Digitalsignalübertragung/Optimale Empfängerstrategien: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 212: Zeile 212:
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$  In der Grafik sind die fortlaufenden Integralwerte dargestellt, wobei vom tatsächlich gesendeten Signal $s_5(t)$ und dem rauschfreien Fall ausgegangen wird. Das entsprechende bipolare Äquivalent wurde im Beispiel 2 betrachtet.  
+
$\text{Beispiel 4:}$  In der Grafik sind die fortlaufenden Integralwerte dargestellt, wobei vom tatsächlich gesendeten Signal $s_5(t)$ und dem rauschfreien Fall ausgegangen wird. Das entsprechende bipolare Äquivalent wurde im [[Digitalsignalübertragung/Optimale_Empfängerstrategien#Darstellung_des_Korrelationsempf.C3.A4ngers_im_Baumdiagramm|Beispiel 2]] betrachtet.  
  
 
[[Datei:Dig_T_3_7_S5D_version2.png|right|frame|Baumdiagramm des Korrelationsempfängers (unipolar)|class=fit]]
 
[[Datei:Dig_T_3_7_S5D_version2.png|right|frame|Baumdiagramm des Korrelationsempfängers (unipolar)|class=fit]]
Zeile 225: Zeile 225:
 
Das bedeutet:
 
Das bedeutet:
 
*Bei einem Vergleich hinsichtlich der maximalen $I_i$–Werte wären die Quellensymbolfolgen $Q_5$ und $Q_7$ gleichwertig.  
 
*Bei einem Vergleich hinsichtlich der maximalen $I_i$–Werte wären die Quellensymbolfolgen $Q_5$ und $Q_7$ gleichwertig.  
*Bei Berücksichtigung der unterschiedlichen Energien$(E_5 = 2, \ E_7 = 3)$ ist dagegen $W_5 > W_7$.
+
*Berücksichtigt man die unterschiedlichen Energien$(E_5 = 2, \ E_7 = 3)$, so  wird dagegen wegen $W_5 > W_7$ eindeutig für die Folge $Q_5$ entschieden.
 
*Der Korrelationsempfänger gemäß $W_i = I_i- E_i/2$ entscheidet also auch bei unipolarer Signalisierung richtig auf $s(t) = s_5(t)$. }}<br>
 
*Der Korrelationsempfänger gemäß $W_i = I_i- E_i/2$ entscheidet also auch bei unipolarer Signalisierung richtig auf $s(t) = s_5(t)$. }}<br>
  

Version vom 11. Juni 2018, 13:35 Uhr

Betrachtetes Szenario und Voraussetzungen


Alle bisher beschriebenen Digitalempfänger treffen stets symbolweise Entscheidungen. Werden dagegen mehrere Symbole gleichzeitig entschieden, so können bei der Detektion statistische Bindungen zwischen den Empfangssignalabtastwerten berücksichtigt werden, was eine geringere Fehlerwahrscheinlichkeit zur Folge hat – allerdings auf Kosten einer zusätzlichen Laufzeit.

In diesem – teilweise auch im nächsten Kapitel – wird von folgendem Übertragungsmodell ausgegangen:

Übertragungssystem mit optimalem Empfänger

Gegenüber den letzten beiden Kapiteln ergeben sich folgende Unterschiede:

  • $Q \in \{Q_i\}$ mit $i = 0$, ... , $M-1$ bezeichnet eine zeitlich begrenzte Quellensymbolfolge $\langle q_\nu \rangle$, deren Symbole vom optimalen Empfänger gemeinsam entschieden werden sollen.
  • Beschreibt $Q$ eine Folge von $N$ redundanzfreien Binärsymbolen, so ist $M = 2^N$ zu setzen. Dagegen gibt $M$ bei symbolweiser Entscheidung die Stufenzahl der digitalen Quelle an.
  • Im obigen Modell werden eventuelle Kanalverzerrungen dem Sender hinzugefügt und sind somit bereits im Grundimpuls $g_s(t)$ und im Signal $s(t)$ enthalten. Diese Maßnahme dient lediglich einer einfacheren Darstellung und stellt keine Einschränkung dar.
  • Der optimale Empfänger sucht unter Kenntnis des aktuell anliegenden Empfangssignals $s(t)$ aus der Menge $\{Q_0$, ... , $Q_{M-1}\}$ der möglichen Quellensymbolfolgen die am wahrscheinlichsten gesendete Folge $Q_j$ und gibt diese als Sinkensymbolfolge $V$ aus.
  • Vor dem eigentlichen Entscheidungsalgorithmus muss durch eine geeignete Signalvorverarbeitung aus dem Empfangssignal $r(t)$ für jede mögliche Folge $Q_i$ ein Zahlenwert $W_i$ abgeleitet werden. Je größer $W_i$ ist, desto größer ist die Rückschlusswahrscheinlichkeit, dass $Q_i$ gesendet wurde.
  • Die Signalvorverarbeitung muss für die erforderliche Rauschleistungsbegrenzung und – bei starken Kanalverzerrungen – für eine ausreichende Vorentzerrung der entstandenen Impulsinterferenzen sorgen. Außerdem beinhaltet die Vorverarbeitung auch die Abtastung zur Zeitdiskretisierung.

MAP– und Maximum–Likelihood–Entscheidungsregel


Man bezeichnet den (uneingeschränkt) optimalen Empfänger als MAP–Empfänger, wobei „MAP” für „Maximum–a–posteriori” steht.

$\text{Definition:}$  Der MAP–Empfänger ermittelt die $M$ Rückschlusswahrscheinlichkeiten ${\rm Pr}\big[Q_i \hspace{0.05cm}\vert \hspace{0.05cm}r(t)\big]$ und setzt seine Ausgangsfolge $V$ gemäß der Entscheidungsregel, wobei für den Index gilt:   $i = 0$, ..., $M-1$ sowie $i \ne j$:

$${\rm Pr}\big[Q_j \hspace{0.05cm}\vert \hspace{0.05cm} r(t)\big] > {\rm Pr}\big[Q_i \hspace{0.05cm}\vert \hspace{0.05cm} r(t)\big] \hspace{0.05cm}.$$


Die Rückschlusswahrscheinlichkeit ${\rm Pr}\big[Q_i \hspace{0.05cm}\vert \hspace{0.05cm} r(t)\big]$ gibt an, mit welcher Wahrscheinlichkeit die Folge $Q_i$ gesendet wurde, wenn das Empfangssignal $r(t)$ am Entscheider anliegt. Mit dem Satz von Bayes kann diese Wahrscheinlichkeit wie folgt berechnet werden:

$${\rm Pr}\big[Q_i \hspace{0.05cm}|\hspace{0.05cm} r(t)\big] = \frac{ {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm} Q_i \big] \cdot {\rm Pr}\big[Q_i]}{{\rm Pr}[r(t)\big]} \hspace{0.05cm}.$$


Die MAP–Entscheidungsregel lässt sich somit wie folgt umformulieren bzw. vereinfachen:

Man setze die Sinkensymbolfolge $V = Q_j$, falls für alle $i \ne j$ gilt:

$$\frac{ {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm} Q_j \big] \cdot {\rm Pr}\big[Q_j)}{{\rm Pr}\big[r(t)\big]} > \frac{ {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm} Q_i\big] \cdot {\rm Pr}\big[Q_i\big]}{{\rm Pr}\big[r(t)\big]}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm} Q_j\big] \cdot {\rm Pr}\big[Q_j\big]> {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm} Q_i \big] \cdot {\rm Pr}\big[Q_i\big] \hspace{0.05cm}.$$

Eine weitere Vereinfachung dieser MAP–Entscheidungsregel führt zum ML–Empfänger, wobei „ML” für „Maximum–Likelihood” steht.

$\text{Definition:}$  Der Maximum–Likelihood–Empfänger – abgekürzt ML – entscheidet nach den bedingten Vorwärtswahrscheinlichkeiten ${\rm Pr}\big[r(t)\hspace{0.05cm} \vert \hspace{0.05cm}Q_i \big]$ und setzt die Folge $V = Q_j$, falls für alle $i \ne j$ gilt:

$${\rm Pr}\big[ r(t)\hspace{0.05cm} \vert\hspace{0.05cm} Q_j \big] > {\rm Pr}\big[ r(t)\hspace{0.05cm} \vert \hspace{0.05cm} Q_i\big] \hspace{0.05cm}.$$


Ein Vergleich dieser beiden Definitionen zeigt:

  • Bei gleichwahrscheinlichen Quellensymbolen verwenden der ML–Empfänger und der MAP–Empfänger gleiche Entscheidungsregeln; sie sind somit äquivalent.
  • Bei nicht gleichwahrscheinlichen Symbolen ist der ML–Empfänger dem MAP–Empfänger unterlegen, da er für die Detektion nicht alle zur Verfügung stehenden Informationen nutzt.


$\text{Beispiel 1:}$  Zur Verdeutlichung von ML– und MAP–Entscheidungsregel konstruieren wir nun ein sehr einfaches Beispiel mit nur zwei Quellensymbolen $(M = 2)$.

  • Die beiden möglichen Symbole $Q_0$ und $Q_1$ werden durch die Sendesignale $s = 0$ bzw. $s = 1$ dargestellt.
  • Das Empfangssignal kann – warum auch immer – drei verschiedene Werte annehmen, nämlich $r = 0$, $r = 1$ und zusätzlich $r = 0.5$.


Zur Verdeutlichung von MAP- und ML-Empfänger

Die Empfangswerte $r = 0$ und $r = 1$ werden sowohl vom ML– als auch vom MAP–Entscheider den Senderwerten $s = 0 \ (Q_0)$ bzw. $s = 1 \ (Q_1)$ zugeordnet. Dagegen werden die Entscheider bezüglich des Empfangswertes $r = 0.5$ ein anderes Ergebnis liefern:

  • Die Maximum–Likelihood–Entscheidungsregel führt zum Quellensymbol $Q_0$, wegen
$${\rm Pr}\big [ r= 0.5\hspace{0.05cm}\vert\hspace{0.05cm} Q_0\big ] = 0.4 > {\rm Pr}\big [ r= 0.5\hspace{0.05cm} \vert \hspace{0.05cm} Q_1\big ] = 0.2 \hspace{0.05cm}.$$
  • Die MAP–Entscheidung führt dagegen zum Quellensymbol $Q_1$, da entsprechend der Grafik gilt:
$${\rm Pr}\big [Q_1 \hspace{0.05cm}\vert\hspace{0.05cm} r= 0.5\big ] = 0.6 > {\rm Pr}\big [Q_0 \hspace{0.05cm}\vert\hspace{0.05cm} r= 0.5\big ] = 0.4 \hspace{0.05cm}.$$


Maximum–Likelihood–Entscheidung bei Gaußscher Störung


Wir setzen nun voraus, dass sich das Empfangssignal $r(t)$ additiv aus einem Nutzsignal $s(t)$ und einem Störanteil $n(t)$ zusammensetzt, wobei die Störung als gaußverteilt und weiß angenommen wird   ⇒   AWGN–Rauschen:

$$r(t) = s(t) + n(t) \hspace{0.05cm}.$$

Eventuelle Kanalverzerrungen werden zur Vereinfachung bereits dem Signal $s(t)$ beaufschlagt.

Die notwendige Rauschleistungsbegrenzung wird durch einen Integrator realisiert; dies entspricht einer Mittelung der Rauschwerte im Zeitbereich. Begrenzt man das Integrationsintervall auf den Bereich $t_1$ bis $t_2$, so kann man für jede Quellensymbolfolge $Q_i$ eine Größe $W_i$ ableiten, die ein Maß für die bedingte Wahrscheinlichkeit ${\rm Pr}\big [ r(t)\hspace{0.05cm} \vert \hspace{0.05cm} Q_i\big ] $ darstellt:

$$W_i = \int_{t_1}^{t_2} r(t) \cdot s_i(t) \,{\rm d} t - {1}/{2} \cdot \int_{t_1}^{t_2} s_i^2(t) \,{\rm d} t= I_i - {E_i}/{2} \hspace{0.05cm}.$$

Diese Entscheidungsgröße $W_i$ kann über die $k$–dimensioniale Verbundwahrscheinlichkeitsdichte der Störungen (mit $k \to \infty$) und einigen Grenzübergängen hergeleitet werden. Das Ergebnis lässt sich wie folgt interpretieren:

  • Die Integration dient der Rauschleistungsreduzierung durch Mittelung. Werden vom Maximum–Likelihood–Detektor $N$ Binärsymbole gleichzeitig entschieden, so ist bei verzerrungsfreiem Kanal $t_1 = 0 $ und $t_2 = N \cdot T$ zu setzen.
  • Der erste Term der obigen Entscheidungsgröße $W_i$ ist gleich der über das endliche Zeitintervall $NT$ gebildeten Energie–Kreuzkorrelationsfunktion zwischen $r(t)$ und $s_i(t)$ an der Stelle $\tau = 0$:
$$I_i = \varphi_{r, \hspace{0.08cm}s_i} (\tau = 0) = \int_{0}^{N \cdot T}r(t) \cdot s_i(t) \,{\rm d} t \hspace{0.05cm}.$$
  • Der zweite Term gibt die halbe Energie des betrachteten Nutzsignals $s_i(t)$ an, die zu subtrahieren ist. Die Energie ist gleich der AKF des Nutzsignals an der Stelle $\tau = 0$:
\[E_i = \varphi_{s_i} (\tau = 0) = \int_{0}^{N \cdot T} s_i^2(t) \,{\rm d} t \hspace{0.05cm}.\]
  • Bei verzerrendem Kanal ist die Impulsantwort $h_{\rm K}(t)$ nicht diracförmig, sondern beispielsweise auf den Bereich $-T_{\rm K} \le t \le +T_{\rm K}$ ausgedehnt. In diesem Fall muss für die beiden Integrationsgrenzen $t_1 = -T_{\rm K}$ und $t_2 = N \cdot T +T_{\rm K}$ eingesetzt werden.

Matched–Filter–Empfänger vs. Korrelationsempfänger


Es gibt verschiedene schaltungstechnische Implementierungen des Maximum–Likelihood–Empfängers.

Beispielsweise können die erforderlichen Integrale durch lineare Filterung und anschließender Abtastung gewonnen werden. Man bezeichnet diese Realisierungsform als Matched–Filter–Empfänger, da hier die Impulsantworten der $M$ parallelen Filter formgleich mit den Nutzsignalen $s_0(t)$, ... , $s_{M-1}(t)$ sind.

  • Die $M$ Entscheidungsgrößen $I_i$ sind dann gleich den Faltungsprodukten $r(t) \star s_i(t)$ zum Zeitpunkt $t= 0$.
  • Beispielsweise erlaubt der im Kapitel Optimierung der Basisband–Übertragungssysteme ausführlich beschriebene „optimale Binärempfänger” eine Maximum–Likelihood–Entscheidung mit den ML–Parametern $M = 2$ und $N = 1$.


Eine zweite Realisierungsform bietet der Korrelationsempfänger entsprechend der folgenden Grafik.

Korrelationsempfänger für $N = 3$, $t_1 = 0$, $t_2 = 3T$ sowie $M = 2^3 = 8$

Man erkennt aus diesem Blockschaltbild für die angegebenen Parameter:

  • Der gezeichnete Korrelationsempfänger bildet insgesamt $M = 8$ Kreuzkorrelationsfunktionen zwischen dem Empfangssignal $r(t) = s_k(t) + n(t)$ und den möglichen Sendesignalen $s_i(t), \ i = 0$, ... , $M-1$. Vorausgesetzt ist für die folgende Beschreibung, dass das Nutzsignal $s_k(t)$ gesendet wurde.
  • Der Korrelationsempfänger sucht nun den maximalen Wert $W_j$ aller Korrelationswerte und gibt die dazugehörige Folge $Q_j$ als Sinkensymbolfolge $V$ aus. Formal lässt sich die ML–Entscheidungsregel wie folgt ausdrücken:
$$V = Q_j, \hspace{0.2cm}{\rm falls}\hspace{0.2cm} W_i < W_j \hspace{0.2cm}{\rm f\ddot{u}r}\hspace{0.2cm} {\rm alle}\hspace{0.2cm} i \ne j \hspace{0.05cm}.$$
  • Setzt man weiter voraus, dass alle Sendesignale $s_i(t)$ die genau gleiche Energie besitzen, so kann man auf die Subtraktion von $E_i/2$ in allen Zweigen verzichten. In diesem Fall werden folgende Korrelationswerte miteinander verglichen $(i = 0$, ... , $M-1)$:
\[I_i = \int_{0}^{NT} s_j(t) \cdot s_i(t) \,{\rm d} t + \int_{0}^{NT} n(t) \cdot s_i(t) \,{\rm d} t \hspace{0.05cm}.\]
  • Mit großer Wahrscheinlichkeit ist $I_j = I_k$ größer als alle anderen Vergleichswerte $I_{j \ne k}$. Ist das Rauschen $n(t)$ allerdings zu groß, so kann auch der Korrelationsempfänger eine Fehlentscheidung treffen.

Darstellung des Korrelationsempfängers im Baumdiagramm


Verdeutlichen wir uns die Funktionsweise des Korrelationsempfängers im Baumdiagramm, wobei die $2^3 = 8$ möglichen Quellensymbolfolgen $Q_i$ der Länge $N = 3$ durch bipolare rechteckförmige Sendesignale $s_i(t)$ repräsentiert werden:

Mögliche bipolare Sendesignale für $N = 3$

Die möglichen Symbolfolgen $Q_0 = \rm LLL$, ... , $Q_7 = \rm HHH$ und die zugehörigen Sendesignale $s_0(t)$, ... , $s_7(t)$ sind oben aufgeführt.

  • Aufgrund der bipolaren Amplitudenkoeffizienten und der Rechteckform sind alle Signalenergien gleich:   $E_0 = \text{...} = E_7 = N \cdot E_{\rm B}$, wobei $E_{\rm B}$ die Energie eines Einzelimpulses der Dauer $T$ angibt.
  • Deshalb kann auf die Subtraktion des Terms $E_i/2$ in allen Zweigen verzichtet werden   ⇒   eine auf den Korrelationswerten $I_i$ basierende Entscheidung liefert ebenso zuverlässige Ergebnisse wie die Maximierung der korrigierten Werte $W_i$.


$\text{Beispiel 2:}$  In der Grafik sind die fortlaufenden Integralwerte dargestellt, wobei vom tatsächlich gesendeten Signal $s_5(t)$ und dem rauschfreien Fall ausgegangen wird. Für diesen Fall gilt für die zeitabhängigen Integralwerte und die Integralendwerte:

Korrelationsempfänger: Baumdiagramm im rauschfreien Fall
$$i_i(t) = \int_{0}^{t} r(\tau) \cdot s_i(\tau) \,{\rm d} \tau = \int_{0}^{t} s_5(\tau) \cdot s_i(\tau) \,{\rm d} \tau \hspace{0.3cm} \Rightarrow \hspace{0.3cm}I_i = i_i(3T). $$

Die Grafik kann wie folgt interpretiert werden::

  • Wegen der Rechteckform der Signale $s_i(t)$ sind alle Funktionsverläufe $i_i(t)$ geradlinig. Die auf $E_{\rm B}$ normierten Endwerte sind $+3$, $+1$, $-1$ und $-3$.
  • Der maximale Endwert ist $I_5 = 3 \cdot E_{\rm B}$ (roter Kurvenverlauf), da tatsächlich das Signal $s_5(t)$ gesendet wurde. Ohne Rauschen trifft der Korrelationsempfänger somit natürlich immer die richtige Entscheidung.
  • Der blaue Kurvenzug $i_1(t)$ führt zum Endwert $I_5 = -E_{\rm B} + E_{\rm B}+ E_{\rm B} = E_{\rm B}$, da sich $s_1(t)$ von $s_5(t)$ nur im ersten Bit unterscheidet. Die Vergleichswerte $I_4$ und $I_7$ sind ebenfalls gleich $E_{\rm B}$.
  • Da sich $s_0(t)$, $s_3(t)$ und $s_6(t)$ vom gesendeten $s_5(t)$ in zwei Bit unterscheiden, gilt $I_0 = I_3 = I_6 =-E_{\rm B}$. Die grüne Kurve zeigt $s_6(t)$, das zunächst ansteigt (erstes Bit stimmt überein) und dann über zwei Bit abfällt.
  • Die violette Kurve führt zum Endwert $I_2 = -3 \cdot E_{\rm B}$. Das zugehörige Signal $s_2(t)$ unterscheidet sich von $s_5(t)$ in allen drei Symbolen und es gilt $s_2(t) = -s_5(t)$.



$\text{Beispiel 3:}$  Die Grafik zu diesem Beispiel beschreibt den gleichen Sachverhalt wie das Beispiel 2, doch es wird nun vom Empfangssignal $r(t) = s_5(t)+ n(t)$ ausgegangen. Die Varianz des AWGN–Rauschens $n(t)$ beträgt hierbei $\sigma_n^2 = 4 \cdot E_{\rm B}/T$.

Korrelationsempfänger: Baumdiagramm mit Rauschen

Man erkennt aus dieser Grafik im Vergleich zum rauschfreien Fall:

  • Die Funktionsverläufe sind aufgrund des Rauschanteils $n(t)$ nun nicht mehr gerade und es ergeben sich auch etwas andere Endwerte als ohne Rauschen.
  • Im betrachteten Beispiel entscheidet der Korrelationsempfänger aber mit großer Wahrscheinlichkeit richtig, da die Differenz zwischen $I_5$ und dem zweitgrößeren Wert $I_7$ mit $1.65\cdot E_{\rm B}$ verhältnismäßig groß ist.
  • Die Fehlerwahrscheinlichkeit ist im hier betrachteten Beispiel allerdings nicht besser als die des Matched–Filter–Empfängers mit symbolweiser Entscheidung. Entsprechend dem Kapitel Optimierung der Basisband–Übertragungssysteme gilt auch hier:
$$p_{\rm S} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right) = {1}/{2} \cdot {\rm erfc} \left( \sqrt{ { E_{\rm B} }/{N_0} }\right) \hspace{0.05cm}.$$


$\text{Fazit:}$ 

  • Weist das Eingangssignal keine statistischen Bindungen auf wie im letzten Beispiel , so ist durch die gemeinsame Entscheidung von $N$ Symbolen gegenüber der symbolweisen Entscheidung keine Verbesserung zu erzielen.
  • Bei Vorhandensein von statistischen Bindungen wird durch die gemeinsame Entscheidung von $N$ Symbolen die Fehlerwahrscheinlichkeit gegenüber $p_{\rm S} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)$ (gültig für symbolweise Entscheidung) merklich verringert, da der Maximum–Likelihood–Empfänger die Bindungen berücksichtigt.
  • Solche Bindungen können entweder durch sendeseitige Codierung bewusst erzeugt werden (siehe $\rm LNTwww$-Buch Kanalcodierung) oder durch (lineare) Kanalverzerrungen ungewollt entstehen.
  • Bei Vorhandensein solcher Impulsinterferenzen ist die Berechnung der Fehlerwahrscheinlichkeit deutlich schwieriger. Es können jedoch vergleichbare Näherungen wie beim Viterbi–Empfänger angegeben werden, die am Ende des nächsten Kapitels angegeben sind.


Korrelationsempfänger bei unipolarer Signalisierung


Bisher sind wir bei der Beschreibung des Korrelationsempfänger stets von binärer bipolarer Signalisierung ausgegangen:

$$a_\nu = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$

Nun betrachten wir den Fall der binären unipolaren Digitalsignalübertragung gilt:

$$a_\nu = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$

Die $2^3 = 8$ möglichen Quellensymbolfolgen $Q_i$ der Länge $N = 3$ werden nun durch unipolare rechteckförmige Sendesignale $s_i(t)$ repräsentiert. Nachfolgend aufgeführt sind die Symbolfolgen $Q_0 = \rm LLL$, ... , $Q_7 = \rm HHH$ und die Sendesignale $s_0(t)$, ... , $s_7(t)$.

Mögliche unipolare Sendesignale für $N = 3$

Durch Vergleich mit der entsprechenden Tabelle für bipolare Signalisierung erkennt man:

  • Aufgrund der unipolaren Amplitudenkoeffizienten sind nun die Signalenergien $E_i$ unterschiedlich, zum Beispiel gilt $E_0 = 0$ und $E_7 = 3 \cdot E_{\rm B}$.
  • Hier führt die auf den Integralendwerten $I_i$ basierende Entscheidung nicht zum richtigen Ergebnis.
  • Vielmehr muss nun auf die korrigierten Vergleichswerte $W_i = I_i- E_i/2$ zurückgegriffen werden.


$\text{Beispiel 4:}$  In der Grafik sind die fortlaufenden Integralwerte dargestellt, wobei vom tatsächlich gesendeten Signal $s_5(t)$ und dem rauschfreien Fall ausgegangen wird. Das entsprechende bipolare Äquivalent wurde im Beispiel 2 betrachtet.

Baumdiagramm des Korrelationsempfängers (unipolar)

Für dieses Beispiel ergeben sich folgende Vergleichswerte, jeweils normiert auf $E_{\rm B}$:

$$I_5 = I_7 = 2, \hspace{0.2cm}I_1 = I_3 = I_4= I_6 = 1 \hspace{0.2cm}, \hspace{0.2cm}I_0 = I_2 = 0 \hspace{0.05cm},$$
$$W_5 = 1, \hspace{0.2cm}W_1 = W_4 = W_7 = 0.5, $$
$$W_0 = W_3 =W_6 =0, \hspace{0.2cm}W_2 = -0.5 \hspace{0.05cm}.$$

Das bedeutet:

  • Bei einem Vergleich hinsichtlich der maximalen $I_i$–Werte wären die Quellensymbolfolgen $Q_5$ und $Q_7$ gleichwertig.
  • Berücksichtigt man die unterschiedlichen Energien$(E_5 = 2, \ E_7 = 3)$, so wird dagegen wegen $W_5 > W_7$ eindeutig für die Folge $Q_5$ entschieden.
  • Der Korrelationsempfänger gemäß $W_i = I_i- E_i/2$ entscheidet also auch bei unipolarer Signalisierung richtig auf $s(t) = s_5(t)$.


Aufgaben zum Kapitel


Aufgabe 3.9: Korrelationsempfänger für unipolare Signalisierung

Aufgabe 3.10: Baumdiagramm bei Maximum-Likelihood