Lineare zeitinvariante Systeme/Systembeschreibung im Zeitbereich: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(32 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 7: Zeile 7:
  
 
==Impulsantwort==
 
==Impulsantwort==
Auf der Seite  [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Das erste Fourierintegral]]  im Buch „Signaldarstellung” wurde dargelegt, dass für jedes deterministische Signal $x(t)$ mit Hilfe der Fouriertransformation eine Spektralfunktion $X(f)$ angegeben werden kann. Oft bezeichnet man $X(f)$ auch kurz als das Spektrum.  
+
<br>
 +
Auf der Seite&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Das erste Fourierintegral]]&nbsp; im Buch &bdquo;Signaldarstellung&rdquo; wurde dargelegt, dass für jedes deterministische Signal&nbsp; $x(t)$&nbsp; mit Hilfe der Fouriertransformation eine Spektralfunktion&nbsp; $X(f)$&nbsp; angegeben werden kann. Oft bezeichnet man&nbsp; $X(f)$&nbsp; kurz als das Spektrum.  
  
 
Alle Informationen über die Spektralfunktion sind aber auch bereits in der Zeitbereichsdarstellung enthalten, wenn auch nicht immer sofort erkennbar. Der gleiche Sachverhalt trifft für lineare zeitinvariante Systeme zu.  
 
Alle Informationen über die Spektralfunktion sind aber auch bereits in der Zeitbereichsdarstellung enthalten, wenn auch nicht immer sofort erkennbar. Der gleiche Sachverhalt trifft für lineare zeitinvariante Systeme zu.  
  
{{Definition}}
+
{{BlaueBox|TEXT= 
Die wichtigste Beschreibungsgröße eines linearen zeitinvarianten Systems im Zeitbereich ist die Fourierrücktransformierte von $H(f)$, die man als die '''Impulsantwort''' bezeichnet:
+
$\text{Definition:}$&nbsp;
$$h(t) = \int_{-\infty}^{+\infty}H(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi ft}\hspace{0.15cm} {\rm d}f.$$
+
Die wichtigste Beschreibungsgröße eines linearen zeitinvarianten Systems im Zeitbereich ist die Fourierrücktransformierte von&nbsp; $H(f)$, die man als die&nbsp; '''Impulsantwort'''&nbsp; bezeichnet:
{{end}}
+
:$$h(t) = \int_{-\infty}^{+\infty}H(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi ft}\hspace{0.15cm} {\rm d}f.$$}}
  
  
 
Hierzu ist Folgendes anzumerken:  
 
Hierzu ist Folgendes anzumerken:  
*Der Frequenzgang $H(f)$ und die Impulsantwort $h(t)$ sind äquivalente Beschreibungsgrößen, die genau die gleichen Informationen über das LZI–System beinhalten.  
+
*Der Frequenzgang&nbsp; $H(f)$&nbsp; und die Impulsantwort&nbsp; $h(t)$&nbsp; sind äquivalente Beschreibungsgrößen, die genau die gleichen Informationen über das LZI–System beinhalten.  
*Verwendet man das diracförmige Eingangssignal $x(t) = δ(t)$, so ist $X(f) = 1$ zu setzen und es gilt $Y(f) = H(f)$ bzw. $y(t) = h(t)$. Die Bezeichnung &bdquo;Impulsantwort&rdquo; spiegelt diese Aussage wieder: Die Antwort des Systems auf einen (Dirac-) Impuls am Eingang.  
+
*Verwendet man das diracförmige Eingangssignal&nbsp; $x(t) = δ(t)$, so ist&nbsp; $X(f) = 1$&nbsp; zu setzen und es gilt&nbsp; $Y(f) = H(f)$&nbsp; bzw.&nbsp; $y(t) = h(t)$.  
*Die obige Definition lässt erkennen, dass jede Impulsantwort die Einheit Hz = 1/s besitzen muss.  
+
*Die Bezeichnung &bdquo;Impulsantwort&rdquo; spiegelt diese Aussage wieder: &nbsp; $h(t)$&nbsp; ist die Antwort des Systems auf einen (Dirac-)Impuls am Eingang.  
 +
*Die obige Definition lässt erkennen, dass jede Impulsantwort die Einheit&nbsp; $\text{Hz = 1/s}$&nbsp; besitzen muss.  
  
  
{{Beispiel}}
+
[[Datei:P_ID837__LZI_T_1_2_S1_neu.png|right|frame|Rechteckförmige Impulsantwort und zugehöriges Betragsspektrum|class=fit]]
Die Impulsantwort $h(t)$ des so genannten Spalt–Tiefpasses ist über eine Zeitdauer $T$ hinweg konstant und außerhalb dieses Zeitintervalls gleich 0. Der dazugehörige Amplitudengang als der Betrag des Frequenzgangs ist $|H(f)| = |{\rm si}(\pi fT)|$. Der Phasenverlauf ergibt sich damit zu  
+
{{GraueBox|TEXT= 
$$b(f) = \left\{ \begin{array}{l} \hspace{0.25cm}\pi/T  \\  -\pi/T \\  \end{array} \right.\quad \quad\begin{array}{*{20}c}  {\rm{f\ddot{u}r}} \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}{\left| \hspace{0.05cm} f\hspace{0.05cm} \right| > 0,}  \\{\left|\hspace{0.05cm} f \hspace{0.05cm} \right|< 0.}  \\\end{array}$$
+
$\text{Beispiel 1:}$&nbsp;
Wäre $h(t)$ symmetrisch um $t = 0$ und damit akausal, so würde $b(f)=0$ gelten.  
+
Die Impulsantwort&nbsp; $h(t)$&nbsp; des so genannten ''Spalt–Tiefpasses''&nbsp; ist über eine Zeitdauer&nbsp; $T$&nbsp; hinweg konstant und außerhalb dieses Zeitintervalls gleich Null.  
 +
*Der dazugehörige Amplitudengang als der Betrag des Frequenzgangs ist&nbsp;
 +
:$$\vert H(f)\vert  = \vert {\rm si}(\pi fT)\vert .$$
 +
*Die Fläche über&nbsp; $h(t)$&nbsp; ist gleich&nbsp; $H(f = 0) = 1$. Daraus folgt: &nbsp; <br>&nbsp; &nbsp; Im Bereich&nbsp; $ 0 < t < T$&nbsp; muss die Impulsantwort gleich&nbsp; $1/T$&nbsp; sein.
 +
*Der Phasenverlauf ergibt sich zu  
 +
:$$b(f) = \left\{ \begin{array}{l} \hspace{0.25cm}\pi/T  \\  - \pi/T \\  \end{array} \right.\quad \quad\begin{array}{*{20}c}  \text{für} \\  \text{für}  \\ \end{array}\begin{array}{*{20}c}{\left \vert  \hspace{0.05cm} f\hspace{0.05cm} \right \vert  > 0,}  \\{\vert \hspace{0.05cm} f \hspace{0.05cm} \vert < 0.}  \\\end{array}$$
 +
*Bei symmetrischem&nbsp; $h(t)$&nbsp; um&nbsp; $t = 0$&nbsp; (also akausal) wäre&nbsp; $b(f)=0$. }}
  
[[Datei:P_ID837__LZI_T_1_2_S1_neu.png | Rechteckförmige Impulsantwort und zugehöriges Betragsspektrum|class=fit]]
+
==Einige Gesetze der Fouriertransformation==
 +
<br>
 +
Die&nbsp; [[Signaldarstellung/Gesetzm%C3%A4%C3%9Figkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]]&nbsp; wurden bereits im Buch &bdquo;Signaldarstellung&rdquo; ausführlich dargelegt.
  
Die Fläche über die Impulsantwort ist gleich $H(f = 0) = 1$. Daraus folgt, dass die Impulsantwort im Bereich von 0 bis $T$ gleich $1/T$ sein muss.
+
Hier folgt nun eine kurze Zusammenfassung, wobei&nbsp; $H(f)$&nbsp; den Frequenzgang eines LZI–Systems beschreibt und dessen Fourierrücktransformierte&nbsp; $h(t)$&nbsp; die Impulsantwort ist. Diese Gesetzmäßigkeiten werden in den&nbsp; [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich#Aufgaben_zum_Kapitel|Aufgaben]]&nbsp; zu diesem Kapitel &bdquo;Systemtheoretische Grundlagen&rdquo; häufiger angewendet.  
{{end}}
 
  
'''Bild ersetzen:'''
+
Wir verweisen hier auch auf das Lernvideo&nbsp; [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]].
  
[[Datei:P_ID837__LZI_T_1_2_S1_neu.png | Andere Unterschrift|class=fit]]
+
Bei den folgenden Gleichungen wird das Kurzsymbol der Fouriertransformation benutzt. Der ausgefüllte Kreis kennzeichnet den Spektralbereich, der weiße den Zeitbereich.
 +
*'''Multiplikation'''&nbsp; mit einem konstanten Faktor:
 +
:$$k \cdot H(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,k \cdot h(t).$$
 +
:Bei&nbsp; $k \lt 1$&nbsp; spricht man von einer Dämpfung, während&nbsp; $k \gt 1$&nbsp; für eine Verstärkung steht.
  
==Einige Gesetze der Fouriertransformation==
 
Die [[Signaldarstellung/Gesetzm%C3%A4%C3%9Figkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]] wurden bereits im Buch [[Signaldarstellung]] ausführlich dargelegt. Hier folgt nun eine kurze Zusammenfassung, wobei $H(f)$ den Frequenzgang eines LZI–Systems beschreibt und dessen Fourierrücktransformierte $h(t)$ die Impulsantwort angibt.
 
  
Bei allen folgenden Gleichungen wird das Kurzsymbol der Fouriertransformation benutzt. Der ausgefüllte Kreis kennzeichnet stets den Spektralbereich und der weiße Kreis den Zeitbereich.
 
*'''Multiplikation''' mit einem konstanten Faktor:
 
:$$k \cdot H(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,k \cdot h(t).$$
 
:Bei $k$ < 1 spricht man von einer Dämpfung, während $k$ > 1 für eine Verstärkung steht.
 
 
*'''Ähnlichkeitssatz''':
 
*'''Ähnlichkeitssatz''':
 
:$$H({f}/{k})\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,|k| \cdot h(k\cdot t).$$
 
:$$H({f}/{k})\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,|k| \cdot h(k\cdot t).$$
:Dies besagt: Eine Stauchung ($k < 1$) des Frequenzgangs führt zu einer breiteren und niedrigeren Impulsantwort. Durch Streckung ($k > 1$) von $H(f)$ wird $h(t)$ schmaler und höher.  
+
:#&nbsp; Dieser besagt: &nbsp; Eine Stauchung&nbsp; $(k < 1)$&nbsp; des Frequenzgangs führt zu einer breiteren und niedrigeren Impulsantwort.  
*'''Verschiebungssatz''' im Frequenz- und Zeitbereich:
+
:#&nbsp; Durch Streckung&nbsp; $(k > 1)$&nbsp; von&nbsp; $H(f)$&nbsp; wird&nbsp; $h(t)$&nbsp; schmaler und höher.
:$$H(f - f_0) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t )\cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi f_0 t},$$
+
 
:$$H(f) \cdot {\rm e}^{-{\rm j}2\pi ft_0}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t- t_0 ).$$
+
 
:Eine Verschiebung um $t_0$ (Laufzeit) führt also im Frequenzbereich zu der Multiplikation mit einer komplexen Exponentialfunktion. Der Amplitudengang $|H(f)|$ wird dadurch nicht verändert.
+
*'''Verschiebungssatz'''&nbsp; im Frequenzbereich und im Zeitbereich:
*'''Differentiationssatz''' im Frequenz- und Zeitbereich:
+
:$$H(f - f_0) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t )\cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi f_0 t},\hspace{0.9cm}
:$$\frac{1}{{{\rm j}2\pi }} \cdot \frac{{{\rm d}H( f )}}{{{\rm d}f}} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,- t \cdot h( t ),$$
+
H(f) \cdot {\rm e}^{-{\rm j}2\pi ft_0}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t- t_0 ).$$
:$${\rm j}\cdot 2\pi f \cdot H( f ){}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \frac{{{\rm d}h( t )}}{{\rm d}t}.$$
+
:#&nbsp; Eine Verschiebung um&nbsp; $t_0$&nbsp; (Laufzeit) führt also im Frequenzbereich zu der Multiplikation mit einer komplexen Exponentialfunktion.  
:Ein differenzierendes Element im LZI–System führt im Frequenzbereich zu einer Multiplikation mit ${\rm j}2πf$ und damit unter Anderem zu einer Phasendrehung um 90°.
+
:#&nbsp; Der Amplitudengang&nbsp; $|H(f)|$&nbsp; wird dadurch nicht verändert.
Diese Gesetzmäßigkeiten werden in den Aufgaben zu diesem Kapitel &bdquo;Systemtheoretische Grundlagen&rdquo; häufiger angewendet.
+
 
 +
 
 +
*'''Differentiationssatz'''&nbsp; im Frequenzbereich und im Zeitbereich:
 +
:$$\frac{1}{{{\rm j}2\pi }} \cdot \frac{{{\rm d}H( f )}}{{{\rm d}f}} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,- t \cdot h( t ),\hspace{0.9cm}
 +
{\rm j}\cdot 2\pi f \cdot H( f ){}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \frac{{{\rm d}h( t )}}{{\rm d}t}.$$
 +
:Ein differenzierendes Element im LZI–System führt im Frequenzbereich zu einer Multiplikation mit&nbsp; ${\rm j}\cdot 2πf$&nbsp; und damit unter Anderem zu einer Phasendrehung um&nbsp; $90^{\circ}$.
 +
 
  
 
==Kausale Systeme==
 
==Kausale Systeme==
Die Grafik verdeutlicht den Unterschied zwischen einem akausalen und einem kausalen System.
+
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
Ein LZI–System bezeichnet man dann als&nbsp;  '''kausal''', wenn die Impulsantwort&nbsp;  $h(t)$&nbsp;  – also die Fourierrücktransformierte des Frequenzgangs&nbsp;  $H(f)$&nbsp;  – folgende Bedingung erfüllt:
 +
:$$h(t) \equiv 0 \hspace{0.25cm}{\rm f\ddot{u}r}\hspace{0.25cm} t < 0.$$
  
[[Datei:P_ID806__LZI_T_1_2_S3_neu.png | Akausales und kausales System|class=fit]]
+
Ist diese Bedingung nicht erfüllt, so nennt man das System&nbsp;  '''akausal'''.
 +
 +
$\text{Bitte beachten Sie:}$&nbsp; Jedes realisierbare System ist kausal. }}
  
{{Definition}}
 
Ein LZI–System bezeichnet man dann als '''kausal''', wenn die Impulsantwort $h(t)$ – also die Fourierrücktransformierte des Frequenzgangs $H(f)$ – folgende Bedingung erfüllt:
 
$$h(t) = 0 \hspace{0.15cm}{\rm f\ddot{u}r}\hspace{0.15cm} t < 0.$$
 
{{end}}
 
  
 +
[[Datei:P_ID806__LZI_T_1_2_S3_neu.png|right|frame|Akausales System&nbsp;  $\rm  A$&nbsp;  und kausales System&nbsp;  $\rm  B$|class=fit]]
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp;
 +
Die Grafik verdeutlicht den Unterschied zwischen dem akausalen System&nbsp;  $\rm A$&nbsp;  und dem kausalen System&nbsp;  $\rm  B$.
 +
*Beim System&nbsp; $\rm  A$&nbsp; beginnt die Wirkung früher&nbsp; $($bei &nbsp; $t =\hspace{0.05cm} –T)$&nbsp; als die Ursache&nbsp; $($Diracfunktion bei &nbsp; $t = 0)$, was natürlich in der Praxis nicht möglich ist.
 +
*Fast alle akausalen Systeme lassen sich unter Verwendung einer Laufzeit&nbsp; $\tau$&nbsp; in ein realisierbares kausales System überführen.
 +
*Zum Beispiel gilt mit&nbsp; $\tau = T$:
 +
:$$h_{\rm B}(t) = h_{\rm A}(t - T).$$}}
  
Das obige Bild lässt erkennen, dass nach dieser Definition das System B kausal ist im Gegensatz zum System A. Weiter ist anzumerken:
+
 
*Jedes realisierbare System ist kausal. Beim System A beginnt die Wirkung früher (bei $t = –T$) als die Ursache (Diracfunktion bei $t = 0$), was natürlich in der Praxis nicht möglich ist.
+
*Für kausale Systeme gelten alle bisher gemachten Aussagen ebenso wie für akausale Systeme.  
*Fast alle akausalen Systeme lassen sich unter Verwendung einer Laufzeit $\tau$ in ein realisierbares kausales System überführen. Zum Beispiel gilt mit $\tau = T$:
+
*Zur Beschreibung kausaler Systeme lassen sich jedoch einige spezifische Eigenschaften nutzen, wie im dritten Hauptkapitel &bdquo;Beschreibung kausaler realisierbarer Systeme&rdquo;&nbsp;  [[Lineare_zeitinvariante_Systeme|dieses Buches]]&nbsp; ausgeführt wird.
:$$h_{\rm B}(t) = h_{\rm A}(t - T).$$
+
 
*Für kausale Systeme gelten alle in diesem Kapitel getroffenen Aussagen ebenso wie für akausale Systeme. Zur Beschreibung kausaler Systeme lassen sich jedoch einige spezifische Eigenschaften nutzen, wie auf der Seite [[Lineare_zeitinvariante_Systeme/Laplace%E2%80%93Transformation_und_p%E2%80%93%C3%9Cbertragungsfunktion#Betrachtetes_Systemmodell|Betrachtetes Systemmodell]]  im dritten Kapitel dieses Buches ausgeführt wird.
+
 
*In diesem und dem nächsten Kapitel betrachten wir vorwiegend akausale Systeme, da deren mathematische Beschreibung anschaulicher ist. So ist der Frequenzgang $H_{\rm A}(f)$ reell, während für $H_{\rm B}(f)$ der zusätzliche Term ${\rm e}^{–{\rm j2π}fT}$ zu berücksichtigen ist.  
+
{{BlaueBox|TEXT=
 +
In diesem ersten und dem folgenden zweiten Hauptkapitel betrachten wir vorwiegend akausale Systeme, da deren mathematische Beschreibung meist einfacher ist.  
 +
*So ist der Frequenzgang&nbsp; $H_{\rm A}(f)$&nbsp; reell,  
 +
*während für&nbsp; $H_{\rm B}(f)$&nbsp; der zusätzliche Term&nbsp; ${\rm e}^{–{\rm j2π}f\hspace{0.05cm}T}$&nbsp; zu berücksichtigen ist. }}
  
  
  
 
==Berechnung des Ausgangssignals==
 
==Berechnung des Ausgangssignals==
Wir betrachten die folgende Aufgabenstellung: Bekannt sei das Eingangssignal $x(t)$ und der Frequenzgang $H(f)$. Gesucht ist das Ausgangssignal $y(t)$.  
+
<br>
 +
Wir betrachten die folgende Aufgabenstellung: &nbsp; Bekannt sei das Eingangssignal&nbsp; $x(t)$&nbsp; und der Frequenzgang&nbsp; $H(f)$. Gesucht ist das Ausgangssignal&nbsp; $y(t)$.  
 +
 
 +
[[Datei:P_ID809__LZI_T_1_2_S4_neu.png|right|frame|Zur Ermittlung der Ausgangsgrößen eines LZI–Systems|class=fit]]
 +
 
 +
Soll die Lösung im Frequenzbereich erfolgen, so muss zunächst aus dem gegebenen Eingangssignal&nbsp; $x(t)$&nbsp; durch&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|Fouriertransformation]]&nbsp;  das Spektrum $X(f)$ ermittelt und mit dem Frequenzgang&nbsp; $H(f)$&nbsp; multipliziert werden. Durch&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|Fourierrücktransformation]]  des Produkts kommt man dann zum Signal&nbsp; $y(t)$.
 +
 
 +
Hier nochmals der gesamte Rechengang zusammengefasst:
 +
:$${\rm 1.\,\, Schritt\hspace{-0.1cm} :}\hspace{0.5cm} X(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, x( t )\hspace{1.55cm}{\rm Eingangsspektrum},$$
 +
:$${\rm 2.\,\, Schritt\hspace{-0.1cm}:}\hspace{0.5cm}Y(f)= X(f) \cdot H(f) \hspace{0.82cm}{\rm Ausgangsspektrum},$$
 +
:$${\rm 3.\,\, Schritt\hspace{-0.1cm}:}\hspace{0.5cm} y(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, Y(f )\hspace{1.55cm}{\rm Ausgangssignal}.$$
 +
 
  
[[Datei:P_ID809__LZI_T_1_2_S4_neu.png | Zur Ermittlung der Ausgangsgrößen eines LZI–Systems|class=fit]]
+
Zum gleichen Ergebnis kommt man nach der Berechnung im Zeitbereich, indem man zunächst aus dem Frequenzgang&nbsp; $H(f)$&nbsp; mittels Fourierrücktransformation die Impulsantwort&nbsp; $h(t)$&nbsp; berechnet und anschließend die Faltungsoperation anwendet:
 +
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {x ( \tau  )}  \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
 +
*Die Ergebnisse sind bei beiden Vorgehensweisen identisch.
 +
*Zweckmäßigerweise sollte man dasjenige Verfahren auswählen, das mit weniger Rechenaufwand zum Ziel führt.
  
Soll die Lösung im Frequenzbereich erfolgen, so muss zunächst aus dem gegebenen Eingangssignal $x(t)$ durch Fouriertransformation  das Spektrum $X(f)$ ermittelt und mit dem Frequenzgang $H(f)$ multipliziert werden. Durch Fourierrücktransformation  des Produktes kommt man zum gesuchten Signal $y(t)$:
 
$${\rm 1.\,\, Schritt:}\hspace{0.5cm} X(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, x( t )\hspace{2.05cm}{\rm Eingangsspektrum},$$
 
$${\rm 2.\,\, Schritt:}\hspace{0.5cm}Y(f)= X(f) \cdot H(f) \hspace{1.32cm}{\rm Ausgangsspektrum},$$
 
$${\rm 3.\,\, Schritt:}\hspace{0.5cm} y(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, Y(f )\hspace{2.05cm}{\rm Ausgangssignal}.$$
 
  
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 3:}$&nbsp;
 +
Am Eingang eines Tiefpasses mit rechteckförmiger Impulsantwort&nbsp; $h(t)$&nbsp; der Breite&nbsp; $T$&nbsp; (siehe&nbsp;  [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich#Impulsantwort|$\text{Beispiel 1)}$]]&nbsp;  liegt ein Rechteckimpuls&nbsp; $x(t)$&nbsp; der Dauer&nbsp; $2T$.
 +
[[Datei:P_ID812__LZI_T_1_2_S4b_neu.png|right|frame|Trapezförmiger Ausgangsimpuls, da&nbsp; $x(t)$&nbsp; und&nbsp; $h(t)$&nbsp; rechteckförmig sind|class=fit]]
  
Zum gleichen Ergebnis kommt man nach der Berechnung im Zeitbereich, indem man zunächst aus dem Frequenzgang $H(f)$ mittels Fourierrücktransformation die Impulsantwort $h(t)$ berechnet und anschließend die Faltungsoperation anwendet:
+
In diesem Fall ist die direkte Berechnung im Zeitbereich günstiger: &nbsp;
$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {x ( \tau  )}  \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
+
*Die Faltung zweier unterschiedlich breiter Rechtecke&nbsp; $x(t)$&nbsp; und&nbsp; $h(t)$&nbsp; führt zum trapezförmigen Ausgangsimpuls&nbsp; $y(t)$.
Die Ergebnisse sind bei beiden Vorgehensweisen identisch. Zweckmäßigerweise sollte man dasjenige Verfahren auswählen, das mit weniger Rechenaufwand zum Ziel führt.
 
  
{{Beispiel}}
+
*Man erkennt die Tiefpasseigenschaft des Filters an der endlichen Flankensteilheit von&nbsp; $y(t)$.  
Am Eingang eines Spalt–Tiefpasses (siehe Beispiel  auf der ersten Seite dieses Kapitels) mit rechteckförmiger Impulsantwort der Breite $T$ liegt ein Rechteckimpuls $x(t)$ der Dauer $2T$ an.  
 
  
[[Datei:P_ID812__LZI_T_1_2_S4b_neu.png | Trapezförmiger Ausgangsimpuls, da x(t) und h(t) rechteckförmig sind|class=fit]]
+
*Die Impulshöhe&nbsp; $3\text{ V}$&nbsp; bleibt in diesem Beispiel erhalten, wegen&nbsp;
 +
:$$H(f = 0) = 1/T · T = 1.$$ }}
  
In diesem Fall ist die direkte Berechnung im Zeitbereich günstiger: Die Faltung zweier unterschiedlich breiter Rechtecke $x(t)$ und $h(t)$ führt zum trapezförmigen Ausgangsimpuls $y(t)$:
 
*Man erkennt die Tiefpasseigenschaft des Filters an der endlichen Flankensteilheit von $y(t)$.
 
*Die Impulshöhe 3 V bleibt in diesem Beispiel erhalten, weil $H(f = 0) = 1/T · T = 1$ ist.
 
{{end}}
 
  
 
==Sprungantwort==
 
==Sprungantwort==
Eine in der Praxis oft verwendete Eingangsfunktion $x(t)$ zur Messung von $H(f)$ ist die Sprungfunktion
+
<br>
$${\rm \gamma}(t) = \left\{ \begin{array}{l} \hspace{0.25cm}0  \\  0.5 \\ \hspace{0.25cm} 1 \\  \end{array} \right.\quad \quad\begin{array}{*{20}c} {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}{\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < 0,}  \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| = 0,}  \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| > 0.}  \\ \end{array}$$
+
{{BlaueBox|TEXT= 
 +
$\text{Definitionen:}$&nbsp;
 +
Eine in der Praxis oft verwendete Eingangsfunktion&nbsp; $x(t)$&nbsp; zur Messung von&nbsp; $H(f)$&nbsp; ist die&nbsp; '''Sprungfunktion'''
 +
:$${\rm \gamma}(t) = \left\{ \begin{array}{l} \hspace{0.25cm}0  \\  0.5 \\ \hspace{0.25cm} 1 \\  \end{array} \right.\quad \quad\begin{array}{*{20}c} \text{für}  \\  \text{für}\\  \text{für}  \\ \end{array}\begin{array}{*{20}c}{\vert \hspace{0.05cm} t\hspace{0.05cm} \vert < 0,}  \\ {\vert \hspace{0.05cm}t\hspace{0.05cm} \vert = 0,}  \\ {\vert \hspace{0.05cm} t \hspace{0.05cm} \vert > 0.}  \\ \end{array}$$
  
{{Definition}}
+
Die&nbsp; '''Sprungantwort'''&nbsp; $\sigma(t)$&nbsp; ist die Antwort des Systems, wenn man an den Eingang die Sprungfunktion&nbsp; $\gamma(t)$&nbsp; anlegt:  
Die Sprungantwort $\sigma(t)$ ist die Antwort des Systems, wenn man an den Eingang die Sprungfunktion $\gamma(t)$ anlegt:  
+
:$$x(t) = {\rm \gamma}(t)\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y(t)  = {\rm \sigma}(t).$$}}
$$x(t) = {\rm \gamma}(t)\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y(t)  = {\rm \sigma}(t).$$
 
{{end}}
 
  
  
Die Berechnung im Frequenzbereich ist etwas umständlich; man muss folgende Gleichung anwenden:  
+
Die Berechnung im Frequenzbereich wäre hier etwas umständlich, denn man müsste dann folgende Gleichung anwenden:  
$${\rm \sigma}(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, X(f ) \cdot H(f) =\left(\frac{1}{2}\cdot \delta(f) + \frac{1}{{\rm j}\cdot 2\pi f} \right) \cdot H(f).$$
+
:$${\rm \sigma}(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, X(f ) \cdot H(f) =\left({1}/{2}\cdot \delta(f) + \frac{1}{{\rm j}\cdot 2\pi f} \right) \cdot H(f).$$
  
 
Die Berechnung im Zeitbereich führt dagegen direkt zum Ergebnis:
 
Die Berechnung im Zeitbereich führt dagegen direkt zum Ergebnis:
$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau  )}  \hspace{0.1cm}{\rm d}\tau.$$
+
:$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau  )}  \hspace{0.1cm}{\rm d}\tau.$$
 
 
Bei kausalen Systemen gilt $h(\tau)$ = 0 für $\tau$ < 0, so dass die untere Integrationsgrenze in obiger Gleichung dann zu 0 gesetzt werden kann.
 
  
Das genannte Ergebnis ist auch aus folgendem Grunde einsichtig: Die Sprungfunktion $\gamma(t)$ hängt mit der Diracfunktion $\delta(t)$ wie folgt zusammen:
+
Bei kausalen Systemen gilt&nbsp; $h(\tau) = 0$&nbsp;  für&nbsp; $\tau \lt 0$, so dass die untere Integrationsgrenze in obiger Gleichung zu&nbsp; $\tau = 0$&nbsp; gesetzt werden kann.  
$${\rm \gamma}(t) = \int_{ - \infty }^{ t } {\delta ( \tau )}  \hspace{0.1cm}{\rm d}\tau.$$
 
Da wir Linearität vorausgesetzt haben und die Integration eine lineare Operation darstellt, gilt auch für das Ausgangssignal $\sigma(t)$ der entsprechende Zusammenhang entsprechend der vorletzten Gleichung.  
 
  
{{Beispiel}}
+
{{BlaueBox|TEXT= 
Die Grafik verdeutlicht den Sachverhalt für eine rechteckförmige Impulsantwort $h(\tau)$. Die Abszisse wurde in $\tau$ umbenannt. Blau eingezeichnet ist die Sprungfunktion $\gamma(\tau)$.
+
$\text{Beweis:}$&nbsp;
 +
Das genannte Ergebnis ist auch aus folgendem Grunde einsichtig:
 +
*Die Sprungfunktion&nbsp; $\gamma(t)$&nbsp; hängt mit der Diracfunktion&nbsp; $\delta(t)$&nbsp; wie folgt zusammen:
 +
:$${\rm \gamma}(t) = \int_{ - \infty }^{ t } {\delta ( \tau )}  \hspace{0.1cm}{\rm d}\tau.$$
 +
*Da wir Linearität vorausgesetzt haben und die Integration eine lineare Operation darstellt, gilt auch für das Ausgangssignal der entsprechende Zusammenhang:
 +
:$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau )}  \hspace{0.1cm}{\rm d}\tau.$$
 +
<div align="right">q.e.d.</div>}}
  
[[Datei:P_ID839__LZI_T_1_2_S5_neu.png  | Zur Berechnung der Sprungantwort bei rechteckförmiger Impulsantwort|class=fit]]
 
  
Durch Spiegelung und Verschiebung erhält man die rot gestrichelt eingezeichnete Funktion $\gamma(t \tau)$. Die rot hinterlegte Fläche gibt somit die Sprungantwort $\sigma(\tau)$ zum Zeitpunkt $\tau$ = t an.
+
[[Datei:P_ID839__LZI_T_1_2_S5_neu.png|right|frame|Berechnung der Sprungantwort bei rechteckförmiger Impulsantwort|class=fit]]
{{end}}
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 4:}$&nbsp;
 +
Die Grafik verdeutlicht den Sachverhalt für die Rechteck&ndash;Impulsantwort&nbsp; $h(\tau)$.
 +
* Die Abszisse wurde in&nbsp; $\tau$&nbsp; umbenannt.
 +
*Blau eingezeichnet ist die Sprungfunktion&nbsp; $\gamma(\tau)$.
 +
*Durch Spiegelung und Verschiebung erhält man&nbsp; $\gamma(t - \tau)$ &nbsp; &rArr; &nbsp; violett gestrichelte Kurve.  
 +
*Die rot hinterlegte Fläche gibt somit die Sprungantwort&nbsp; $\sigma(\tau)$&nbsp; zum Zeitpunkt&nbsp; $\tau = t$&nbsp; an.}}
  
  
==Aufgaben==
+
==Aufgaben zum Kapitel==
[[Aufgaben:1.3 Gemessene Sprungantwort]]
+
<br>
 +
[[Aufgaben:1.3 Gemessene Sprungantwort|Aufgabe 1.3: Gemessene Sprungantwort]]
  
[[Zusatzaufgaben:1.3 Exponentiell abfallendes h(t)]]
+
[[Aufgaben:Aufgabe_1.3Z:_Exponentiell_abfallende_Impulsantwort|Aufgabe 1.3Z: Exponentiell abfallende Impulsantwort]]
  
[[Aufgaben:1.4 Zum Tiefpass 2. Ordnung]]
+
[[Aufgaben:1.4 Zum Tiefpass 2. Ordnung|Aufgabe 1.4: Zum Tiefpass 2. Ordnung]]
  
[[Zusatzaufgaben:1.4 Alles rechteckförmig]]
+
[[Aufgaben:1.4Z Alles rechteckförmig|Aufgabe 1.4Z: Alles rechteckförmig]]
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 26. Mai 2021, 17:46 Uhr

Impulsantwort


Auf der Seite  Das erste Fourierintegral  im Buch „Signaldarstellung” wurde dargelegt, dass für jedes deterministische Signal  $x(t)$  mit Hilfe der Fouriertransformation eine Spektralfunktion  $X(f)$  angegeben werden kann. Oft bezeichnet man  $X(f)$  kurz als das Spektrum.

Alle Informationen über die Spektralfunktion sind aber auch bereits in der Zeitbereichsdarstellung enthalten, wenn auch nicht immer sofort erkennbar. Der gleiche Sachverhalt trifft für lineare zeitinvariante Systeme zu.

$\text{Definition:}$  Die wichtigste Beschreibungsgröße eines linearen zeitinvarianten Systems im Zeitbereich ist die Fourierrücktransformierte von  $H(f)$, die man als die  Impulsantwort  bezeichnet:

$$h(t) = \int_{-\infty}^{+\infty}H(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi ft}\hspace{0.15cm} {\rm d}f.$$


Hierzu ist Folgendes anzumerken:

  • Der Frequenzgang  $H(f)$  und die Impulsantwort  $h(t)$  sind äquivalente Beschreibungsgrößen, die genau die gleichen Informationen über das LZI–System beinhalten.
  • Verwendet man das diracförmige Eingangssignal  $x(t) = δ(t)$, so ist  $X(f) = 1$  zu setzen und es gilt  $Y(f) = H(f)$  bzw.  $y(t) = h(t)$.
  • Die Bezeichnung „Impulsantwort” spiegelt diese Aussage wieder:   $h(t)$  ist die Antwort des Systems auf einen (Dirac-)Impuls am Eingang.
  • Die obige Definition lässt erkennen, dass jede Impulsantwort die Einheit  $\text{Hz = 1/s}$  besitzen muss.


Rechteckförmige Impulsantwort und zugehöriges Betragsspektrum

$\text{Beispiel 1:}$  Die Impulsantwort  $h(t)$  des so genannten Spalt–Tiefpasses  ist über eine Zeitdauer  $T$  hinweg konstant und außerhalb dieses Zeitintervalls gleich Null.

  • Der dazugehörige Amplitudengang als der Betrag des Frequenzgangs ist 
$$\vert H(f)\vert = \vert {\rm si}(\pi fT)\vert .$$
  • Die Fläche über  $h(t)$  ist gleich  $H(f = 0) = 1$. Daraus folgt:  
        Im Bereich  $ 0 < t < T$  muss die Impulsantwort gleich  $1/T$  sein.
  • Der Phasenverlauf ergibt sich zu
$$b(f) = \left\{ \begin{array}{l} \hspace{0.25cm}\pi/T \\ - \pi/T \\ \end{array} \right.\quad \quad\begin{array}{*{20}c} \text{für} \\ \text{für} \\ \end{array}\begin{array}{*{20}c}{\left \vert \hspace{0.05cm} f\hspace{0.05cm} \right \vert > 0,} \\{\vert \hspace{0.05cm} f \hspace{0.05cm} \vert < 0.} \\\end{array}$$
  • Bei symmetrischem  $h(t)$  um  $t = 0$  (also akausal) wäre  $b(f)=0$.

Einige Gesetze der Fouriertransformation


Die  Gesetzmäßigkeiten der Fouriertransformation  wurden bereits im Buch „Signaldarstellung” ausführlich dargelegt.

Hier folgt nun eine kurze Zusammenfassung, wobei  $H(f)$  den Frequenzgang eines LZI–Systems beschreibt und dessen Fourierrücktransformierte  $h(t)$  die Impulsantwort ist. Diese Gesetzmäßigkeiten werden in den  Aufgaben  zu diesem Kapitel „Systemtheoretische Grundlagen” häufiger angewendet.

Wir verweisen hier auch auf das Lernvideo  Gesetzmäßigkeiten der Fouriertransformation.

Bei den folgenden Gleichungen wird das Kurzsymbol der Fouriertransformation benutzt. Der ausgefüllte Kreis kennzeichnet den Spektralbereich, der weiße den Zeitbereich.

  • Multiplikation  mit einem konstanten Faktor:
$$k \cdot H(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,k \cdot h(t).$$
Bei  $k \lt 1$  spricht man von einer Dämpfung, während  $k \gt 1$  für eine Verstärkung steht.


  • Ähnlichkeitssatz:
$$H({f}/{k})\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,|k| \cdot h(k\cdot t).$$
  1.   Dieser besagt:   Eine Stauchung  $(k < 1)$  des Frequenzgangs führt zu einer breiteren und niedrigeren Impulsantwort.
  2.   Durch Streckung  $(k > 1)$  von  $H(f)$  wird  $h(t)$  schmaler und höher.


  • Verschiebungssatz  im Frequenzbereich und im Zeitbereich:
$$H(f - f_0) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t )\cdot {\rm e}^{\hspace{0.05cm}{\rm j}2\pi f_0 t},\hspace{0.9cm} H(f) \cdot {\rm e}^{-{\rm j}2\pi ft_0}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h( t- t_0 ).$$
  1.   Eine Verschiebung um  $t_0$  (Laufzeit) führt also im Frequenzbereich zu der Multiplikation mit einer komplexen Exponentialfunktion.
  2.   Der Amplitudengang  $|H(f)|$  wird dadurch nicht verändert.


  • Differentiationssatz  im Frequenzbereich und im Zeitbereich:
$$\frac{1}{{{\rm j}2\pi }} \cdot \frac{{{\rm d}H( f )}}{{{\rm d}f}} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,- t \cdot h( t ),\hspace{0.9cm} {\rm j}\cdot 2\pi f \cdot H( f ){}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \frac{{{\rm d}h( t )}}{{\rm d}t}.$$
Ein differenzierendes Element im LZI–System führt im Frequenzbereich zu einer Multiplikation mit  ${\rm j}\cdot 2πf$  und damit unter Anderem zu einer Phasendrehung um  $90^{\circ}$.


Kausale Systeme


$\text{Definition:}$  Ein LZI–System bezeichnet man dann als  kausal, wenn die Impulsantwort  $h(t)$  – also die Fourierrücktransformierte des Frequenzgangs  $H(f)$  – folgende Bedingung erfüllt:

$$h(t) \equiv 0 \hspace{0.25cm}{\rm f\ddot{u}r}\hspace{0.25cm} t < 0.$$

Ist diese Bedingung nicht erfüllt, so nennt man das System  akausal.

$\text{Bitte beachten Sie:}$  Jedes realisierbare System ist kausal.


Akausales System  $\rm A$  und kausales System  $\rm B$

$\text{Beispiel 2:}$  Die Grafik verdeutlicht den Unterschied zwischen dem akausalen System  $\rm A$  und dem kausalen System  $\rm B$.

  • Beim System  $\rm A$  beginnt die Wirkung früher  $($bei   $t =\hspace{0.05cm} –T)$  als die Ursache  $($Diracfunktion bei   $t = 0)$, was natürlich in der Praxis nicht möglich ist.
  • Fast alle akausalen Systeme lassen sich unter Verwendung einer Laufzeit  $\tau$  in ein realisierbares kausales System überführen.
  • Zum Beispiel gilt mit  $\tau = T$:
$$h_{\rm B}(t) = h_{\rm A}(t - T).$$


  • Für kausale Systeme gelten alle bisher gemachten Aussagen ebenso wie für akausale Systeme.
  • Zur Beschreibung kausaler Systeme lassen sich jedoch einige spezifische Eigenschaften nutzen, wie im dritten Hauptkapitel „Beschreibung kausaler realisierbarer Systeme”  dieses Buches  ausgeführt wird.


In diesem ersten und dem folgenden zweiten Hauptkapitel betrachten wir vorwiegend akausale Systeme, da deren mathematische Beschreibung meist einfacher ist.

  • So ist der Frequenzgang  $H_{\rm A}(f)$  reell,
  • während für  $H_{\rm B}(f)$  der zusätzliche Term  ${\rm e}^{–{\rm j2π}f\hspace{0.05cm}T}$  zu berücksichtigen ist.


Berechnung des Ausgangssignals


Wir betrachten die folgende Aufgabenstellung:   Bekannt sei das Eingangssignal  $x(t)$  und der Frequenzgang  $H(f)$. Gesucht ist das Ausgangssignal  $y(t)$.

Zur Ermittlung der Ausgangsgrößen eines LZI–Systems

Soll die Lösung im Frequenzbereich erfolgen, so muss zunächst aus dem gegebenen Eingangssignal  $x(t)$  durch  Fouriertransformation  das Spektrum $X(f)$ ermittelt und mit dem Frequenzgang  $H(f)$  multipliziert werden. Durch  Fourierrücktransformation des Produkts kommt man dann zum Signal  $y(t)$.

Hier nochmals der gesamte Rechengang zusammengefasst:

$${\rm 1.\,\, Schritt\hspace{-0.1cm} :}\hspace{0.5cm} X(f)\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, x( t )\hspace{1.55cm}{\rm Eingangsspektrum},$$
$${\rm 2.\,\, Schritt\hspace{-0.1cm}:}\hspace{0.5cm}Y(f)= X(f) \cdot H(f) \hspace{0.82cm}{\rm Ausgangsspektrum},$$
$${\rm 3.\,\, Schritt\hspace{-0.1cm}:}\hspace{0.5cm} y(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, Y(f )\hspace{1.55cm}{\rm Ausgangssignal}.$$


Zum gleichen Ergebnis kommt man nach der Berechnung im Zeitbereich, indem man zunächst aus dem Frequenzgang  $H(f)$  mittels Fourierrücktransformation die Impulsantwort  $h(t)$  berechnet und anschließend die Faltungsoperation anwendet:

$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {x ( \tau )} \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
  • Die Ergebnisse sind bei beiden Vorgehensweisen identisch.
  • Zweckmäßigerweise sollte man dasjenige Verfahren auswählen, das mit weniger Rechenaufwand zum Ziel führt.


$\text{Beispiel 3:}$  Am Eingang eines Tiefpasses mit rechteckförmiger Impulsantwort  $h(t)$  der Breite  $T$  (siehe  $\text{Beispiel 1)}$  liegt ein Rechteckimpuls  $x(t)$  der Dauer  $2T$.

Trapezförmiger Ausgangsimpuls, da  $x(t)$  und  $h(t)$  rechteckförmig sind

In diesem Fall ist die direkte Berechnung im Zeitbereich günstiger:  

  • Die Faltung zweier unterschiedlich breiter Rechtecke  $x(t)$  und  $h(t)$  führt zum trapezförmigen Ausgangsimpuls  $y(t)$.
  • Man erkennt die Tiefpasseigenschaft des Filters an der endlichen Flankensteilheit von  $y(t)$.
  • Die Impulshöhe  $3\text{ V}$  bleibt in diesem Beispiel erhalten, wegen 
$$H(f = 0) = 1/T · T = 1.$$


Sprungantwort


$\text{Definitionen:}$  Eine in der Praxis oft verwendete Eingangsfunktion  $x(t)$  zur Messung von  $H(f)$  ist die  Sprungfunktion

$${\rm \gamma}(t) = \left\{ \begin{array}{l} \hspace{0.25cm}0 \\ 0.5 \\ \hspace{0.25cm} 1 \\ \end{array} \right.\quad \quad\begin{array}{*{20}c} \text{für} \\ \text{für}\\ \text{für} \\ \end{array}\begin{array}{*{20}c}{\vert \hspace{0.05cm} t\hspace{0.05cm} \vert < 0,} \\ {\vert \hspace{0.05cm}t\hspace{0.05cm} \vert = 0,} \\ {\vert \hspace{0.05cm} t \hspace{0.05cm} \vert > 0.} \\ \end{array}$$

Die  Sprungantwort  $\sigma(t)$  ist die Antwort des Systems, wenn man an den Eingang die Sprungfunktion  $\gamma(t)$  anlegt:

$$x(t) = {\rm \gamma}(t)\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y(t) = {\rm \sigma}(t).$$


Die Berechnung im Frequenzbereich wäre hier etwas umständlich, denn man müsste dann folgende Gleichung anwenden:

$${\rm \sigma}(t)\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, X(f ) \cdot H(f) =\left({1}/{2}\cdot \delta(f) + \frac{1}{{\rm j}\cdot 2\pi f} \right) \cdot H(f).$$

Die Berechnung im Zeitbereich führt dagegen direkt zum Ergebnis:

$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau )} \hspace{0.1cm}{\rm d}\tau.$$

Bei kausalen Systemen gilt  $h(\tau) = 0$  für  $\tau \lt 0$, so dass die untere Integrationsgrenze in obiger Gleichung zu  $\tau = 0$  gesetzt werden kann.

$\text{Beweis:}$  Das genannte Ergebnis ist auch aus folgendem Grunde einsichtig:

  • Die Sprungfunktion  $\gamma(t)$  hängt mit der Diracfunktion  $\delta(t)$  wie folgt zusammen:
$${\rm \gamma}(t) = \int_{ - \infty }^{ t } {\delta ( \tau )} \hspace{0.1cm}{\rm d}\tau.$$
  • Da wir Linearität vorausgesetzt haben und die Integration eine lineare Operation darstellt, gilt auch für das Ausgangssignal der entsprechende Zusammenhang:
$${\rm \sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau )} \hspace{0.1cm}{\rm d}\tau.$$
q.e.d.


Berechnung der Sprungantwort bei rechteckförmiger Impulsantwort

$\text{Beispiel 4:}$  Die Grafik verdeutlicht den Sachverhalt für die Rechteck–Impulsantwort  $h(\tau)$.

  • Die Abszisse wurde in  $\tau$  umbenannt.
  • Blau eingezeichnet ist die Sprungfunktion  $\gamma(\tau)$.
  • Durch Spiegelung und Verschiebung erhält man  $\gamma(t - \tau)$   ⇒   violett gestrichelte Kurve.
  • Die rot hinterlegte Fläche gibt somit die Sprungantwort  $\sigma(\tau)$  zum Zeitpunkt  $\tau = t$  an.


Aufgaben zum Kapitel


Aufgabe 1.3: Gemessene Sprungantwort

Aufgabe 1.3Z: Exponentiell abfallende Impulsantwort

Aufgabe 1.4: Zum Tiefpass 2. Ordnung

Aufgabe 1.4Z: Alles rechteckförmig