Aufgaben:Exercise 2.2: Simple Two-Path Channel Model: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(15 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Mehrwegeempfang beim Mobilfunk}}
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Mehrwegeempfang beim Mobilfunk}}
  
[[Datei:P_ID2157__Mob_A_2_2.png|right|frame|Zwei äquivalente Modelle <br>für den Zweiwege-Kanal]]
+
[[Datei:EN_Mob_A_2_2.png|right|frame|Two equivalent models <br>for the two-path channel]]
Here we consider a two-way&ndash;channel for mobile radio according to the adjacent graphic, characterized by the model parameters
+
Here we consider a two-path channel for mobile radio according to the adjacent graph, characterized by the model parameters
:$$k_1 = 10^{-4}\hspace{0.05cm}, \hspace{0.2cm} \dew_{1} = 10\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm}\dew_{2} = 11\,{\rm &micro; s} \hspace{0.05cm}.$$
+
:$$k_1 = 10^{-4}\hspace{0.05cm}, \hspace{0.2cm} \tau_{1} = 10\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm}\tau_{2} = 11\,{\rm &micro; s} \hspace{0.05cm}.$$
  
 
Two different numerical values are considered for the damping factor on the secondary path:
 
Two different numerical values are considered for the damping factor on the secondary path:
 
* $k_2 = 2 \cdot 10^{-5}$ &nbsp; &rArr; &nbsp; subtasks '''(1)''' to '''(4)''',
 
* $k_2 = 2 \cdot 10^{-5}$ &nbsp; &rArr; &nbsp; subtasks '''(1)''' to '''(4)''',
* $k_2 = 10^{-4}$ &nbsp; &rArr; &nbsp; subtasks '''(5)'' and '''(6)'''.
+
* $k_2 = 10^{-4}$ &nbsp; &rArr; &nbsp; subtasks '''(5)''' and '''(6)'''.
  
  
Zeile 16: Zeile 16:
  
  
An important descriptive parameter of any mobile radio system is the coherence bandwidth&nbsp; $B_{\rm K}$, which is defined in the chapter&nbsp; [[Mobile_Communications/The_GWSSUS%E2%80%93Channel Model| GWSSUS&ndash;Channel Model]]&nbsp;. With this it can be decided whether the system can be considered as non-frequency selective:  
+
An important descriptive parameter of any mobile radio system is the coherence bandwidth&nbsp; $B_{\rm K}$, which is defined in the chapter&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| GWSSUS&ndash;Kanalmodell]]&nbsp;. The coherence bandwidth indicates whether the system can be approximated as non-frequency-selective:  
 
*This is justified if the signal bandwidth&nbsp; $B_{\rm S}$&nbsp; is significantly smaller than the coherence bandwidth&nbsp; $B_{\rm K}$.  
 
*This is justified if the signal bandwidth&nbsp; $B_{\rm S}$&nbsp; is significantly smaller than the coherence bandwidth&nbsp; $B_{\rm K}$.  
*Otherwise, the mobile radio system is frequency selective, which requires a more complicated description.
+
*Otherwise, the mobile radio system is frequency-selective, which requires a more complicated description.
  
  
 
As a simple approximation for the coherence bandwidth, the reciprocal value of pulse broadening is often used in the literature (marked by an apostrophe in our learning tutorial):
 
As a simple approximation for the coherence bandwidth, the reciprocal value of pulse broadening is often used in the literature (marked by an apostrophe in our learning tutorial):
:$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\frac_{\rm max} - \frac_{\rm min}} \hspace{0.05cm}.$$
+
:$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\tau_{\rm max} - \tau_{\rm min}} \hspace{0.05cm}.$$
  
  
Zeile 33: Zeile 33:
 
* This task belongs to the topic of the chapter&nbsp; [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].  
 
* This task belongs to the topic of the chapter&nbsp; [[Mobile_Kommunikation/Mehrwegeempfang_beim_Mobilfunk| Mehrwegeempfang beim Mobilfunk]].  
 
* For the solution you also need the speed of light&nbsp; $c = 3 \cdot 10^8 \ \rm m/s$.
 
* For the solution you also need the speed of light&nbsp; $c = 3 \cdot 10^8 \ \rm m/s$.
* For&nbsp; $k_2$&nbsp; only positive values are used here You may remember: &nbsp; If the secondary path is created by reflection on a wall, a phase change by&nbsp; $\pi$&nbsp; is actually to be considered, resulting in a negative&nbsp; $k_2$&ndash;value.
+
* For&nbsp; $k_2$&nbsp; only positive values are used here. However, as you may remember,if the secondary path is created by reflection on a wall, a phase change by&nbsp; $\pi$&nbsp; occurs, resulting in a negative value of $k_2$.
 
   
 
   
  
Zeile 49: Zeile 49:
 
$\tau_0 \ = \ ${ 1 3% } $\ \ \rm &micro; s$
 
$\tau_0 \ = \ ${ 1 3% } $\ \ \rm &micro; s$
  
{Calculate the magnitude frequency response &nbsp; &#8658; &nbsp; $|H_0(f)|$&nbsp; of the simplified model for the frequencies&nbsp; $f = 0$,&nbsp; $f = 250 \ \rm kHz$&nbsp; and&nbsp; $f = 500 \ \rm kHz$
+
{Calculate the magnitude of the frequency response &nbsp; &#8658; &nbsp; $|H_0(f)|$&nbsp; of the simplified model for the frequencies&nbsp; $f = 0$,&nbsp; $f = 250 \ \rm kHz$&nbsp; and&nbsp; $f = 500 \ \rm kHz$
 
|type="{}"}
 
|type="{}"}
 
$|H_0(f = 0)| \ = \ ${ 1.2 3% }  
 
$|H_0(f = 0)| \ = \ ${ 1.2 3% }  
Zeile 55: Zeile 55:
 
$|H_0(f = 500 \ \rm kHz)| \ = \ ${ 0.8 3% }  
 
$|H_0(f = 500 \ \rm kHz)| \ = \ ${ 0.8 3% }  
  
{Which signal frequencies&nbsp; $f_{\rm S}$&nbsp; do destructive superimpositions occur here?
+
{For which signal frequencies&nbsp; $f_{\rm S}$&nbsp; does destructive interference occur here?
 
|type="[]"}
 
|type="[]"}
 
+ $f_{\rm S} = 500 \ \rm kHz$,
 
+ $f_{\rm S} = 500 \ \rm kHz$,
Zeile 61: Zeile 61:
 
- $f_{\rm S} = 1 \ \rm MHz$.
 
- $f_{\rm S} = 1 \ \rm MHz$.
  
{Which coherence bandwidth results for&nbsp; $k_2 = 2 \cdot 10^{-5}$&nbsp; or.&nbsp; $k_2 = 10^{-4}$&nbsp; after the simple approximation?
+
{What is the approximate coherence bandwidth for&nbsp; $k_2 = 2 \cdot 10^{-5}$&nbsp; or.&nbsp; $k_2 = 10^{-4}$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$k_2 = 2 \cdot 10^{-5} \text \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' = \ ${ 1 3% } $\ \rm MHz
+
$k_2 = 2 \cdot 10^{-5} \text{:} \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' = \ ${ 1 3% } $\ \rm MHz
$k_2 = 10^{-4} \text \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' = \ ${ 1 3% } $\ \rm MHz
+
$k_2 = 10^{-4} \text{:} \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' = \ ${ 1 3% } $\ \rm MHz
  
{Which statements are correct regarding frequency selectivity when&nbsp; $B_{\rm S}$&nbsp; denotes the signal bandwidth?
+
{Which statements are correct regarding frequency selectivity if&nbsp; $B_{\rm S}$&nbsp; denotes the signal bandwidth?
 
|type="[]"}
 
|type="[]"}
 
- For GSM: &nbsp; $(B_{\rm S} = 200 \ \rm kHz)$&nbsp; the channel is frequency selective.
 
- For GSM: &nbsp; $(B_{\rm S} = 200 \ \rm kHz)$&nbsp; the channel is frequency selective.
Zeile 74: Zeile 74:
 
===Sample solution===
 
===Sample solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The following applies $\tau_1 = d_1/c$ &nbsp;&#8658;&nbsp; $ d_1 = \tau_1 \cdot c = 10^{-5} \rm s \cdot 3 \cdot 10^8 \ m/s \ \ \underline {= 3 \ km}$.
+
'''(1)'''&nbsp; We have $\tau_1 = d_1/c$ &nbsp;&#8658;&nbsp; $ d_1 = \tau_1 \cdot c = 10^{-5} \rm s \cdot 3 \cdot 10^8 \ m/s \ \ \underline {= 3 \ km}$.
  
  
Zeile 81: Zeile 81:
  
 
'''(3)'''&nbsp; The impulse location is
 
'''(3)'''&nbsp; The impulse location is
$$h_{\rm 0}(\dew) = \delta(\dew) + k_0 \cdot \delta(\dew - \dew_0) \hspace{0.05cm}.$
+
$$h_{\rm 0}(\tau) = \delta(\tau) + k_0 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$
  
 
By Fourier transformation you get the frequency response
 
By Fourier transformation you get the frequency response
:$$H_{\rm 0}(f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + k_0 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \dew_0}=1 + k_0 \cdot {\cos}( 2 \pi f \dew_0) + {\rm j}\cdot k_0 \cdot {\sin
+
:$$H_{\rm 0}(f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + k_0 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_0}=1 + k_0 \cdot {\cos}( 2 \pi f \tau_0) + {\rm j}\cdot k_0 \cdot {\sin
 
  }( 2 \pi f \tau_0)
 
  }( 2 \pi f \tau_0)
 
   \hspace{0.05cm},$$
 
   \hspace{0.05cm},$$
  
and thus to the following magnitude frequency response:
+
and thus to the following magnitude of the frequency response:
 
$$|H_{\rm 0}(f)| = \sqrt{ \left [ 1 + k_0 \cdot {\cos}( 2 \pi f \tau_0)\right ]^2 + k_0^2 \cdot {\sin^2 }( 2 \pi f \tau_0)}\hspace{0.3cm}
 
$$|H_{\rm 0}(f)| = \sqrt{ \left [ 1 + k_0 \cdot {\cos}( 2 \pi f \tau_0)\right ]^2 + k_0^2 \cdot {\sin^2 }( 2 \pi f \tau_0)}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}|H_{\rm 0}(f = 0)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1+ k_0 \hspace{0.1cm} \underline {=1.2} \hspace{0.05cm},$$
 
\Rightarrow \hspace{0.3cm}|H_{\rm 0}(f = 0)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1+ k_0 \hspace{0.1cm} \underline {=1.2} \hspace{0.05cm},$$
Zeile 94: Zeile 94:
 
$$|H_{\rm 0}(f = 500\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{ \left [ 1 + k_0 \cdot {\cos}( \pi)\right ]^2 + k_0^2 \cdot {\sin^2 }( \pi)} = {1- k_0} \hspace{0.1cm} \underline {= 0.8} \hspace{0.05cm}.$$
 
$$|H_{\rm 0}(f = 500\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{ \left [ 1 + k_0 \cdot {\cos}( \pi)\right ]^2 + k_0^2 \cdot {\sin^2 }( \pi)} = {1- k_0} \hspace{0.1cm} \underline {= 0.8} \hspace{0.05cm}.$$
  
[[File:P_ID2158__Mob_A_2_2c.png|right|frame|Amount frequency response of a two-way channel]]
+
[[File:P_ID2158__Mob_A_2_2c.png|right|frame|Magnitude of the frequency response of a two-way channel]]
 
The graphic (red curve) shows the function $|H_0(f)|$.  
 
The graphic (red curve) shows the function $|H_0(f)|$.  
 
*The values you are looking for are marked by the yellow dots.  
 
*The values you are looking for are marked by the yellow dots.  
Zeile 101: Zeile 101:
  
  
'''(4)'''&nbsp; Correct is the <u>solution 1</u>:
+
'''(4)'''&nbsp; <u>Solution 1</u> is correct:
*Destructive overlays exist for $|H_0(f)| < 1$, for example for $f = 500 \ \rm kHz$.  
+
*Destructive interference occurs for $|H_0(f)| < 1$, for example for $f = 500 \ \rm kHz$.  
 
*On the other hand:
 
*On the other hand:
 
:$$|H_{\rm 0}(f = 750\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 250\,{\rm kHz})| \approx 1.02 > 1\hspace{0.05cm},$$
 
:$$|H_{\rm 0}(f = 750\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 250\,{\rm kHz})| \approx 1.02 > 1\hspace{0.05cm},$$
:$$|H_{\rm 0}(f = 1\,{\rm MHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 0)| = 1.2 > 1 \hspace{0.05cm}.$
+
:$$|H_{\rm 0}(f = 1\,{\rm MHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 0)| = 1.2 > 1 \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; The difference $\tau_{\rm max} \ &ndash; \tau_{\rm min}$ of the delay times in the two paths is equal to $\tau_0 = 1 \ \ \rm &micro; s$.  
+
'''(5)'''&nbsp; The difference $\tau_{\rm max} \ &ndash; \tau_{\rm min}$ between the delays in the two paths is equal to $\tau_0 = 1 \ \ \rm &micro; s$.  
*So the coherence bandwidth
+
*So the coherence bandwidth is
:$$B_{\rm K}\hspace{0.01cm}' = {1}/{\dew_{\rm 0} \hspace{0.1cm} \underline {=1\,{\rm MHz} \hspace{0.05cm}.$$
+
:$$B_{\rm K}\hspace{0.01cm}' = {1}/{\tau_{\rm 0} } \hspace{0.1cm} \underline {=1\,{\rm MHz}} \hspace{0.05cm}.$$
  
 
*The result is independent from $k_2$. It applies to $k_2 = 2 \cdot 10^{-5} \Rightarrow k_0 = 0.2$ and $k_2 = 10^{-4} \Rightarrow k_0 = $1 in the same way.  
 
*The result is independent from $k_2$. It applies to $k_2 = 2 \cdot 10^{-5} \Rightarrow k_0 = 0.2$ and $k_2 = 10^{-4} \Rightarrow k_0 = $1 in the same way.  
*In the graph this approximation $B_{\rm K}\hspace{0.01cm}'$ is drawn for the coherence bandwidth.
+
*This approximation $B_{\rm K}\hspace{0.01cm}'$ of the coherence bandwidth is shown in the graph.
  
  
'''(6)'''&nbsp; Correct is the <u>solution 2</u>:
+
'''(6)'''&nbsp; <u>Solution 2</u> is correct:
*The channel is not frequency selective if the coherence bandwidth $B_{\rm K}$ is significantly larger than the signal bandwidth $B_{\rm S}$.  
+
*The channel is non-frequency-selective if the coherence bandwidth $B_{\rm K}$ is significantly larger than the signal bandwidth $B_{\rm S}$.  
*For the given channel, this is true for GSM, but not for UMTS. For UMTS there is a frequency-selective channel.
+
*For the given channel, this is true for GSM, but not for UMTS. For UMTS, this is frequency-selective channel.
{{{ML-Fuß}}
+
{{ML-Fuß}}
  
 
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]]
 
[[Category:Exercises for Mobile Communications|^2.2 Multi-Path Reception in Wireless Systems^]]

Aktuelle Version vom 20. Mai 2020, 17:41 Uhr

Two equivalent models
for the two-path channel

Here we consider a two-path channel for mobile radio according to the adjacent graph, characterized by the model parameters

$$k_1 = 10^{-4}\hspace{0.05cm}, \hspace{0.2cm} \tau_{1} = 10\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm}\tau_{2} = 11\,{\rm µ s} \hspace{0.05cm}.$$

Two different numerical values are considered for the damping factor on the secondary path:

  • $k_2 = 2 \cdot 10^{-5}$   ⇒   subtasks (1) to (4),
  • $k_2 = 10^{-4}$   ⇒   subtasks (5) and (6).


An equivalent channel model is shown below, with only the part highlighted in green being considered further. This means:  

  • The basic attenuation (path loss) and the basic propagation time are not taken into account here.
  • The frequency response of this  $(k_0, \tau_0$)–model is designated  $H_0(f)$ .


An important descriptive parameter of any mobile radio system is the coherence bandwidth  $B_{\rm K}$, which is defined in the chapter  GWSSUS–Kanalmodell . The coherence bandwidth indicates whether the system can be approximated as non-frequency-selective:

  • This is justified if the signal bandwidth  $B_{\rm S}$  is significantly smaller than the coherence bandwidth  $B_{\rm K}$.
  • Otherwise, the mobile radio system is frequency-selective, which requires a more complicated description.


As a simple approximation for the coherence bandwidth, the reciprocal value of pulse broadening is often used in the literature (marked by an apostrophe in our learning tutorial):

$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{\tau_{\rm max} - \tau_{\rm min}} \hspace{0.05cm}.$$




Notes:

  • This task belongs to the topic of the chapter  Mehrwegeempfang beim Mobilfunk.
  • For the solution you also need the speed of light  $c = 3 \cdot 10^8 \ \rm m/s$.
  • For  $k_2$  only positive values are used here. However, as you may remember,if the secondary path is created by reflection on a wall, a phase change by  $\pi$  occurs, resulting in a negative value of $k_2$.



Questionnaire

1

What length  $d_1$  does the direct path have?

$d_1 \ = \ $

$\ \ \rm km$

2

What are the parameters of the simplified model for  $k_2 = 2 \cdot 10^{-5}$?

$k_0 \ = \ $

$\tau_0 \ = \ $

$\ \ \rm µ s$

3

Calculate the magnitude of the frequency response   ⇒   $|H_0(f)|$  of the simplified model for the frequencies  $f = 0$,  $f = 250 \ \rm kHz$  and  $f = 500 \ \rm kHz$

$|H_0(f = 0)| \ = \ $

$|H_0(f = 250 \ \rm kHz)| \ = \ $

$|H_0(f = 500 \ \rm kHz)| \ = \ $

4

For which signal frequencies  $f_{\rm S}$  does destructive interference occur here?

$f_{\rm S} = 500 \ \rm kHz$,
$f_{\rm S} = 750 \ \rm kHz$,
$f_{\rm S} = 1 \ \rm MHz$.

5

What is the approximate coherence bandwidth for  $k_2 = 2 \cdot 10^{-5}$  or.  $k_2 = 10^{-4}$ ?

$k_2 = 2 \cdot 10^{-5} \text{:} \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' = \ $

$\ \rm MHz
$k_2 = 10^{-4} \text{:} \ \hspace{0.4cm} B_{\rm K}\hspace{0.01cm}' = \ $

$\ \rm MHz

6

Which statements are correct regarding frequency selectivity if  $B_{\rm S}$  denotes the signal bandwidth?

For GSM:   $(B_{\rm S} = 200 \ \rm kHz)$  the channel is frequency selective.
For UMTS:   $(B_{\rm S} = 5 \ \rm MHz)$  the channel is frequency selective.


Sample solution

(1)  We have $\tau_1 = d_1/c$  ⇒  $ d_1 = \tau_1 \cdot c = 10^{-5} \rm s \cdot 3 \cdot 10^8 \ m/s \ \ \underline {= 3 \ km}$.


(2)  The damping factor is $k_0 = k_2/k_1 \ \ \underline {= 0.2}$ and the delay time $\tau_0 = \tau_2 \ – \tau_1 \ \underline {= 1 \ \ \rm µ s}$.

  • The path loss effective for both paths is thus $k_1 = 10^{-4}$ and the basic delay time is $\tau_1 = 10 \ \ \rm µ s$.

(3)  The impulse location is $$h_{\rm 0}(\tau) = \delta(\tau) + k_0 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.$$

By Fourier transformation you get the frequency response

$$H_{\rm 0}(f) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 + k_0 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_0}=1 + k_0 \cdot {\cos}( 2 \pi f \tau_0) + {\rm j}\cdot k_0 \cdot {\sin }( 2 \pi f \tau_0) \hspace{0.05cm},$$

and thus to the following magnitude of the frequency response: $$|H_{\rm 0}(f)| = \sqrt{ \left [ 1 + k_0 \cdot {\cos}( 2 \pi f \tau_0)\right ]^2 + k_0^2 \cdot {\sin^2 }( 2 \pi f \tau_0)}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}|H_{\rm 0}(f = 0)| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1+ k_0 \hspace{0.1cm} \underline {=1.2} \hspace{0.05cm},$$ $$|H_{\rm 0}(f = 250\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{ \left [ 1 + k_0 \cdot {\cos}( \pi/2)\right ]^2 + k_0^2 \cdot {\sin^2 }( \pi/2)} = \sqrt{1+ k_0^2} \hspace{0.1cm} \underline {\approx 1.02} \hspace{0.05cm},$$ $$|H_{\rm 0}(f = 500\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{ \left [ 1 + k_0 \cdot {\cos}( \pi)\right ]^2 + k_0^2 \cdot {\sin^2 }( \pi)} = {1- k_0} \hspace{0.1cm} \underline {= 0.8} \hspace{0.05cm}.$$

Magnitude of the frequency response of a two-way channel

The graphic (red curve) shows the function $|H_0(f)|$.

  • The values you are looking for are marked by the yellow dots.
  • The blue curve refers to the subtask (5) with $k_0 = 1 \ \Rightarrow \ k_2 = k_0 \cdot k_1 = 10^{–4}$.


(4)  Solution 1 is correct:

  • Destructive interference occurs for $|H_0(f)| < 1$, for example for $f = 500 \ \rm kHz$.
  • On the other hand:
$$|H_{\rm 0}(f = 750\,{\rm kHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 250\,{\rm kHz})| \approx 1.02 > 1\hspace{0.05cm},$$
$$|H_{\rm 0}(f = 1\,{\rm MHz})| \hspace{-0.1cm} \ = \ \hspace{-0.1cm} |H_{\rm 0}(f = 0)| = 1.2 > 1 \hspace{0.05cm}.$$


(5)  The difference $\tau_{\rm max} \ – \tau_{\rm min}$ between the delays in the two paths is equal to $\tau_0 = 1 \ \ \rm µ s$.

  • So the coherence bandwidth is
$$B_{\rm K}\hspace{0.01cm}' = {1}/{\tau_{\rm 0} } \hspace{0.1cm} \underline {=1\,{\rm MHz}} \hspace{0.05cm}.$$
  • The result is independent from $k_2$. It applies to $k_2 = 2 \cdot 10^{-5} \Rightarrow k_0 = 0.2$ and $k_2 = 10^{-4} \Rightarrow k_0 = $1 in the same way.
  • This approximation $B_{\rm K}\hspace{0.01cm}'$ of the coherence bandwidth is shown in the graph.


(6)  Solution 2 is correct:

  • The channel is non-frequency-selective if the coherence bandwidth $B_{\rm K}$ is significantly larger than the signal bandwidth $B_{\rm S}$.
  • For the given channel, this is true for GSM, but not for UMTS. For UMTS, this is frequency-selective channel.