Digitalsignalübertragung/Berücksichtigung von Kanalverzerrungen und Entzerrung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 107: Zeile 107:
 
<br>
 
<br>
 
Die Grafik zeigt die Störabstände in Abhängigkeit der Grenzfrequenz &nbsp;$f_{\rm G}$&nbsp; des gaußförmigen Gesamtfrequenzgangs &nbsp;$H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$.&nbsp; Dieses Bild gilt für
 
Die Grafik zeigt die Störabstände in Abhängigkeit der Grenzfrequenz &nbsp;$f_{\rm G}$&nbsp; des gaußförmigen Gesamtfrequenzgangs &nbsp;$H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$.&nbsp; Dieses Bild gilt für
[[Datei:P ID1401 Dig T 3 3 S3a version1.png|right|frame|Optimale Grenzfrequenz des GTP bei verzerrendem Kanal &nbsp;$(a_\star = 15 \ \rm dB)$|class=fit]]  
+
[[Datei:P ID1401 Dig T 3 3 S3a version1.png|right|frame|Optimale Grenzfrequenz des GTP bei verzerrendem Kanal &nbsp;$(a_\star = 15 \ \rm dB).$<br>
 +
&rArr; &nbsp; Die Kreise zeigen die dB&ndash;Werte für  &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_d$ &nbsp; &#8658; &nbsp; &bdquo;mittleres&rdquo; Detektions&ndash;SNR  $($Maß für die mittlere Fehlerwahrscheinlichkeit &nbsp;$p_{\rm S})$.<br>
 +
&rArr; &nbsp; Die Quadrate  zeigen die dB&ndash;Werte für  &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}$ &nbsp; &#8658; &nbsp; &bdquo;ungünstigstes&rdquo; SNR  &nbsp;$($Maß für die ungünstigste Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U})$.|class=fit]]  
 
*einen &nbsp;[[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#Frequenzgang_eines_Koaxialkabels| koaxialen Übertragungskanal]]&nbsp; mit der charakteristischen Kabeldämpfung &nbsp;$a_\star = 15 \ \rm dB$,<br>
 
*einen &nbsp;[[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#Frequenzgang_eines_Koaxialkabels| koaxialen Übertragungskanal]]&nbsp; mit der charakteristischen Kabeldämpfung &nbsp;$a_\star = 15 \ \rm dB$,<br>
  
 
*AWGN&ndash;Rauschen mit &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$, wobei &nbsp;$E_{\rm B} = s_0^2 \cdot T$&nbsp; zu setzen ist &nbsp; &rArr; &nbsp; NRZ&ndash;Rechteckimpulse.<br><br>
 
*AWGN&ndash;Rauschen mit &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$, wobei &nbsp;$E_{\rm B} = s_0^2 \cdot T$&nbsp; zu setzen ist &nbsp; &rArr; &nbsp; NRZ&ndash;Rechteckimpulse.<br><br>
  
 +
Man erkennt aus dieser Darstellung und durch Vergleich mit der &nbsp;[[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen#Optimierung_der_Grenzfrequenz|entsprechenden Grafik]]&nbsp; im letzten Kapitel,&nbsp; die für &nbsp;$H_{\rm K}(f) = 1$&nbsp; und &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$&nbsp; gegolten hat:
 +
*Auch bei stark verzerrendem Kanal ist  &nbsp;$\rho_{\rm U}$&nbsp; eine geeignete untere Schranke für &nbsp;$\rho_{d} \ge \rho_{\rm U}$. Entsprechend ist auch &nbsp;$p_{\rm U} \ge p_{\rm S} $&nbsp; eine sinnvolle obere Schranke für &nbsp;$p_{\rm S}$.
  
''Anmerkungen:''
+
*Bei der betrachteten Kabeldämpfung &nbsp;$a_\star = 15 \ \rm dB$&nbsp; ist die Grenzfrequenz &nbsp;$f_\text{G} \cdot T \approx 0.55$&nbsp; optimal und es gilt &nbsp;$\ddot{o}/s_0 \approx 1.327$&nbsp; sowie &nbsp;$\sigma_d/s_0 \approx 0.106$.&nbsp; Daraus ergeben sich der <br> &nbsp; &nbsp; ungünstigste Störabstand  &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx \ \rm 15.9 \ dB$&nbsp; und <br> &nbsp; &nbsp; die  Worst&ndash;Case&ndash;Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U} \approx  2 \cdot  10^{-9}.$<br>
*Die Kreise zeigen die dB&ndash;Werte für  &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_d$ &nbsp; &#8658; &nbsp; &bdquo;mittleres&rdquo; Detektions&ndash;SNR  (Maß für die mittlere Fehlerwahrscheinlichkeit &nbsp;$p_{\rm S})$.
 
*Die Quadrate  zeigen die dB&ndash;Werte für  &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}$ &nbsp; &#8658; &nbsp; &bdquo;ungünstigstes&rdquo; SNR  &nbsp;$($Maß für die ungünstigste Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U})$.
 
<br clear = all>
 
Man erkennt aus dieser Darstellung und durch Vergleich mit der &nbsp;[[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen#Optimierung_der_Grenzfrequenz|entsprechenden Grafik]]&nbsp; im letzten Kapitel, die für &nbsp;$H_{\rm K}(f) = 1$&nbsp; und &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$&nbsp; gegolten hat:
 
*Auch bei stark verzerrendem Kanal ist  &nbsp;$\rho_{\rm U}$&nbsp; eine geeignete untere Schranke für &nbsp;$\rho_d$ &nbsp; &rArr; &nbsp; $\rho_{d} \ge \rho_{\rm U}$. Entsprechend ist auch &nbsp;$p_{\rm U} \ge p_{\rm S} $&nbsp; eine sinnvolle obere Schranke für &nbsp;$p_{\rm S}$.
 
  
*Bei der betrachteten Kabeldämpfung &nbsp;$a_\star = 15 \ \rm dB$&nbsp; ist die Grenzfrequenz &nbsp;$f_\text{G} \cdot T \approx 0.55$&nbsp; optimal und es gilt &nbsp;$\ddot{o}/s_0 \approx 1.327$&nbsp; sowie &nbsp;$\sigma_d/s_0 \approx 0.106$.
+
*Eine kleinere Grenzfrequenz hätte eine deutlich kleinere Augenöffnung zur Folge, ohne dass dadurch auch &nbsp;$\sigma_d$&nbsp; gleichermaßen verkleinert würde.&nbsp; Für &nbsp;$f_\text{G} \cdot T = 0.4$&nbsp; gilt:
*Daraus ergeben sich der (ungünstigste) Störabstand &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx \ \rm 15.9 \ dB$&nbsp; und die  Worst&ndash;Case&ndash;Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U} \approx  2 \cdot  10^{-9}.$<br>
 
 
 
*Eine kleinere Grenzfrequenz hätte eine deutlich kleinere Augenöffnung zur Folge, ohne dass dadurch auch &nbsp;$\sigma_d$&nbsp; gleichermaßen verkleinert würde. Für &nbsp;$f_\text{G} \cdot T = 0.4$&nbsp; gilt:
 
 
:$$\ddot{o}/s_0 \approx 0.735,\hspace{0.2cm}\sigma_d/s_0 \approx 0.072\hspace{0.3cm}\Rightarrow
 
:$$\ddot{o}/s_0 \approx 0.735,\hspace{0.2cm}\sigma_d/s_0 \approx 0.072\hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm}  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx
 
\hspace{0.3cm}  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx
Zeile 130: Zeile 126:
 
\hspace{0.3cm} p_{\rm U}\approx 1.8 \cdot 10^{-7}\hspace{0.05cm}.$$
 
\hspace{0.3cm} p_{\rm U}\approx 1.8 \cdot 10^{-7}\hspace{0.05cm}.$$
  
*Ist die Grenzfrequenz &nbsp;$f_\text{G}$&nbsp; zu groß, so wird das Rauschen weniger effektiv begrenzt. Beispielsweise lauten die Werte für die Grenzfrequenz  &nbsp;$f_\text{G} \cdot T =0.8$:
+
*Ist die Grenzfrequenz &nbsp;$f_\text{G}$&nbsp; zu groß,&nbsp; so wird das Rauschen weniger effektiv begrenzt.&nbsp; Beispielsweise lauten die Werte für die Grenzfrequenz  &nbsp;$f_\text{G} \cdot T =0.8$:
 
:$$\ddot{o}/s_0 \approx 1.819,\hspace{0.2cm}\sigma_d/s_0 \approx 0.178\hspace{0.3cm}\Rightarrow
 
:$$\ddot{o}/s_0 \approx 1.819,\hspace{0.2cm}\sigma_d/s_0 \approx 0.178\hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm}  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx
 
\hspace{0.3cm}  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx
Zeile 140: Zeile 136:
  
  
Bei einem Vergleich der Störabstände ist allerdings zu berücksichtigen, dass hier &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$&nbsp; zugrunde liegt; in der &nbsp;[[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen#Optimierung_der_Grenzfrequenz|entsprechenden Grafik]]&nbsp; für den idealen Kanal  wurde dagegen  von &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$&nbsp; ausgegangen.<br>
+
Bei einem Vergleich der Störabstände ist allerdings zu berücksichtigen, dass hier &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$&nbsp; zugrunde liegt;&nbsp; in der &nbsp;[[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen#Optimierung_der_Grenzfrequenz|entsprechenden Grafik]]&nbsp; für den idealen Kanal  wurde dagegen  von &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$&nbsp; ausgegangen.<br>
  
 
== Optimale Grenzfrequenz in Abhängigkeit der Kabeldämpfung==
 
== Optimale Grenzfrequenz in Abhängigkeit der Kabeldämpfung==
 
<br>
 
<br>
[[Datei:Dig_T_3_3_S3b_version2.png|right|frame|Optimale Grenzfrequenz und Systemwirkungsgrad in Abhängigkeit der charakteristischen Kabeldämpfung. Insbesondere gilt:    <br>$\hspace{0.8cm} 10 &middot; \lg \eta\hspace{0.05cm}(a_\star = 0 \ \rm dB) =  -1.4 \ dB;$  &nbsp; $\hspace{0.8cm} 10 &middot; \lg \eta\hspace{0.05cm}(a_\star = 80 \ \rm dB) =  -78.2 \ dB;$|class=fit|center]]
 
 
Wir betrachten weiter
 
Wir betrachten weiter
 
*ein Binärsystem mit NRZ&ndash;Sendeimpulsen &nbsp; &rArr; &nbsp; $E_{\rm B} = s_0^2 \cdot T$,<br>
 
*ein Binärsystem mit NRZ&ndash;Sendeimpulsen &nbsp; &rArr; &nbsp; $E_{\rm B} = s_0^2 \cdot T$,<br>
*ein Koaxialkabel $H_{\rm K}(f)$, charakteristische Dämpfung &nbsp;$a_\star$,<br>
+
*ein Koaxialkabel&nbsp; $H_{\rm K}(f)$,&nbsp; charakteristische Dämpfung &nbsp;$a_\star$,<br>
 
*einen Gauß&ndash;Gesamtfrequenzgang &nbsp;$H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$.
 
*einen Gauß&ndash;Gesamtfrequenzgang &nbsp;$H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$.
  
  
Die blauen Kreise (linke Achsenbeschriftung) markieren die optimale Grenzfrequenzen &nbsp;$f_\text{G, opt}$&nbsp; für die jeweilige Kabeldämpfung &nbsp;$a_\star$.  
+
Die blauen Kreise&nbsp; (linke Achsenbeschriftung)&nbsp; markieren die optimale Grenzfrequenzen &nbsp;$f_\text{G, opt}$&nbsp; für die jeweilige Kabeldämpfung &nbsp;$a_\star$.  
  
 
Zusätzlich  ist in der Grafik mit roten Quadraten  der &nbsp;[[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme#Systemoptimierung_bei_Spitzenwertbegrenzung|Systemwirkungsgrad]]&nbsp; (bei Spitzenwertbegrenzung) &nbsp;$\eta$&nbsp; dargestellt, der das Verhältnis des mit der betrachteten Konfiguration erreichbaren SNR &nbsp;$\rho_{d}$&nbsp; zum maximal möglichen S/N-Verhältnis &nbsp;$\rho_{d, \ {\rm max}}$&nbsp; angibt.  
 
Zusätzlich  ist in der Grafik mit roten Quadraten  der &nbsp;[[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme#Systemoptimierung_bei_Spitzenwertbegrenzung|Systemwirkungsgrad]]&nbsp; (bei Spitzenwertbegrenzung) &nbsp;$\eta$&nbsp; dargestellt, der das Verhältnis des mit der betrachteten Konfiguration erreichbaren SNR &nbsp;$\rho_{d}$&nbsp; zum maximal möglichen S/N-Verhältnis &nbsp;$\rho_{d, \ {\rm max}}$&nbsp; angibt.  
  
 +
[[Datei:Dig_T_3_3_S3b_version2.png|right|frame|Optimale Grenzfrequenz und Systemwirkungsgrad in Abhängigkeit der charakteristischen Kabeldämpfung. Insbesondere gilt:    <br>$\hspace{0.8cm} 10 &middot; \lg \eta\hspace{0.05cm}(a_\star = 0 \ \rm dB) =  -1.4 \ dB;$  &nbsp; $\hspace{0.8cm} 10 &middot; \lg \eta\hspace{0.05cm}(a_\star = 80 \ \rm dB) =  -78.2 \ dB;$|class=fit|center]]
 
Ersetzt man &nbsp;$\rho_d$&nbsp; durch &nbsp;$\rho_{\rm U}$, also  &nbsp;$p_{\rm S}$&nbsp; durch &nbsp;$p_{\rm U}$, so kann der Systemwirkungsgrad wie folgt dargestellt werden:
 
Ersetzt man &nbsp;$\rho_d$&nbsp; durch &nbsp;$\rho_{\rm U}$, also  &nbsp;$p_{\rm S}$&nbsp; durch &nbsp;$p_{\rm U}$, so kann der Systemwirkungsgrad wie folgt dargestellt werden:
 
:$$\eta = \eta_{\rm A}=\frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}|\hspace{0.05cm}
 
:$$\eta = \eta_{\rm A}=\frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}|\hspace{0.05cm}
 
  A}}}=  \frac{\rho_d}{2 \cdot E_{\rm B}/N_0}\approx \frac{\rho_{\rm U}}{2 \cdot E_{\rm B}/N_0}.$$
 
  A}}}=  \frac{\rho_d}{2 \cdot E_{\rm B}/N_0}\approx \frac{\rho_{\rm U}}{2 \cdot E_{\rm B}/N_0}.$$
 
   
 
   
 +
Man erkennt aus der Anordnung der blauen Kreise:
 +
*Die optimale Grenzfrequenz &nbsp;$f_\text{G, opt}$&nbsp; hängt signifikant von der Stärke der Verzerrungen des Koaxialkabels ab,&nbsp; genauer gesagt: &nbsp; ausschließlich von der charakteristischen Kabeldämpfung &nbsp;$a_\star$&nbsp; bei der halben Bitrate.
  
Man erkennt aus der Anordnung der blauen Kreise:
 
*Die optimale Grenzfrequenz &nbsp;$f_\text{G, opt}$&nbsp; hängt signifikant ab von der Stärke der Verzerrungen des Koaxialkabels, genauer gesagt: &nbsp; ausschließlich von der charakteristischen Kabeldämpfung &nbsp;$a_\star$&nbsp; bei der halben Bitrate.
 
 
*Je größer die Kabeldämpfung  &nbsp;$a_\star$&nbsp; und damit der Rauscheinfluss  ist,  um so niedriger ist die optimale Grenzfrequenz &nbsp;$f_\text{G, opt}$.<br>
 
*Je größer die Kabeldämpfung  &nbsp;$a_\star$&nbsp; und damit der Rauscheinfluss  ist,  um so niedriger ist die optimale Grenzfrequenz &nbsp;$f_\text{G, opt}$.<br>
 +
 
*Allerdings ist stets &nbsp;$f_\text{G, opt} > 0.27/T$. Andernfalls wäre das Auge geschlossen, gleichbedeutend mit der  &bdquo;Worst&ndash;case&rdquo;&ndash;Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U} = 0.5$.
 
*Allerdings ist stets &nbsp;$f_\text{G, opt} > 0.27/T$. Andernfalls wäre das Auge geschlossen, gleichbedeutend mit der  &bdquo;Worst&ndash;case&rdquo;&ndash;Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U} = 0.5$.
  
  
  
Diskutieren wir nun die Abhängigkeit des Systemwirkungsgrads &nbsp;$\eta$&nbsp; (rote Quadrate) von der charakteristischen Kabeldämpfung &nbsp;$a_\star$. Die rechte Ordinate beginnt oben bei &nbsp;$0 \ \rm dB$&nbsp; und erstreckt sich nach unten bis &nbsp;$-100 \ \rm dB$.
+
Diskutieren wir nun die Abhängigkeit des Systemwirkungsgrads &nbsp;$\eta$&nbsp; (rote Quadrate)&nbsp; von der charakteristischen Kabeldämpfung &nbsp;$a_\star$.&nbsp; Die rechte Ordinate beginnt oben bei &nbsp;$0 \ \rm dB$&nbsp; und erstreckt sich nach unten bis &nbsp;$-100 \ \rm dB$.
 
 
Wie nun an einigen Zahlenbeispielen verdeutlicht werden soll, vermeidet die Darstellung &nbsp;$\eta = \eta\hspace{0.05cm}(a_\star)$&nbsp; einige Probleme, die sich aus dem großen Wertebereich von S/N&ndash;Verhältnissen ergeben:
 
* Der Ordinatenwert &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm}  \eta\hspace{0.05cm}(a_\star = 0 \ \rm dB) = -1.4 \ \rm dB$&nbsp; sagt aus, dass der bei idealem Kanal bestmögliche Gaußtiefpass mit Grenzfrequenz &nbsp;$f_\text{G} \cdot T = 0.8$&nbsp; um &nbsp;$1.4 \ \rm dB$&nbsp; schlechter ist als der optimale (Matched&ndash;Filter&ndash;) Empfänger.<br>
 
  
 +
Wie nun an einigen Zahlenbeispielen verdeutlicht werden soll,&nbsp; vermeidet die Darstellung &nbsp;$\eta = \eta\hspace{0.05cm}(a_\star)$&nbsp; einige Probleme,&nbsp; die sich aus dem großen Wertebereich von S/N&ndash;Verhältnissen ergeben:
 +
* Der Ordinatenwert &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm}  \eta\hspace{0.05cm}(a_\star = 0 \ \rm dB) = -1.4 \ \rm dB$&nbsp; sagt aus,&nbsp; dass der bei idealem Kanal bestmögliche Gaußtiefpass mit Grenzfrequenz &nbsp;$f_\text{G} \cdot T = 0.8$&nbsp; um &nbsp;$1.4 \ \rm dB$&nbsp; schlechter ist als der optimale&nbsp; (Matched&ndash;Filter&ndash;)&nbsp; Empfänger.<br>
  
*Gehen wir von idealem Kanal &nbsp;$(a_\star = 0 \ \rm dB)$&nbsp; und &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 10 \ \rm dB$&nbsp; aus, so besagt die obige Gleichung auch, dass diese Konfiguration zu folgender (worst-case) Fehlerwahrscheinlichkeit führen wird:
+
*Gehen wir von idealem Kanal &nbsp;$(a_\star = 0 \ \rm dB)$&nbsp; und &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 10 \ \rm dB$&nbsp; aus,&nbsp; so besagt die obige Gleichung auch,&nbsp; dass diese Konfiguration zu folgender (worst-case) Fehlerwahrscheinlichkeit führen wird:
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}  =  10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} + 10 \cdot {\rm lg}\hspace{0.1cm}(2) + 10 \cdot {\rm lg}\hspace{0.1cm}(\eta) \approx  \approx  10\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}3\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}1.4\, {\rm dB}= 11.6\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 7 \cdot 10^{-5}\hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}  =  10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} + 10 \cdot {\rm lg}\hspace{0.1cm}(2) + 10 \cdot {\rm lg}\hspace{0.1cm}(\eta) \approx  \approx  10\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}3\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}1.4\, {\rm dB}= 11.6\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 7 \cdot 10^{-5}\hspace{0.05cm}.$$
 
+
*Soll diese&nbsp; (ungünstigste)&nbsp; Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U} =  7 \cdot 10^{-5}$  &nbsp; &#8658; &nbsp; $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} = 11.6  \ \rm dB$ &nbsp; beim Kanal mit der charakteristischen Kabeldämpfung &nbsp;$a_\star = 80 \ \rm dB$&nbsp; nicht überschritten werden,&nbsp; so muss demnach für das Verhältnis &nbsp;$E_{\rm B}/N_0$&nbsp; gelten:
*Soll diese (ungünstigste) Fehlerwahrscheinlichkeit &nbsp;$p_{\rm U} =  7 \cdot 10^{-5}$  &nbsp; &#8658; &nbsp; $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} = 11.6  \ \rm dB$&nbsp; beim Kanal mit der charakteristischen Kabeldämpfung &nbsp;$a_\star = 80 \ \rm dB$&nbsp; nicht überschritten werden, so muss demnach für das Verhältnis &nbsp;$E_{\rm B}/N_0$&nbsp; gelten:
 
  
 
::<math>10 \cdot {\rm
 
::<math>10 \cdot {\rm
Zeile 186: Zeile 181:
 
10^{8}\hspace{0.05cm}.</math>
 
10^{8}\hspace{0.05cm}.</math>
  
*Um dies zu erreichen, muss allerdings die Grenzfrequenz des Gaußtiefpasses entsprechend den blauen Kreisen in der Grafik auf  &nbsp;$f_{\rm G}= 0.33/T$&nbsp;  herabgesetzt werden.<br>
+
*Um dies zu erreichen,&nbsp; muss allerdings die Grenzfrequenz des Gaußtiefpasses entsprechend den blauen Kreisen in der Grafik auf  &nbsp;$f_{\rm G}= 0.33/T$&nbsp;  herabgesetzt werden.<br>
  
 
== Aufgaben zum Kapitel==
 
== Aufgaben zum Kapitel==

Aktuelle Version vom 19. Juni 2022, 11:19 Uhr

Idealer Kanalentzerrer


Bei einem Übertragungssystem,  dessen Kanalfrequenzgang  $H_{\rm K}(f)$  starke Verzerrungen hervorruft,  gehen wir von folgendem Blockschaltbild (obere Grafik)  und folgendem äquivalenten Ersatzschaltbild  (untere Grafik)  aus:

Block- und Ersatzschaltbild zur Berücksichtigung eines Kanalfrequenzgangs

Zu diesen Darstellungen ist Folgendes anzumerken:

  • Das Empfangsfilter  $H_{\rm E}(f)$  wird – zumindest gedanklich – aus einem  idealen Kanalentzerrer  $1/H_{\rm K}(f)$  und einem Tiefpass  $H_{\rm G}(f)$  zusammengesetzt.  Für Letzteren verwenden wir in diesem Kapitel beispielhaft einen Gaußtiefpass mit der Grenzfrequenz  $f_{\rm G}$.
  • Verschiebt man nun den idealen Entzerrer – wiederum rein gedanklich – auf die linke Seite der Rauschadditionsstelle,  so ändert sich bezüglich dem S/N–Verhältnis an der Sinke und bezüglich der Fehlerwahrscheinlichkeit nichts gegenüber dem oben gezeichneten Blockschaltbild.
  • Aus dem Ersatzschaltbild erkennt man,  dass sich durch den Frequenzgang  $H_{\rm K}(f)$  auch bezüglich des Detektionsnutzsignals  $d_{\rm S}(t)$  – herrührend vom Sendesignal  $s(t)$  – nichts ändert,  wenn man diesen mit  $1/H_{\rm K}(f)$  vollständig kompensiert.
  • Die Degradation durch den Kanalfrequenzgang  $H_{\rm K}(f)$  zeigt sich vielmehr durch eine signifikante Erhöhung der Detektionsstörleistung,  also der Varianz des Signals  $d_{\rm N}(t)$  – herrührend vom Störsignal  $n(t)$:
$$\sigma_d^2 = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f = \frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} \frac{1}{|H_{\rm K}(f)|^2}\cdot |H_{\rm G}(f)|^2 \,{\rm d} f \hspace{0.05cm}.$$
  • Voraussetzung für eine endliche Störleistung  $\sigma_d^2$  ist allerdings,  dass der Tiefpass  $H_{\rm G}(f)$  das Rauschen  $n(t)$  bei  (sehr)  hohen Frequenzen stärker abschwächt,  als es vom idealen Entzerrer  $1/H_{\rm K}(f)$  angehoben wird.

Anmerkung:   Der Frequenzgang  $H_{\rm K}(f)$  muss nach Betrag und Phase entzerrt werden,  aber nur in einem von  $H_{\rm G}(f)$  vorgegebenen eingeschränkten Frequenzbereich.  Eine vollständige Phasenentzerrung ist nur auf Kosten einer  (frequenzunabhängigen)  Laufzeit möglich,  die im Folgenden nicht weiter berücksichtigt wird.

$\text{Beispiel 1:}$  Wir betrachten wieder ein Binärsystem mit NRZ–Rechteckimpulsen und gaußförmigem Empfangsfilter  $H_{\rm E}(f) = H_{\rm G}(f)$  mit der (normierten) Grenzfrequenz  $f_\text{G, opt} \cdot T = 0.4$.  Aufgrund dieses ungünstigen Empfangsfilters  $H_{\rm E}(f)$  kommt es bei allen hier dargestellten Varianten zu Impulsinterferenzen  $\rm (ISI)$.

  • Die mittlere Grafik zeigt für diesen Fall das Augendiagramm des Detektionsnutzsignals  $d_{\rm S}(t)$  – also ohne Berücksichtigung des Rauschens.
Binäre Augendiagramme mit Impulsinterferenzen


⇒   Das linke Augendiagramm ergibt sich bei idealem Kanal,  also für 

$$H_{\rm K}(f) = 1 \ \ ⇒ \ \ 1/H_{\rm K}(f) = 1.$$

Es berücksichtigt das AWGN–Rauschen,  das aber hier mit  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 30 \ \rm dB$  als sehr klein angenommen wurde.  Für diese Konfiguration wurde per Simulation ermittelt:

$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx 26.8\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}< 10^{-40}\hspace{0.05cm}.$$

⇒   Das rechte Diagramm gilt für ein   Koaxialkabel,  wobei die charakteristische Kabeldämpfung  $a_\star = 40 \ \rm dB$  beträgt.  Hier sind die Ergebnisse bei gleichem  $E_{\rm B}/N_0$  deutlich ungünstiger:

$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx -4.6\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 0.28\hspace{0.05cm}.$$

Dieses Ergebnis kann wie folgt interpretiert werden:

  • Unter der Voraussetzung eines idealen Kanalentzerrers  $1/H_{\rm K}(f)$  ergibt sich auch beim verzerrenden Kanal das gleiche  „Augendiagramm ohne Rauschen”  (linke Grafik)  wie beim idealen Kanal  $H_{\rm K}(f) = 1$  (mittlere Grafik).
  • Durch die Kanalentzerrung  $1/H_{\rm K}(f)$  wird der Rauschanteil extrem verstärkt. Im rechten Beispiel ist wegen der starken Verzerrung eine ebenso starke Entzerrung über einen weiten Frequenzbereich erforderlich.
  • Die Rauschleistung  $\sigma_d^2$  ist hier um den Faktor  $1300$  größer als bei der linken Konstellation  $($keine Verzerrung   ⇒   keine Entzerrung$)$.  Damit ergibt sich die Fehlerwahrscheinlichkeit zu  $p_{\rm S}\approx p_{\rm U}\approx 50 \%$.
  • Eine akzeptable worst-case-Fehlerwahrscheinlichkeit ergibt sich nur bei kleinerer Rauschleistungsdichte  $N_0$.  Beispielsweise erhält man mit mit  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 50 \ \rm dB$  $($statt $30 \ \rm dB)$  das folgende Ergebnis:
$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} = -4.6 +20 \approx 15.4\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 2 \cdot 10^{-9} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm S} \ge p_{\rm U}/4 \approx 0.5 \cdot 10^{-9}\hspace{0.05cm}.$$


Erhöhung der Rauschleistung durch lineare Entzerrung


Die Augendiagramme auf der letzten Seite dokumentieren eindrucksvoll die Erhöhung der Rauschleistung  $\sigma_d^2$  bei unveränderter vertikaler Augenöffnung,  wenn man den Kanalfrequenzgang  $H_{\rm K}(f)$  empfangsseitig durch dessen Inverse kompensiert.  Dieses Ergebnis soll nun anhand der Rauschleistungsdichte  ${\it \Phi}_{d{\rm N}}(f)$  nach dem Empfangsfilter  (vor dem Entscheider)  interpretiert werden,  wobei folgende Einstellungen gelten:

$$|H_{\rm K}(f)| = {\rm exp}\left [- a_{\star}\cdot \sqrt{2 f T}\hspace{0.05cm} \right ]\hspace{0.2cm}{\rm mit}\hspace{0.2cm} a_{\star} = 1.7\,\,{\rm Np}\hspace{0.2cm} ({\rm entsprechend} \hspace{0.2cm} 15\,\,{\rm dB}) \hspace{0.05cm}.$$
Rauschüberhöhung durch verzerrenden Kanal.     Beachten Sie: Aus Darstellungsgründen ist hier die charakteristische Kabeldämpfung mit  $a_\star = 15 \ \rm dB$   $($entsprechend  $1.7 \ \rm Np)$  deutlich kleiner gewählt ist beim rechten Augendiagramm im   Beispiel 1  auf der letzten Seite  $($gültig für  $a_\star = 40 \ \rm dB)$.
  • Der  ideale Kanalentzerrer  $1/H_{\rm K}(f)$  kompensiert den Kanalfrequenzgang vollständig. Über die Realisierung der Dämpfungs– und Phasenentzerrung wird hier keine Aussage getroffen.
  • Zur Rauschleistungsbegrenzung wird ein  Gaußtiefpass  eingesetzt:
$$|H_{\rm G}(f)| = {\rm exp}\left [- \pi \cdot \left (\frac{f }{2 f_{\rm G}}\right )^2 \right ] \hspace{0.05cm}.$$

Damit gilt für die Rauschleistungsdichte vor dem Entscheider:

$${\it \Phi}_{d{\rm N}}(f) = \frac{N_0}{2} \cdot \frac{|H_{\rm G }(f)|^2}{|H_{\rm K}(f)|^2} $$
$$\Rightarrow \hspace{0.3cm} {\it \Phi}_{d{\rm N}}(f) = \frac{N_0}{2} \cdot {\rm exp}\left [2 \cdot a_{\star}\cdot \sqrt{2 f T} - {\pi}/{2} \cdot \left ({f }/{f_{\rm G}}\right )^2 \right ] \hspace{0.05cm}.$$

Dieser Verlauf ist hier dargestellt für die  (normierten)  Grenzfrequenzen

  • $f_\text{G} \cdot T = 0.8$  (links)  bzw.
  • $f_\text{G} \cdot T = 0.4$  (rechts)


Betrachten wir zunächst die linke Grafik für die  (normierte)  Grenzfrequenz  $f_\text{G} \cdot T = 0.8$,  die nach den Berechnungen im  letzten Kapitel  für den idealen Kanal   ⇒   $H_{\rm K}(f) = 1$  das Optimum darstellt.

  1. Gelb hinterlegt ist die konstante Rauschleistungsdichte  $N_0/2$  am Empfängereingang.  Bei idealem Kanal wird diese durch das gaußförmige Empfangsfilter  $H_{\rm E}(f) = H_{\rm G}(f)$  begrenzt und ergibt die Detektionsrauschleistung  $\sigma_d^2$  (in der Grafik durch die blaue Fläche gekennzeichnet).

  2. Werden – wie bei leitungsgebundener Übertragung üblich – höhere Frequenzen stark gedämpft,  so steigt  $|H_{\rm E}(f)| = |H_{\rm G}(f)|/|H_{\rm K}(f)|$  aufgrund des idealen Kanalentzerrers sehr stark an,  bevor für  $f \cdot T \ge 0.6$  $($nur gültig für  $a_\star = 15 \ \rm dB$  und  $f_\text{G} \cdot T = 0.8)$  der dämpfende Einfluss des Gaußfilters wirksam wird.

  3. Die Rauschleistung  $\sigma_d^2$  ist nun gleich der Fläche unter der roten Kurve, die etwa um den Faktor  $28$  größer ist als die blaue Fläche.  Die Auswirkungen dieser unterschiedlichen Rauschleistungen erkennt man auch in den Augendiagrammen auf der letzten Seite,  allerdings für  $a_\star = 40 \ \rm dB$.

Die rechte Grafik zeigt die Rauschleistungsdichte  ${\it \Phi}_{d{\rm N}}(f)$  für die normierte Grenzfrequenz  $f_\text{G} \cdot T = 0.4$.  Hier wird die Rauschleistung durch den idealen Kanalentzerrer nur noch um den Faktor  $9$  vergrößert  (Verhältnis zwischen der Fläche unter der roten Kurve und der blauen Fläche).

$\text{Fazit:}$  Aus obiger Grafik und den bisherigen Erläuterungen geht bereits hervor,  dass bei verzerrendem Kanal   ⇒   $H_{\rm K}(f) \ne 1$ die Grenzfrequenz  $f_\text{G} \cdot T = 0.8$  des Gaußtiefpasses  $H_{\rm G}(f)$  nach dem idealen Kanalentzerrer  $1/H_{\rm K}(f)$  nicht mehr optimal sein wird.



Optimierung der Grenzfrequenz


Die Grafik zeigt die Störabstände in Abhängigkeit der Grenzfrequenz  $f_{\rm G}$  des gaußförmigen Gesamtfrequenzgangs  $H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$.  Dieses Bild gilt für

Optimale Grenzfrequenz des GTP bei verzerrendem Kanal  $(a_\star = 15 \ \rm dB).$
⇒   Die Kreise zeigen die dB–Werte für  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_d$   ⇒   „mittleres” Detektions–SNR $($Maß für die mittlere Fehlerwahrscheinlichkeit  $p_{\rm S})$.
⇒   Die Quadrate zeigen die dB–Werte für  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U}$   ⇒   „ungünstigstes” SNR  $($Maß für die ungünstigste Fehlerwahrscheinlichkeit  $p_{\rm U})$.
  • AWGN–Rauschen mit  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$, wobei  $E_{\rm B} = s_0^2 \cdot T$  zu setzen ist   ⇒   NRZ–Rechteckimpulse.

Man erkennt aus dieser Darstellung und durch Vergleich mit der  entsprechenden Grafik  im letzten Kapitel,  die für  $H_{\rm K}(f) = 1$  und  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$  gegolten hat:

  • Auch bei stark verzerrendem Kanal ist  $\rho_{\rm U}$  eine geeignete untere Schranke für  $\rho_{d} \ge \rho_{\rm U}$. Entsprechend ist auch  $p_{\rm U} \ge p_{\rm S} $  eine sinnvolle obere Schranke für  $p_{\rm S}$.
  • Bei der betrachteten Kabeldämpfung  $a_\star = 15 \ \rm dB$  ist die Grenzfrequenz  $f_\text{G} \cdot T \approx 0.55$  optimal und es gilt  $\ddot{o}/s_0 \approx 1.327$  sowie  $\sigma_d/s_0 \approx 0.106$.  Daraus ergeben sich der
        ungünstigste Störabstand  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx \ \rm 15.9 \ dB$  und
        die Worst–Case–Fehlerwahrscheinlichkeit  $p_{\rm U} \approx 2 \cdot 10^{-9}.$
  • Eine kleinere Grenzfrequenz hätte eine deutlich kleinere Augenöffnung zur Folge, ohne dass dadurch auch  $\sigma_d$  gleichermaßen verkleinert würde.  Für  $f_\text{G} \cdot T = 0.4$  gilt:
$$\ddot{o}/s_0 \approx 0.735,\hspace{0.2cm}\sigma_d/s_0 \approx 0.072\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx 14.1\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 1.8 \cdot 10^{-7}\hspace{0.05cm}.$$
  • Ist die Grenzfrequenz  $f_\text{G}$  zu groß,  so wird das Rauschen weniger effektiv begrenzt.  Beispielsweise lauten die Werte für die Grenzfrequenz  $f_\text{G} \cdot T =0.8$:
$$\ddot{o}/s_0 \approx 1.819,\hspace{0.2cm}\sigma_d/s_0 \approx 0.178\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U}\approx 14.2\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 1.7 \cdot 10^{-7}\hspace{0.05cm}.$$
  • Die optimalen Werte sind mit  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{d} \approx 16.2 \ \rm dB$  und  $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} \approx \ \rm 15.9 dB$  deutlich ausgeprägter als bei idealem Kanal.


Bei einem Vergleich der Störabstände ist allerdings zu berücksichtigen, dass hier  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 27 \ \rm dB$  zugrunde liegt;  in der  entsprechenden Grafik  für den idealen Kanal wurde dagegen von  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 13 \ \rm dB$  ausgegangen.

Optimale Grenzfrequenz in Abhängigkeit der Kabeldämpfung


Wir betrachten weiter

  • ein Binärsystem mit NRZ–Sendeimpulsen   ⇒   $E_{\rm B} = s_0^2 \cdot T$,
  • ein Koaxialkabel  $H_{\rm K}(f)$,  charakteristische Dämpfung  $a_\star$,
  • einen Gauß–Gesamtfrequenzgang  $H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$.


Die blauen Kreise  (linke Achsenbeschriftung)  markieren die optimale Grenzfrequenzen  $f_\text{G, opt}$  für die jeweilige Kabeldämpfung  $a_\star$.

Zusätzlich ist in der Grafik mit roten Quadraten der  Systemwirkungsgrad  (bei Spitzenwertbegrenzung)  $\eta$  dargestellt, der das Verhältnis des mit der betrachteten Konfiguration erreichbaren SNR  $\rho_{d}$  zum maximal möglichen S/N-Verhältnis  $\rho_{d, \ {\rm max}}$  angibt.

Optimale Grenzfrequenz und Systemwirkungsgrad in Abhängigkeit der charakteristischen Kabeldämpfung. Insbesondere gilt:
$\hspace{0.8cm} 10 · \lg \eta\hspace{0.05cm}(a_\star = 0 \ \rm dB) = -1.4 \ dB;$   $\hspace{0.8cm} 10 · \lg \eta\hspace{0.05cm}(a_\star = 80 \ \rm dB) = -78.2 \ dB;$

Ersetzt man  $\rho_d$  durch  $\rho_{\rm U}$, also  $p_{\rm S}$  durch  $p_{\rm U}$, so kann der Systemwirkungsgrad wie folgt dargestellt werden:

$$\eta = \eta_{\rm A}=\frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}|\hspace{0.05cm} A}}}= \frac{\rho_d}{2 \cdot E_{\rm B}/N_0}\approx \frac{\rho_{\rm U}}{2 \cdot E_{\rm B}/N_0}.$$

Man erkennt aus der Anordnung der blauen Kreise:

  • Die optimale Grenzfrequenz  $f_\text{G, opt}$  hängt signifikant von der Stärke der Verzerrungen des Koaxialkabels ab,  genauer gesagt:   ausschließlich von der charakteristischen Kabeldämpfung  $a_\star$  bei der halben Bitrate.
  • Je größer die Kabeldämpfung  $a_\star$  und damit der Rauscheinfluss ist, um so niedriger ist die optimale Grenzfrequenz  $f_\text{G, opt}$.
  • Allerdings ist stets  $f_\text{G, opt} > 0.27/T$. Andernfalls wäre das Auge geschlossen, gleichbedeutend mit der „Worst–case”–Fehlerwahrscheinlichkeit  $p_{\rm U} = 0.5$.


Diskutieren wir nun die Abhängigkeit des Systemwirkungsgrads  $\eta$  (rote Quadrate)  von der charakteristischen Kabeldämpfung  $a_\star$.  Die rechte Ordinate beginnt oben bei  $0 \ \rm dB$  und erstreckt sich nach unten bis  $-100 \ \rm dB$.

Wie nun an einigen Zahlenbeispielen verdeutlicht werden soll,  vermeidet die Darstellung  $\eta = \eta\hspace{0.05cm}(a_\star)$  einige Probleme,  die sich aus dem großen Wertebereich von S/N–Verhältnissen ergeben:

  • Der Ordinatenwert  $10 \cdot {\rm lg}\hspace{0.1cm} \eta\hspace{0.05cm}(a_\star = 0 \ \rm dB) = -1.4 \ \rm dB$  sagt aus,  dass der bei idealem Kanal bestmögliche Gaußtiefpass mit Grenzfrequenz  $f_\text{G} \cdot T = 0.8$  um  $1.4 \ \rm dB$  schlechter ist als der optimale  (Matched–Filter–)  Empfänger.
  • Gehen wir von idealem Kanal  $(a_\star = 0 \ \rm dB)$  und  $10 \cdot {\rm lg}\hspace{0.1cm} E_{\rm B}/N_0 = 10 \ \rm dB$  aus,  so besagt die obige Gleichung auch,  dass diese Konfiguration zu folgender (worst-case) Fehlerwahrscheinlichkeit führen wird:
$$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} = 10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} + 10 \cdot {\rm lg}\hspace{0.1cm}(2) + 10 \cdot {\rm lg}\hspace{0.1cm}(\eta) \approx \approx 10\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}3\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}1.4\, {\rm dB}= 11.6\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U}\approx 7 \cdot 10^{-5}\hspace{0.05cm}.$$
  • Soll diese  (ungünstigste)  Fehlerwahrscheinlichkeit  $p_{\rm U} = 7 \cdot 10^{-5}$   ⇒   $10 \cdot {\rm lg}\hspace{0.1cm} \rho_{\rm U} = 11.6 \ \rm dB$   beim Kanal mit der charakteristischen Kabeldämpfung  $a_\star = 80 \ \rm dB$  nicht überschritten werden,  so muss demnach für das Verhältnis  $E_{\rm B}/N_0$  gelten:
\[10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} \ge 11.6\,{\rm dB} \hspace{0.1cm}-3\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}(-78.2)\,{\rm dB}= 86.8\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm}{E_{\rm B}}/{N_0}\approx 5 \cdot 10^{8}\hspace{0.05cm}.\]
  • Um dies zu erreichen,  muss allerdings die Grenzfrequenz des Gaußtiefpasses entsprechend den blauen Kreisen in der Grafik auf  $f_{\rm G}= 0.33/T$  herabgesetzt werden.

Aufgaben zum Kapitel


Aufgabe 3.3: Rauschen bei Kanalentzerrung

Aufgabe 3.3Z: Optimierung eines Koaxialkabelsystems