekehrter Reihenfolge dar, so ergibt sich der neue Index $\kappa$. Beispielsweise wird so aus $\nu = 3$ der neue Index $\kappa = 6$.
+
$\text{Beispiel 4:  Bitumkehroperation}$&nbsp;
 +
[[Datei:P_ID1176__Sig_T_5_5_S3d_neu.png|center|frame|Radix-2-Algorithmus $($Bitumkehroperation für&nbsp; $N = 8)$]]
 +
 
 +
*Der neue Index&nbsp; $\kappa$&nbsp; ergibt sich, wenn man den Index&nbsp; $\nu$&nbsp; als Dualzahl schreibt und anschließend die&nbsp; $\text{log}_2 \hspace{0.05cm} N$&nbsp; Bit in umgekehrter Reihenfolge darstellt.
 +
*Zum Beispiel wird aus&nbsp; $\nu = 3$&nbsp; der neue Index&nbsp; $\kappa = 6$.}}
  
  
 
==Aufgaben zum Kapitel==   
 
==Aufgaben zum Kapitel==   
 +
<br>
 +
[[Aufgaben:Aufgabe_5.5:_Fast-Fouriertransformation|Aufgabe 5.5: Fast-Fouriertransformation]]
  
[[Aufgaben:5.5 Fast-Fouriertransformation|Aufgabe 5.5: &nbsp; Fast-Fouriertransformation]]
+
[[Aufgaben:Aufgabe_5.5Z:_Rechenaufwand_für_die_FFT|Aufgabe 5.5Z: Rechenaufwand für die FFT]]
 
 
[[Aufgaben:5.5Z_Rechenaufwand_für_die_FFT|Zusatzaufgabe 5.5Z:&nbsp; 5.5Z Rechenaufwand für die FFT]]
 
  
 
==Quellenverzeichnis==
 
==Quellenverzeichnis==

Aktuelle Version vom 21. Mai 2021, 17:12 Uhr

Rechenaufwand von DFT bzw. IDFT


Ein Nachteil der direkten Berechnung der  (im Allgemeinen komplexen)  DFT–Zahlenfolgen

$$\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d(\nu)\hspace{0.1cm} \rangle$$

gemäß den in Kapitel  Diskrete Fouriertransformation  angegebenen Gleichungen ist der große Rechenaufwand.  Wir betrachten als Beispiel die  $\rm DFT$, also die Berechnung der Spektralkoeffizienten  $D(\mu)$  aus den Zeitkoeffizienten  $d(\nu)$:

$$N \cdot D(\mu) = \sum_{\nu = 0 }^{N-1} d(\nu) \cdot {w}^{\hspace{0.03cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} = d(0) \cdot w^{\hspace{0.03cm}0} + d(1) \cdot w^{\hspace{0.03cm}\mu}+ d(2) \cdot w^{\hspace{0.03cm}2\mu}+\hspace{0.05cm}\text{ ...} \hspace{0.05cm}+ d(N-1) \cdot w^{\hspace{0.03cm}(N-1)\cdot \mu}.$$

Der hierfür erforderliche Rechenaufwand soll abgeschätzt werden, wobei wir davon ausgehen, dass die Potenzen des komplexen Drehfaktors  $w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N}$  bereits in Real– und Imaginärteilform in einer Lookup–Tabelle vorliegen. 

Zur Berechnung eines einzelnen Koeffizienten benötigt man dann  $N-1$  komplexe Multiplikationen und ebenso viele komplexe Additionen, wobei zu beachten ist:

  • Jede komplexe Addition erfordert zwei reelle Additionen:
$$(R_1 + {\rm j} \cdot I_1) + (R_2 + {\rm j} \cdot I_2) = (R_1 + R_2) + {\rm j} \cdot (I_1 + I_2)\hspace{0.05cm}.$$
  • Jede komplexe Multiplikation erfordert vier reelle Multiplikationen und zwei reelle Additionen (eine Subtraktion wird wie eine Addition behandelt):
$$(R_1 + {\rm j} \cdot I_1) (R_2 + {\rm j} \cdot I_2) = (R_1 \cdot R_2 - I_1 \cdot I_2) + {\rm j} \cdot (R_1 \cdot I_2 + R_2 \cdot I_1)\hspace{0.05cm}.$$
  • Somit sind zur Berechnung aller  $N$  Koeffizienten insgesamt die folgende Anzahl  $M$  reeller Multiplikationen und die Anzahl  $A$  reeller Additionen erforderlich:
$$M = 4 \cdot N \cdot (N-1),$$
$$A = 2 \cdot N \cdot (N-1)+2 \cdot N \cdot (N-1)=M \hspace{0.05cm}.$$
  • In heutigen Rechnern benötigen Multiplikationen und Additionen/Subtraktionen etwa die gleiche Rechenzeit.  Es genügt, die Gesamtzahl  $\mathcal{O} = M + A$  aller Operationen zu betrachten:
$$\mathcal{O} = 8 \cdot N \cdot (N-1) \approx 8 \cdot N^2\hspace{0.05cm}.$$

$\text{Fazit:}$ 

  • Man benötigt bereits für eine  Diskrete Fouriertransformation  $\rm (DFT)$  mit  $N = 1000$  knapp acht Millionen Rechenoperationen. Gleiches gilt für eine  $\rm IDFT$.
  • Mit  $N =16 $  sind immerhin noch  $1920$  Rechenoperationen erforderlich.


Ist der Parameter  $N$  eine Potenz zur Basis  $2$, so können rechenzeitgünstigere Algorithmen angewendet werden. Die Vielzahl solcher aus der Literatur bekannten Verfahren werden unter dem Begriff  $\text{Fast–Fouriertransformation}$  – abgekürzt  $\text{FFT}$  – zusammengefasst.  Alle diese Methoden basieren auf dem Überlagerungssatz der DFT.

Überlagerungssatz der DFT


Die Grafik verdeutlicht den so genannten Überlagerungssatz der DFT am Beispiel  $N = 16$.  Dargestellt ist hier der Übergang vom Zeit– in den Spektralbereich, also die Berechnung der Spektralbereichskoeffizienten aus den Zeitbereichskoeffizienten:   $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle.$

Überlagerungssatz der DFT

Der dadurch beschriebene Algorithmus ist durch folgende Schritte gekennzeichnet:

  • Die Folge  $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle$  der Länge  $N$  wird in zwei Teilfolgen  $\langle \hspace{0.1cm}d_1(\nu)\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm} d_2(\nu)\hspace{0.1cm}\rangle$  jeweils halber Länge separiert (in der Garafik gelb bzw. grün hinterlegt).  Mit  $0 \le \nu \lt N/2$  erhält man so die Folgenelemente
$$d_1(\nu) = d(2\nu), $$
$$d_2(\nu) = d(2\nu+1) \hspace{0.05cm}.$$
  • Die Ausgangsfolgen  $\langle \hspace{0.1cm}D_1(\mu )\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm}D_2(\mu )\hspace{0.1cm}\rangle$  der beiden Teilblöcke ergeben sich daraus jeweils durch eine eigene DFT, aber nun nur noch mit halber Länge  $N/2 = 8$:
$$\langle \hspace{0.1cm}D_1(\mu) \hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d_1(\nu) \hspace{0.1cm}\rangle , $$
$$ \langle \hspace{0.1cm}D_2(\mu)\hspace{0.1cm} \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N/2)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm}d_2(\nu) \hspace{0.1cm}\rangle \hspace{0.05cm}.$$
  • Die Ausgangswerte  $\langle \hspace{0.1cm} D_2(\mu )\hspace{0.1cm}\rangle$  der unteren, grünen DFT $($mit  $0 \le \mu \lt N/2)$  werden danach im rot umrandeten Block durch komplexe Drehfaktoren hinsichtlich der Phasenlage verändert:
$$D_2(\mu) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}, \hspace{0.2cm}{\rm wobei}\hspace{0.1cm}w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi/N} \hspace{0.05cm}.$$
  • Jeder einzelne  $\text{Butterfly}$  im blau umrandeten Block (in der Grafikmitte) liefert durch Addition bzw. Subtraktion zwei Elemente der gesuchten Ausgangsfolge.  Mit  $0 \le \mu \lt N/2$  gilt dabei:
$$D(\mu) = {1}/{2}\cdot \big[D_1(\mu) + D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big],$$
$$D(\mu +{N}/{2}) = {1}/{2}\cdot \big[D_1(\mu) - D_2(\mu) \cdot w^{\hspace{0.04cm}\mu}\big]\hspace{0.05cm}.$$

Durch  diese erste Anwendung des Überlagerungssatzes halbiert sich somit in etwa der Rechenaufwand.

$\text{Beispiel 1:}$  Die DFT–Koeffizienten  $d(\nu)$  zur Beschreibung des Zeitverlaufs seien entsprechend der  Zeile 2  der folgenden Tabelle „dreieckförmig” belegt. Beachten Sie hierbei die periodische Fortsetzung der DFT, so dass der lineare Anstieg für  $t \lt 0$  durch die Koeffizienten  $d(8), \hspace{0.05cm}\text{ ...} \hspace{0.05cm}, d(15)$  ausgedrückt wird.

Durch Anwendung des DFT–Algorithmus mit  $N = 16$  erhält man die in der  Zeile 3  angegebenen Spektralkoeffizienten  $D(\mu )$, die bei Vernachlässigung des Aliasingfehlers gleich  $D(\mu ) = 4 \cdot \text{si}^2(\pi \cdot \mu/2)$  wären.  Man erkennt, dass sich der Aliasingfehler nur auf die ungeradzahligen Koeffizienten auswirkt (schraffierte Felder).  Beispielsweise müsste  $D(1) = 16/ \pi^2 \approx 1.621\neq 1.642$  sein.

Ergebnistabelle zum  $\text{Beispiel 1}$  zum Überlagerungssatz der DFT

Spaltet man die Gesamtfolge  $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle$  in zwei Teilfolgen  $\langle \hspace{0.1cm}{d_1}'(\nu)\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm} {d_2}'(\nu)\hspace{0.1cm}\rangle$  auf, und zwar derart, dass die erste (gelb hinterlegte) Teilfolge nur geradzahlige Koeffizienten  $(\nu = 0,\ 2, \hspace{0.03cm}\text{ ...} \hspace{0.1cm},\ N–2)$  und die zweite (grün hinterlegt) nur ungeradzahlige Koeffizienten  $(\nu = 1,\ 3,\ \hspace{0.03cm}\text{ ...} \hspace{0.1cm} ,\ N–1)$  beinhalten und alle anderen zu Null gesetzt sind, so erhält man die zugehörigen Folgen im Spektralbereich:

$$ \langle \hspace{0.1cm}{D_1}'(\mu)\hspace{0.1cm} \rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} {d_1}'(\nu) \hspace{0.1cm}\rangle , $$
$$ \langle \hspace{0.1cm}{D_2}'(\mu) \hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle\hspace{0.1cm} {d_2}'(\nu) \rangle \hspace{0.1cm}\hspace{0.05cm}.$$

In den gelb bzw. grün hinterlegten Zeilen  $4\hspace{0.05cm}\text{ ...} \hspace{0.05cm}7$  erkennt man:

  • Wegen  $d(\nu) = {d_1}'(\nu) + {d_2}'(\nu)$  gilt auch: 
$$D(\mu ) = {D_1}'(\mu ) + {D_2}'(\mu ).$$
Dies lässt sich zum Beispiel mit dem  Additionstheorem linearer Systeme  begründen.
  • Die Periode der Folge  $\langle \hspace{0.1cm}{D_1}'(\mu )\hspace{0.1cm}\rangle$  ist aufgrund des Nullsetzens eines jeden zweiten Zeitkoeffizienten nun  $N/2$  im Gegensatz zur Periode  $N$  der Folge  $\langle \hspace{0.1cm} D(\mu )\hspace{0.1cm}\rangle$:
$${D_1}'(\mu + {N}/{2}) ={D_1}'(\mu)\hspace{0.05cm}.$$
  • Die Folge  $\langle \hspace{0.1cm} {D_2}'(\mu )\hspace{0.1cm}\rangle$  beinhaltet zusätzlich einen Phasenfaktor  (aufgrund der Verschiebung um einen Abtastwert), der einen Vorzeichenwechsel zweier um  $N/2$  auseinanderliegender Koeffizienten bewirkt:
$${D_2}'(\mu + {N}/{2}) = - {D_2}'(\mu)\hspace{0.05cm}.$$
  • Die Berechnung von  $\langle \hspace{0.1cm}{D_1}'(\mu )\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm} {D_2}'(\mu )\hspace{0.1cm}\rangle$  ist allerdings ebenso aufwändig wie die Bestimmung von  $\langle \hspace{0.1cm}D(\mu )\hspace{0.1cm}\rangle$, da  $\langle \hspace{0.1cm}{d_1}'(\nu)\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm}{d_2}'(\nu)\hspace{0.1cm}\rangle$  ebenfalls aus  $N$  Elementen bestehen, auch wenn die Hälfte davon Nullen sind.


$\text{Beispiel 2:}$  Zur Fortsetzung des ersten Beispiels wird nun die bisherige Tabelle um die Zeilen  $8$  bis  $12$  erweitert.

Ergebnistabelle zum  $\text{Beispiel 2}$  zum Überlagerungssatz der DFT

Verzichtet man auf die Koeffizienten  ${d_1}'(\nu) = 0$  mit ungeraden sowie auf  ${d_2}'(\nu) = 0$  mit geraden Indizes, so kommt man zu den Teilfolgen  $\langle \hspace{0.1cm}d_1(\nu)\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm}d_2(\nu)\hspace{0.1cm}\rangle$  entsprechend den Zeilen  $9$  und  $11$ . Man erkennt:

  • Die Zeitfolgen  $\langle \hspace{0.1cm}{d_1}(\nu )\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm}{d_2}(\nu )\hspace{0.1cm}\rangle$  weisen ebenso wie die dazugehörigen Spektralfolgen  $\langle \hspace{0.1cm}{D_1}(\mu )\hspace{0.1cm}\rangle$  und  $\langle \hspace{0.1cm}{D_2}(\mu )\hspace{0.1cm}\rangle$  nur noch die Dimension $N/2$ auf.
  • Ein Vergleich der Zeilen  $5$,  $7$,  $10$  und  $12$  zeigt für  $0 \le \mu \lt N/2$  folgenden Zusammenhang:
$${D_1}'(\mu) = {1}/{2}\cdot {D_1}(\mu)\hspace{0.05cm},$$
$$ {D_2}'(\mu) = {1}/{2}\cdot {D_2}(\mu)\cdot w^{\hspace{0.04cm}\mu}\hspace{0.05cm}.$$
  • Entsprechend ergibt sich für  $N/2 \le \mu \lt N$:
$${D_1}'(\mu) = {1}/{2}\cdot {D_1}(\mu - {N}/{2})\hspace{0.05cm},$$
$$ {D_2}'(\mu) = {1}/{2}\cdot {D_2}(\mu {-} {N}/{2})\cdot w^{\hspace{0.04cm}\mu}$$
$$ \Rightarrow \hspace{0.3cm}{D_2}'(\mu) = { - } {1}/{2}\cdot {D_2}(\mu-N/2)\cdot w^{\hspace{0.04cm}\mu {-} N/2}\hspace{0.05cm}. $$
  • Zum Beispiel erhält man mit  $N = 16$   ⇒   $w = {\rm e}^{ – {\rm j}\hspace{0.04cm} \cdot \hspace{0.04cm}\pi/8}$  für die Indizes  $\mu = 1$  bzw.  $\mu = 9$: 
$${D_1}'(1) = {1.708}/{2} = 0.854,\hspace{0.8cm} {D_2}'(1) ={1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi/8} = 0.788$$
$$\Rightarrow D(1) = {D_1}'(1)+ {D_2}'(1)= 1.642 \hspace{0.05cm}.$$
$${D_9}'(1) = {1.708}/{2} = 0.854,\hspace{0.8cm} {D_2}'(9) = - {1}/{2}\cdot (1.456 + {\rm j} 0.603) \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi/8} = - 0.788$$
$$\Rightarrow D(9) = {D_1}'(9)+ {D_2}'(9)= 0.066 \hspace{0.05cm}.$$


$\text{Fazit:}$ 

  • Durch diese erste Anwendung des Überlagerungssatzes halbiert sich nahezu der Rechenaufwand.
  • Statt  $\mathcal{O}= 1920$  benötigt man nur noch  $\mathcal{O} = 2 · 448 + 8 \cdot (4+2) + 16 \cdot 2 = 976$  reelle Operationen.
  • Der erste Summand berücksichtigt die beiden DFT–Berechnungen mit  $N/2 = 8$.
  • Der Rest wird für die acht komplexen Multiplikationen und die  $16$  komplexen Additionen bzw. Subtraktionen benötigt.

Radix-2-Algorithmus nach Cooley und Tukey


Ebenso wie andere FFT–Algorithmen baut das hier vorgestellte Verfahren  [CT65][1]  von  James W. Cooley  und  John W. Tukey  auf dem Überlagerungssatz der DFT auf.  Es funktioniert nur dann, wenn die Stützstellenzahl  $N$  eine Zweierpotenz ist.

Die Grafik verdeutlicht den Algorithmus für  $N = 8$, wobei wieder die Transformation vom Zeit– in den Frequenzbereich dargestellt ist.

Radix-2-Algorithmus (Flussdiagramm)
  • Vor dem eigentlichen FFT-Algorithmus müssen zunächst die Eingangswerte  $d(0), \hspace{0.05cm}\text{...} \hspace{0.1cm}, d( N - 1)$  im grauen Block „Bitumkehroperation” umsortiert werden.
  • Die Berechnung erfolgt in  $\text{log}_2 N = 3$  Stufen, wobei in jeder Stufe  $N/2 = 4$  gleiche Berechnungen mit verschiedenen  $\mu$–Werten  (als Exponent des komplexen Drehfaktors)  ausgeführt werden.  Eine solche Basisoperation bezeichnet man auch als  $\text{Butterfly}$.
  • Jeder Butterfly berechnet aus zwei  (im Allgemeinen komplexen)  Eingangsgrößen  $A$  und  $B$  die beiden Ausgangsgrößen  $A + B \cdot w^{\mu}$  sowie  $A – B \cdot w^{\mu}$  entsprechend der folgenden Skizze.


Butterfly des DFT-Algorithmus

$\text{Fazit:}$  Die komplexen Spektralkoeffizienten  $D(0), \hspace{0.05cm}\text{...} \hspace{0.1cm}, D( N - 1)$  erhält man am Ausgang der letzten Stufe nach Division durch  $N$.

  • Wie in der  Aufgabe 5.5Z  gezeigt wird, ergibt sich gegenüber der DFT eine deutlich kürzere Rechenzeit, zum Beispiel für  $N = 1024$  um mehr als den Faktor  $150$.
  • Die inverse DFT zur Berechnung der Zeitkoeffizienten aus den Spektralkoeffizienten geschieht mit dem gleichen Algorithmus und nur geringfügigen Modifikationen.


Radix-2-Algorithmus (C-Programm)

$\text{Beispiel 3:}$  Abschließend wird das C–Programm  $\text{fft(N, Re, Im)}$  gemäß dem oben beschriebenen Radix–2–Algorithmus angegeben:

  • Beim Aufruf beinhalten die beiden Float–Arrays „Re” und „Im” die jeweils  $N$  Real– und Imaginärteile der komplexen Zeitkoeffizienten  $d(0)$, ... , $d( N - 1)$.
  • In den gleichen Feldern „Re” und „Im” werden am Programmende die komplexen Koeffizienten  $D(0)$, ... , $D( N - 1)$  an das aufrufende Programm zurückgegeben.
  • Aufgrund der „In–Place”–Programmierung reichen für diesen Algorithmus  $N$  komplexe Speicherplätze aus, allerdings nur, wenn zu Beginn die Eingangswerte umsortiert werden.
  • Dies geschieht durch das Programm „bitumkehr”, wobei die Inhalte von  ${\rm Re}( \nu)$  und  ${\rm Im}( \nu)$  in die Elemente  ${\rm Re}( \kappa)$  und  ${\rm Im}( \kappa)$  eingetragen werden.  Das  $\text{Beispiel 4}$  verdeutlicht die Vorgehensweise.


$\text{Beispiel 4: Bitumkehroperation}$ 

Radix-2-Algorithmus $($Bitumkehroperation für  $N = 8)$
  • Der neue Index  $\kappa$  ergibt sich, wenn man den Index  $\nu$  als Dualzahl schreibt und anschließend die  $\text{log}_2 \hspace{0.05cm} N$  Bit in umgekehrter Reihenfolge darstellt.
  • Zum Beispiel wird aus  $\nu = 3$  der neue Index  $\kappa = 6$.


Aufgaben zum Kapitel


Aufgabe 5.5: Fast-Fouriertransformation

Aufgabe 5.5Z: Rechenaufwand für die FFT

Quellenverzeichnis

  1. Cooley, J.W.; Tukey, J.W.:  An Algorithm for the Machine Calculation of Complex Fourier Series. 
    In:  Mathematics of Computation, Vol. 19, No. 90. (Apr., 1965), pp. 297-301.