Aufgaben:Exercise 1.1Z: Simple Path Loss Model: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 3: Zeile 3:
  
 
[[Datei:P_ID2121__Mob_Z_1_1.png|right|frame|Bandbreitenorganisation bei DSL]]
 
[[Datei:P_ID2121__Mob_Z_1_1.png|right|frame|Bandbreitenorganisation bei DSL]]
Funkübertragung bei Sichtverbindung lässt sich durch das so genannte Pfadverlustmodell beschreiben, das durch folgende Gleichungen gegeben ist:
+
Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations:
:$$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm},$$
+
$$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm},$$
:$$V_{\rm 0} = \gamma \cdot 10\,{\rm dB}  \cdot {\rm lg} \hspace{0.1cm} \frac{4 \cdot \pi \cdot d_0}{\lambda} \hspace{0.05cm}.$$
+
$$V_{\rm 0} = \gamma \cdot 10\,{\rm dB}  \cdot {\rm lg} \hspace{0.1cm} \frac{4 \cdot \pi \cdot d_0}{\lambda} \hspace{0.05cm}.$$
  
Die Grafik zeigt den Pfadverlust  $V_{\rm P}(d)$  in  $\rm dB$. Auch die Abszisse  $d$  ist logarithmisch dargestellt.  
+
The graphic shows the path loss  $V_{\rm P}(d)$  in  $\rm dB$. The abscissa  $d$  is also displayed logarithmically.  
  
In obiger Gleichung sind verwendet:
+
In the above equation are used:
* die Distanz  $d$  von Sender und Empfänger,
+
* the distance  $d$  of sender and receiver,
* die Bezugsentfernung  $d_0 = 1 \ \rm m$,
+
* the reference distance  $d_0 = 1 \ \rm m$,
* der Pfadverlustexponent  $\gamma$,
+
* the path loss exponent  $\gamma$,
* die Wellenlänge  $\lambda$  der elektromagnetischen Welle.
+
* the wavelength  $\lambda$  of electromagnetic wave.
  
  
Gezeigt sind zwei Szenarien  $\rm (A)$  und  $\rm (B)$  mit gleichem Pfadverlust bei der Distanz  $d_0 = 1 \ \rm m$:
+
Two scenarios are shown  $\rm (A)$  and  $\rm (B)$  with the same path loss at distance  $d_0 = 1 \ \rm m$:
:$$V_{\rm 0} = V_{\rm P}(d = d_0) = 20\,{\rm dB}  \hspace{0.05cm}.$$
+
$$V_{\rm 0} = V_{\rm P}(d = d_0) = 20\,{\rm dB}  \hspace{0.05cm}.$$
  
Eines dieser beiden Szenarien beschreibt die so genannte <i>Freiraumdämpfung</i>, charakterisiert  durch den Pfadverlustexponenten&nbsp; $\gamma = 2$. Die Gleichung für die Freiraumdämpfung  gilt allerdings nur im <i>Fernfeld</i>, also wenn der Abstand&nbsp; $d$&nbsp; zwischen Sender und Empfänger größer ist als die &bdquo;Fraunhofer&ndash;Distanz&rdquo;
+
One of these two scenarios describes the so-called <i>free space attenuation</i>, characterized by the path loss exponent&nbsp; $\gamma = 2$. However, the equation for the free space attenuation only applies in the <i>far-field</i>, i.e. when the distance&nbsp; $d$&nbsp; between transmitter and receiver is greater than the &bdquo;Fraunhofer&ndash;distance&rdquo;
:$$d_{\rm F} = {2 D^2}/{\lambda} \hspace{0.05cm}.$$
+
$$d_{\rm F} = {2 D^2}/{\lambda} \hspace{0.05cm}.$$
  
Hierbei ist&nbsp; $D$&nbsp; die größte physikalische Abmessung der Sendeantenne. Bei einer&nbsp; $\lambda/2$&ndash;Antenne erhält man hierfür das einfache Ergebnis:
+
Where&nbsp; $D$&nbsp; is the largest physical dimension of the transmitting antenna. With an&nbsp; $\lambda/2$&ndash;antenna, you get the simple result for this:
:$$d_{\rm F} = \frac{2 \cdot (\lambda/2)^2}{\lambda} = {\lambda}/{2}\hspace{0.05cm}.$$
+
$$d_{\rm F} = \frac{2 \cdot (\lambda/2)^2}{\lambda} = {\lambda}/{2}\hspace{0.05cm}.$$
  
  
Zeile 30: Zeile 30:
  
  
''Hinweise:''  
+
''Notes:''  
* Die Aufgabe gehört zum Kapitel&nbsp; [[Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung|Distanzabhängige Dämpfung und Abschattung]].
+
* The task belongs to the chapter&nbsp; [[Mobile_Communication/Distancedependent%C3%A4ngige_D%C3%A4mpfung_und_Abschattung|Distance-dependent attenuation and shading]].
* Die Lichtgeschwindigkeit beträgt&nbsp; $c = 3 \cdot 10^8 \ {\rm m/s}$.
+
* The speed of light is&nbsp; $c = 3 \cdot 10^8 \ {\rm m/s}$.
 
   
 
   
  
Zeile 38: Zeile 38:
  
  
===Fragebogen===
+
===Questionnaire===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Pfadverlustexponenten gelten für die Szenarien &nbsp;$\rm (A)$&nbsp; und &nbsp;$\rm (B)$?
+
{Which path loss exponents apply to the scenarios &nbsp;$\rm (A)$&nbsp; and &nbsp;$\rm (B)$?
 
|type="{}"}
 
|type="{}"}
 
$\gamma_{\rm A}\ = \ $ { 2 3% }
 
$\gamma_{\rm A}\ = \ $ { 2 3% }
 
$\gamma_{\rm B} \ = \ $ { 2.5 3% }
 
$\gamma_{\rm B} \ = \ $ { 2.5 3% }
  
{Welches Szenario beschreibt die Freiraumdämpfung?
+
{Which scenario describes the free space attenuation?
 
|type="()"}
 
|type="()"}
+ Szenario &nbsp;$\rm (A)$,
+
+ scenario &nbsp;$\rm (A)$,
- Szenario &nbsp;$\rm (B)$.
+
- Scenario &nbsp;$\rm (B)$.
  
{Welche Signalfrequenzen liegen den Szenarien &nbsp;$\rm (A)$&nbsp; und &nbsp;$\rm (B)$&nbsp; zugrunde?
+
{Which signal frequencies are the basis for the scenarios &nbsp;$\rm (A)$&nbsp; and &nbsp;$\rm (B)$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$f_{\rm A} \ = \ $ { 240 3% } $\ \rm MHz$
+
$f_{\rm A} \ = \ $ { 240 3% } $\ \ \rm MHz$
$f_{\rm B} \ = \ $ { 151.4 3% } $\ \rm MHz$
+
$f_{\rm B} \ = \ $ { 151.4 3% } $\ \ \rm MHz$
  
{Gilt das Freiraum&ndash;Szenario für alle Distanzen zwischen&nbsp; $1 \ \rm m$&nbsp; und&nbsp; $10 \ \rm km$?
+
Does the free space&ndash scenario apply to all distances between&nbsp; $1 \ \ \rm m$&nbsp; and&nbsp; $10 \ \rm km$?
 
|type="()"}
 
|type="()"}
+ Ja,
+
+ Yes,
- Nein.
+
- No.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Sample solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die (einfachste) Pfadverlustgleichung lautet:
+
'''(1)''&nbsp; The (simplest) path loss equation is
:$$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm}.$$
+
$$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm}.$$
  
*Beim Szenario (A) beträgt der Abfall pro Dekade (zum Beispiel zwischen $d_0 = 1 \ \rm m$ und $d = 10 \ \rm m$) genau $20 \ \rm dB$ und beim Szenario (B) $25 \ \rm dB$.  
+
*In scenario (A), the waste per decade (for example, between $d_0 = 1 \ \rm m$ and $d = 10 \ \rm m$) is exactly $20 \ \rm dB$ and in scenario (B) $25 \ \rm dB$.  
*Daraus folgt:
+
*It follows:
:$$\gamma_{\rm A} \hspace{0.15cm} \underline{= 2}\hspace{0.05cm},\hspace{0.2cm}\gamma_{\rm B} \hspace{0.15cm} \underline{= 2.5}\hspace{0.05cm}.$$
+
$$\gamma_{\rm A} \hspace{0.15cm} \underline{= 2}\hspace{0.05cm},\hspace{0.2cm}\gamma_{\rm B} \hspace{0.15cm} \underline{= 2.5}\hspace{0.05cm}.$$
  
  
  
'''(2)'''&nbsp; Richtig ist <u>Lösungsvorschlag 1</u>, da die Freiraumdämpfung durch den Pfadverlustexponenten $\gamma = 2$ gekennzeichnet ist.
+
'''(2)'''&nbsp; Correct is <u>solution 1</u>, since the free space attenuation is characterized by the path loss exponent $\gamma = 2$.
  
  
  
'''(3)'''&nbsp; Der Pfadverlust bei $d_0 = 1 \ \rm m$ ist in beiden Fällen $V_0 = 20 \ \rm dB$. Beim Szenario (A) gilt weiter:
+
'''(3)'''&nbsp; The path loss at $d_0 = 1 \ \rm m$ is in both cases $V_0 = 20 \ \rm dB$. For scenario (A) the same applies:
:$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
+
$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
 
  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
 
  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm}
  \lambda_{\rm A} = 4 \pi \cdot 0.1\,{\rm m} = 1.257\,{\rm m}
+
  \lambda_{\rm A} = 4 \pi \cdot 0.1\,{\rm m} = 1,257\,{\rm m}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*Die Frequenz $f_{\rm A}$ hängt mit der Wellenlänge $\lambda_{\rm A}$ über die Lichtgeschwindigkeit $c$ zusammen:
+
*The frequency $f_{\rm A}$ is related to the wavelength $\lambda_{\rm A}$ over the speed of light $c$:
:$$f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz}
+
$$f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz}
  \hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}}
+
  \hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*Dagegen gilt für das Szenario (B):
+
*On the other hand, the scenario (B)
:$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ]^{2.5} = 20\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 25 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ] = 20\,{\rm dB}$$
+
$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ]^{2.5} = 20\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 25 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ] = 20\,{\rm dB}$$
:$$\Rightarrow \hspace{0.3cm}  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31
+
$$\Rightarrow \hspace{0.3cm}  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm}
+
   \hspace {0.3cm} \Rightarrow \hspace{0.3cm}
 
  {\lambda_{\rm B}} = \frac{10}{6.31} \cdot {\lambda_{\rm A}}\hspace{0.3cm}
 
  {\lambda_{\rm B}} = \frac{10}{6.31} \cdot {\lambda_{\rm A}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}
  {f_{\rm B}} = \frac{6.31}{10} \cdot {f_{\rm A}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline{\approx 151.4 \,\,{\rm MHz}}
+
  {f_{\rm B}}} = \frac{6.31}{10} \cdot {f_{\rm A}}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline {\approx 151.4 \,\,{\rm MHz}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Richtig ist der <u>erste Lösungsvorschlag</u>:  
+
'''(4)'''&nbsp; <u>first suggested solution</u> is correct:  
*Beim Freiraum&ndash;Szenario (A) beträgt die Fraunhofer&ndash;Distanz&nbsp; $d_{\rm F} = \lambda_{\rm A}/2 \approx 63 \ \rm cm$. Es gilt also stets&nbsp; $d > d_{\rm F}$.  
+
*In free space&ndash;scenario (A) the Fraunhofer&ndash;distance&nbsp; $d_{\rm F} = \lambda_{\rm A}/2 \approx 63 \ \rm cm$. Thus, the following always applies&nbsp; $d > d_{\rm F}$.  
*Auch beim Szenario (B) ist wegen&nbsp; $\lambda_{\rm B} \approx 2 \ \rm m$&nbsp; bzw. &nbsp;$d_{\rm F} \approx 1 \ \rm m$&nbsp; der gesamte dargestellte Verlauf richtig.
+
*Also in scenario (B) is because of&nbsp; $\lambda_{\rm B} \approx 2 \ \rm m$&nbsp; or &nbsp;$d_{\rm F} \approx 1 \ \rm m$&nbsp; the entire displayed course correct.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Version vom 25. März 2020, 16:44 Uhr

Bandbreitenorganisation bei DSL

Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations: $$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm},$$ $$V_{\rm 0} = \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \frac{4 \cdot \pi \cdot d_0}{\lambda} \hspace{0.05cm}.$$

The graphic shows the path loss  $V_{\rm P}(d)$  in  $\rm dB$. The abscissa  $d$  is also displayed logarithmically.

In the above equation are used:

  • the distance  $d$  of sender and receiver,
  • the reference distance  $d_0 = 1 \ \rm m$,
  • the path loss exponent  $\gamma$,
  • the wavelength  $\lambda$  of electromagnetic wave.


Two scenarios are shown  $\rm (A)$  and  $\rm (B)$  with the same path loss at distance  $d_0 = 1 \ \rm m$: $$V_{\rm 0} = V_{\rm P}(d = d_0) = 20\,{\rm dB} \hspace{0.05cm}.$$

One of these two scenarios describes the so-called free space attenuation, characterized by the path loss exponent  $\gamma = 2$. However, the equation for the free space attenuation only applies in the far-field, i.e. when the distance  $d$  between transmitter and receiver is greater than the „Fraunhofer–distance” $$d_{\rm F} = {2 D^2}/{\lambda} \hspace{0.05cm}.$$

Where  $D$  is the largest physical dimension of the transmitting antenna. With an  $\lambda/2$–antenna, you get the simple result for this: $$d_{\rm F} = \frac{2 \cdot (\lambda/2)^2}{\lambda} = {\lambda}/{2}\hspace{0.05cm}.$$




Notes:



Questionnaire

1

Which path loss exponents apply to the scenarios  $\rm (A)$  and  $\rm (B)$?

$\gamma_{\rm A}\ = \ $

$\gamma_{\rm B} \ = \ $

2

Which scenario describes the free space attenuation?

scenario  $\rm (A)$,
Scenario  $\rm (B)$.

3

Which signal frequencies are the basis for the scenarios  $\rm (A)$  and  $\rm (B)$ ?

$f_{\rm A} \ = \ $

$\ \ \rm MHz$
$f_{\rm B} \ = \ $

$\ \ \rm MHz$
Does the free space&ndash scenario apply to all distances between  $1 \ \ \rm m$  and  $10 \ \rm km$?
|type="()"}
+ Yes,
- No.


Sample solution

'(1)  The (simplest) path loss equation is $$V_{\rm P}(d) = V_{\rm 0} + \gamma \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (d/d_0)\hspace{0.05cm}.$$

  • In scenario (A), the waste per decade (for example, between $d_0 = 1 \ \rm m$ and $d = 10 \ \rm m$) is exactly $20 \ \rm dB$ and in scenario (B) $25 \ \rm dB$.
  • It follows:

$$\gamma_{\rm A} \hspace{0.15cm} \underline{= 2}\hspace{0.05cm},\hspace{0.2cm}\gamma_{\rm B} \hspace{0.15cm} \underline{= 2.5}\hspace{0.05cm}.$$


(2)  Correct is solution 1, since the free space attenuation is characterized by the path loss exponent $\gamma = 2$.


(3)  The path loss at $d_0 = 1 \ \rm m$ is in both cases $V_0 = 20 \ \rm dB$. For scenario (A) the same applies: $$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}}\right ]^2 = 20\,{\rm dB} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm A}} = 10 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \lambda_{\rm A} = 4 \pi \cdot 0.1\,{\rm m} = 1,257\,{\rm m} \hspace{0.05cm}.$$

  • The frequency $f_{\rm A}$ is related to the wavelength $\lambda_{\rm A}$ over the speed of light $c$:

$$f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz} \hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}} \hspace{0.05cm}.$$

  • On the other hand, the scenario (B)

$$10 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ]^{2.5} = 20\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 25 \cdot {\rm lg}\hspace{0.1cm} \left [ \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}}\right ] = 20\,{\rm dB}$$ $$\Rightarrow \hspace{0.3cm} \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31 \hspace {0.3cm} \Rightarrow \hspace{0.3cm} {\lambda_{\rm B}} = \frac{10}{6.31} \cdot {\lambda_{\rm A}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {f_{\rm B}}} = \frac{6.31}{10} \cdot {f_{\rm A}}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline {\approx 151.4 \,\,{\rm MHz}} \hspace{0.05cm}.$$


(4)  first suggested solution is correct:

  • In free space–scenario (A) the Fraunhofer–distance  $d_{\rm F} = \lambda_{\rm A}/2 \approx 63 \ \rm cm$. Thus, the following always applies  $d > d_{\rm F}$.
  • Also in scenario (B) is because of  $\lambda_{\rm B} \approx 2 \ \rm m$  or  $d_{\rm F} \approx 1 \ \rm m$  the entire displayed course correct.