Lineare zeitinvariante Systeme/Klassifizierung der Verzerrungen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 1: Zeile 1:
+
{{FirstPage}}
{{Header
+
{{Header|
|Untermenü=Signalverzerrungen und Entzerrung
+
Untermenü=Signalverzerrungen und Entzerrung
|Letzte Seite=Kapitelüberblick
 
 
|Nächste Seite=Nichtlineare Verzerrungen
 
|Nächste Seite=Nichtlineare Verzerrungen
 
}}
 
}}
 +
==Voraussetzungen für Kapitel 2==
 +
Wir betrachten im Folgenden ein System, an dessen Eingang das Signal $x(t)$ mit zugehörigem Spektrum $X(f)$ anliegt. Das Ausgangssignal bezeichnen wir mit $y(t)$ und dessen Spektrum mit $Y(f).$
  
 +
[[Datei:P_ID873__LZI_T_2_1_S1_neu.png|400px | Beschreibung eines linearen Systems]]
 +
 +
 +
Der mit „System” bezeichnete Block kann ein Teil einer elektrischen Schaltung sein oder ein komplettes Übertragungssystem, bestehend aus Sender, Kanal und Empfänger.
 +
 +
 +
Für das gesamte Kapitel 2 soll gelten:
 +
*Das System sei zeitinvariant. Führt das Eingangssignal $x(t)$ zum Signal $y(t)$, so wird ein späteres Eingangssignal gleicher Form, nämlich $x(t – t_0)$, das Signal $y(t – t_0)$ zur Folge haben.
 +
*Es werden keine Rauschprozesse betrachtet, die bei realen Systemen stets vorhanden sind. Zur Beschreibung dieser Phänomene wird auf das Buch „Stochastische Signaltheorie” verwiesen.
 +
*Es werden keine Detailkenntnisse über das System vorausgesetzt. Alle Systemeigenschaften werden im Folgenden allein aus den Signalen $x(t)$ und $y(t)$ bzw. deren Spektren abgeleitet.
 +
Insbesondere seien vorerst keine Festlegungen hinsichtlich der Linearität gegeben. Das „System” kann linear (Voraussetzung für die Anwendung des Superpositionsprinzips) oder nichtlinear sein.
 +
*Aus einem einzigen Testsignal $x(t)$ und dessen Antwort $y(t)$ sind nicht alle Systemeigenschaften erkennbar. Daher müssen ausreichend viele Testsignale zur Bewertung herangezogen werden.
 +
 +
Nachfolgend werden wir solche Systeme näher klassifizieren.
  
  
Hier Wiki-Artikel einfügen.
 
  
  

Version vom 5. Mai 2016, 11:39 Uhr

  • [[Lineare zeitinvariante Systeme/{{{Vorherige Seite}}} | Vorherige Seite]]
  • Nächste Seite
  • [[Lineare zeitinvariante Systeme/{{{Vorherige Seite}}} | Vorherige Seite]]
  • Nächste Seite

Voraussetzungen für Kapitel 2

Wir betrachten im Folgenden ein System, an dessen Eingang das Signal $x(t)$ mit zugehörigem Spektrum $X(f)$ anliegt. Das Ausgangssignal bezeichnen wir mit $y(t)$ und dessen Spektrum mit $Y(f).$

Beschreibung eines linearen Systems


Der mit „System” bezeichnete Block kann ein Teil einer elektrischen Schaltung sein oder ein komplettes Übertragungssystem, bestehend aus Sender, Kanal und Empfänger.


Für das gesamte Kapitel 2 soll gelten:

  • Das System sei zeitinvariant. Führt das Eingangssignal $x(t)$ zum Signal $y(t)$, so wird ein späteres Eingangssignal gleicher Form, nämlich $x(t – t_0)$, das Signal $y(t – t_0)$ zur Folge haben.
  • Es werden keine Rauschprozesse betrachtet, die bei realen Systemen stets vorhanden sind. Zur Beschreibung dieser Phänomene wird auf das Buch „Stochastische Signaltheorie” verwiesen.
  • Es werden keine Detailkenntnisse über das System vorausgesetzt. Alle Systemeigenschaften werden im Folgenden allein aus den Signalen $x(t)$ und $y(t)$ bzw. deren Spektren abgeleitet.

Insbesondere seien vorerst keine Festlegungen hinsichtlich der Linearität gegeben. Das „System” kann linear (Voraussetzung für die Anwendung des Superpositionsprinzips) oder nichtlinear sein.

  • Aus einem einzigen Testsignal $x(t)$ und dessen Antwort $y(t)$ sind nicht alle Systemeigenschaften erkennbar. Daher müssen ausreichend viele Testsignale zur Bewertung herangezogen werden.

Nachfolgend werden wir solche Systeme näher klassifizieren.