Lineare zeitinvariante Systeme/Nichtlineare Verzerrungen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 95: Zeile 95:
  
 
Aus der Grafik erkennt man weiter, dass das rot skizzierte Signal $y(t)$ näherungsweise gleich dem grün gezeichneten Signal $α · x(t)$ mit $α = sin(1) ≈$ 5/6 ist.  
 
Aus der Grafik erkennt man weiter, dass das rot skizzierte Signal $y(t)$ näherungsweise gleich dem grün gezeichneten Signal $α · x(t)$ mit $α = sin(1) ≈$ 5/6 ist.  
 +
  
 
Definiert man das Fehlersignal $ε_1(t) = y(t) – α · x(t)$, so ergibt sich mit dessen Leistung
 
Definiert man das Fehlersignal $ε_1(t) = y(t) – α · x(t)$, so ergibt sich mit dessen Leistung
Zeile 101: Zeile 102:
 
$$\rho_{v 1} = \frac {\alpha^2 \cdot P_x}{P_{\varepsilon 1}} = \frac {(5/6)^2 \cdot 0.375}{1.48 \cdot 10^{-3}}\approx
 
$$\rho_{v 1} = \frac {\alpha^2 \cdot P_x}{P_{\varepsilon 1}} = \frac {(5/6)^2 \cdot 0.375}{1.48 \cdot 10^{-3}}\approx
 
  176 = \frac{1}{K^2}\hspace{0.05cm}.$$
 
  176 = \frac{1}{K^2}\hspace{0.05cm}.$$
 +
  
 
Dagegen ist das SNR deutlich geringer, wenn man den Dämpfungsfaktor $α$ nicht berücksichtigt, das heißt, wenn man vom Fehlersignal $ε_2 = y(t) – x(t)$ ausgeht:
 
Dagegen ist das SNR deutlich geringer, wenn man den Dämpfungsfaktor $α$ nicht berücksichtigt, das heißt, wenn man vom Fehlersignal $ε_2 = y(t) – x(t)$ ausgeht:
Zeile 107: Zeile 109:
 
  \hspace{0.3cm}\rho_{v 2} = \frac { P_x}{P_{\varepsilon 2}}= \frac {0.375}{6.3 \cdot 10^{-3}}
 
  \hspace{0.3cm}\rho_{v 2} = \frac { P_x}{P_{\varepsilon 2}}= \frac {0.375}{6.3 \cdot 10^{-3}}
 
  \approx 60 \hspace{0.05cm}.$$
 
  \approx 60 \hspace{0.05cm}.$$
 +
{{end}}
  
  

Version vom 5. Mai 2016, 15:47 Uhr

Eigenschaften nichtlinearer Systeme

Wir gehen in diesem Abschnitt von folgender Konstellation aus:

Beschreibung eines nichtlinearen Systems

Die Systembeschreibung mittels des Frequenzgangs $H(f)$ und/oder der Impulsantwort $h(t)$ ist nur bei einem LZI–System möglich. Beinhaltet aber das System auch nichtlineare Komponenten, so sind kein Frequenzgang und auch keine Impulsantwort angebbar und ein Beobachter wird Folgendes feststellen:

  • Die Übertragungseigenschaften sind nun auch von der Größe des Eingangssignals abhängig. Führt $x(t)$ zum Ausgangssignal $y(t)$, so kann daraus nun nicht mehr geschlossen werden, dass sich beim Eingangssignal $K · x(t)$ stets das Signal $K · y(t)$ ergeben wird.
  • Das bedeutet gleichzeitig, dass das Superpositionsprinzip nicht mehr anwendbar ist. Das bedeutet, dass aus den beiden Korrespondenzen $x_1(t) ⇒ y_1(t)$ und $x_2(t) ⇒ y_2(t)$ nicht auf das Übertragungsverhalten $x_1(t) + x_2(t) ⇒ y_1(t) + y_2(t)$ geschlossen werden kann.
  • Durch Nichtlinearitäten entstehen neue Frequenzen. Ist $x(t)$ eine harmonische Schwingung mit der Frequenz $f_0$, so beinhaltet das Ausgangssignal $y(t)$ auch Anteile bei Vielfachen von $f_0$. Diese bezeichnet man in der Nachrichtentechnik als Oberwellen.
  • Ein Nachrichtensignal beinhaltet in der Praxis meist sehr viele Frequenzanteile. Die Oberwellen der niederfrequenten Signalanteile fallen nun in den Bereich höherfrequenter Nutzanteile. Dadurch ergeben sich nichtreversible Signalverfälschungen.


Bevor am Ende der Seite dieses Abschnitts Beispiele für das Auftreten nichtlinearer Verzerrungen in der Praxis genannt werden, soll das Problem der nichtlinearen Verzerrungen mathematisch erfasst werden. Wir setzen dabei voraus, dass das System kein Gedächtnis besitzt, so dass der Ausgangswert $y = y(t_0)$ nur vom momentanen Eingangswert $x = x(t_0)$ abhängt, nicht aber vom Signalverlauf $x(t)$ für $t$ < $t_0$.

Beschreibung nichtlinearer Systeme (1)

Definition: Ein System bezeichnet man als nichtlinear, wenn zu allen Zeiten zwischen dem Signalwert $x = x(t)$ am Eingang und dem Ausgangssignalwert $y = y(t)$ der folgende Zusammenhang besteht: $$y = g(x) \ne {\rm const.} \cdot x.$$ Man bezeichnet den Verlauf $y = g(x)$ als die nichtlineare Kennlinie des Systems.


In der Grafik ist beispielhaft in grün die nichtlineare Kennlinie $y = g(x)$ zu erkennen, die entsprechend dem ersten Viertel einer Sinusfunktion geformt ist. In roter Farbe gestrichelt erkennt man den Sonderfall eines linearen Systems mit der Kennlinie $y = x$.

Nichtlineare Kennlinie

Da eine jede solche Kennlinie um den Arbeitspunkt in eine Taylorreihe entwickelt werden kann, lässt sich das Ausgangssignal auch wie folgt darstellen: $$y(t) = \sum_{i=0}^{\infty}\hspace{0.1cm} c_i \cdot x^{i}(t) = c_0 + c_1 \cdot x(t) + c_2 \cdot x^{2}(t) + c_3 \cdot x^{3}(t) + \hspace{0.05cm}...$$ Besitzt $x(t)$ eine Einheit – beispielsweise „Volt”, so sind auch die Koeffizienten der Taylorreihe mit Einheiten anzusetzen und zwar mit unterschiedlichen: $c_0$ mit „V”, $c_1$ ohne Einheit, $c_2$ mit „1/V”, usw..

In obiger Grafik ist der Arbeitspunkt identisch mit dem Nullpunkt und es gilt $c_0 = 0$.

Beschreibung nichtlinearer Systeme (2)

Beispiel: Die auf der ersten Seite dieses Abschnitts aufgelisteten Eigenschaften nichtlinearer Systeme werden hier anhand der Kennlinie $y = g(x) = sin(x)$ verdeutlicht, die in der Mitte der Grafik dargestellt ist. Ein Gleichsignal $x(t) =$ 0.5 hat hier das konstante Ausgangssignal $y(t) =$ 0.479 zur Folge, während sich mit $x(t) =$ 1 das Ausgangssignal zu $y(t) =$ 0.841 $≠$ 2 · 0.479 ergibt. Durch eine Verdopplung von $x(t)$ wird hier also nicht auch gleichzeitig $y(t)$ verdoppelt, und somit das Superpositionsprinzip verletzt.

Auswirkungen einer nichtlinearen Kennlinie

Die äußeren Bilder zeigen – jeweils in blau – cosinusförmige Eingangssignale $x(t)$ mit unterschiedlichen Amplituden $A$ und in rot die dazugehörigen verzerrten Ausgangssignale $y(t)$. Man erkennt die Zunahme der nichtlinearen Verzerrungen mit größer werdender Amplitude, die durch den auf der nächsten Seite definierten Klirrfaktor K quantifiziert werden.

Das rechte obere Diagramm für $A =$ 1.5 zeigt eindeutig, dass nun $y(t)$ nicht mehr cosinusförmig ist; die Halbwellen verlaufen runder als bei der Cosinusfunktion. Aber auch für $A =$ 0.5 und $A =$ 1.0 weichen – wenn auch weniger stark – die Signale $y(t)$ aufgrund von Oberwellen von der Cosinusform ab. Das heißt, es entstehen neue Frequenzanteile bei Vielfachen der Cosinusfrequenz $f_0$.

Im rechten unteren Bild wird durch einen zusätzlichen Gleichanteil die Kennlinie nur einseitig betrieben. Man erkennt nun auch eine Unsymmetrie im Signal $y(t)$. Die untere Halbwelle verläuft spitzförmiger als die obere. Der Klirrfaktor beträgt hier etwa 22%.

Der Klirrfaktor (1)

Zur quantitativen Erfassung der nichtlinearen Verzerrungen gehen wir hier von einem cosinusförmigen Eingangssignal $x(t)$ mit der Amplitude $A_x$ aus.

Zur Definition des Klirrfaktors

Das Ausgangssignal beinhaltet aufgrund der nichtlinearen Verzerrungen Oberwellen und es gilt allgemein: $$y(t) = A_0 + A_1 \cdot \cos(\omega_0 t) + A_2 \cdot \cos(2\omega_0 t) + A_3 \cdot \cos(3\omega_0 t) + \hspace{0.05cm}...$$

Definition: Mit diesen Amplitudenwerten $A_i$ lautet die Gleichung für den Klirrfaktor: $$K = \frac {\sqrt{A_2^2+ A_3^2+ A_4^2+ \hspace{0.05cm}...}}{A_1} = \sqrt{K_2^2+ K_3^2+K_4^2+ \hspace{0.05cm}...}.$$ In der zweiten Gleichung bezeichnet $K_2 = A_2/A_1$ den Klirrfaktor zweiter Ordnung, $K_3 = A_3/A_1$ den Klirrfaktor dritter Ordnung usw..


Ausdrücklich wird darauf hingewiesen, dass bei der Berechnung des Klirrfaktors die Amplitude $A_x$ des Eingangssignals nicht berücksichtigt wird. Auch ein entstehender Gleichanteil $A_0$ bleibt unberücksichtigt.

Im Beispiel im letzten Abschnitt sind die Klirrfaktoren mit Werten zwischen 1% und ca. 20% angegeben. Diese Werte liegen deutlich über den Klirrfaktoren preisgünstiger Audioanlagen (< 0.1%). Bei HiFi–Geräten wird auf die Linearität besonderer Wert gelegt und ein sehr kleiner Klirrfaktor schlägt sich auch im Preis nieder.

Ein Vergleich mit der Seite Berücksichtigung von Dämpfung und Laufzeit in Kapitel 2.1 lässt erkennen, dass für den wichtigen Sonderfall eines cosinusförmigem Eingangssignals das dort definierte Signal–zu–Verzerrungs–Leistungsverhältnis gleich dem Kehrwert des Klirrfaktors zum Quadrat ist: $$\rho_{\rm V} = \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V}} = \left(\frac{ A_{1}}{A_x} \right)^2 \cdot \frac{ \frac{1}{2} \cdot A_{x}^2}{\frac{1}{2} \cdot (A_{2}^2 + A_{3}^2 + A_{4}^2 + \hspace{0.05cm}...) } = \frac{1}{K^2}\hspace{0.05cm}.$$

Der Klirrfaktor (2)

Einfluss einer Nichtlinearität auf ein Cosinussignal

Beispiel: Wir betrachten nun ein mittelwertbehaftetes Cosinussignal: $$x(t) = \frac{1}{2} + \frac{1}{2}\cdot \cos (\omega_0 \cdot t).$$

Dieses nimmt Werte zwischen 0 und 1 an und ist als blaue Kurve gezeichnet. Die Leistung dieses Signals ergibt sich zu $P_x =$ 1/4 + 1/8 = 0.375. Gibt man dieses Signal auf eine Nichtlinearität mit der Kennlinie $$y=g(x) = \sin(x) \approx x - \frac{x^3}{6} \hspace{0.05cm},$$ so lautet das Ausgangssignal: $$y(t) = A_0 + A_1 \cdot \cos (\omega_0 \cdot t)+ A_2 \cdot \cos (2\omega_0 \cdot t)+ A_3 \cdot \cos (3\omega_0 \cdot t)\hspace{0.05cm},$$ $$A_0 = \frac {86}{192},\hspace{0.3cm}A_1 = \frac {81}{192},\hspace{0.3cm}A_2 = -\frac {6}{192},\hspace{0.3cm}A_3 = -\frac {1}{192}\hspace{0.05cm}.$$

Zur Berechnung dieser Fourierkoeffizienten wurden die trigonometrischen Umformungen für $cos²(α)$ und $cos³(α)$ verwendet. Der Klirrfaktor ergibt sich für dieses Signal zu $$K = \frac {\sqrt{A_2^{\hspace{0.05cm}2} + A_3^{\hspace{0.05cm}2}}}{A_1}\approx 7.5\%\hspace{0.05cm}.$$

Aus der Grafik erkennt man weiter, dass das rot skizzierte Signal $y(t)$ näherungsweise gleich dem grün gezeichneten Signal $α · x(t)$ mit $α = sin(1) ≈$ 5/6 ist.


Definiert man das Fehlersignal $ε_1(t) = y(t) – α · x(t)$, so ergibt sich mit dessen Leistung $$P_{\varepsilon 1} = \frac {(80-86)^2}{192^2} + \frac {6^2 + (-1)^2}{2 \cdot 192^2}\approx 1.48 \cdot 10^{-3}$$ für das Signal–zu–Stör–Leistungsverhältnis: $$\rho_{v 1} = \frac {\alpha^2 \cdot P_x}{P_{\varepsilon 1}} = \frac {(5/6)^2 \cdot 0.375}{1.48 \cdot 10^{-3}}\approx 176 = \frac{1}{K^2}\hspace{0.05cm}.$$


Dagegen ist das SNR deutlich geringer, wenn man den Dämpfungsfaktor $α$ nicht berücksichtigt, das heißt, wenn man vom Fehlersignal $ε_2 = y(t) – x(t)$ ausgeht: $$P_{\varepsilon 2} = \frac {(86-96)^2}{192^2} + \frac {(81-96)^2 + 6^2 + (-1)^2}{2 \cdot 192^2}\approx 6.3 \cdot 10^{-3}$$ $$\Rightarrow \hspace{0.3cm}\rho_{v 2} = \frac { P_x}{P_{\varepsilon 2}}= \frac {0.375}{6.3 \cdot 10^{-3}} \approx 60 \hspace{0.05cm}.$$