Aufgaben:Aufgabe 5.8Z: Verfälschung von BMP-Bildern: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 48: Zeile 48:
 
* Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Anwendungen_bei_Multimedia%E2%80%93Dateien| Anwendungen bei Multimedia–Dateien]].
 
* Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Anwendungen_bei_Multimedia%E2%80%93Dateien| Anwendungen bei Multimedia–Dateien]].
 
* Alle Bilder wurden mit dem Windows&ndash;Programm [https://www.lntwww.de/downloads/Sonstiges/Programme/DKM.zip Digitale Kanalmodelle & Multimedia] erzeugt. <br>Der angegebene Link verweist auf die Zip&ndash;Version dieses Programms.
 
* Alle Bilder wurden mit dem Windows&ndash;Programm [https://www.lntwww.de/downloads/Sonstiges/Programme/DKM.zip Digitale Kanalmodelle & Multimedia] erzeugt. <br>Der angegebene Link verweist auf die Zip&ndash;Version dieses Programms.
* Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
+
  
  

Version vom 29. Mai 2018, 13:41 Uhr

Verfälschte BMP–Dateien

Wir gehen hier von den folgenden Bildern im Format 160x120 aus:

  • dem Bild „Weiß” mit der Farbtiefe 1 BPP (ein Bit per Pixel) und
  • dem Bild „Erde” mit 24 BPP, auch wenn hier nur wenige der $2^{24}$ möglichen Farben genutzt werden.


Das Bild „W1” ist durch Verfälschung mit einem Gilbert–Elliott–Modell unter Verwendung folgender Parameter entstanden:

$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, \hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.1, \hspace{0.2cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$

Damit erhält man für die mittlere Fehlerwahrscheinlichkeit

$$p_{\rm M} = \frac{p_{\rm G} \cdot {\rm Pr}({\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}+ p_{\rm B} \cdot {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)} = 0.01 \hspace{0.05cm},$$

und für die Fehlerkorrelationsdauer

$$D_{\rm K} =\frac{1}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )}-1 \approx 8 \hspace{0.05cm}.$$

Das Bild „W2” entstand nach Verfälschung mit den GE–Parametern

$$p_{\rm B} = 0.2\hspace{0.05cm},\hspace{0.2cm} {\rm Pr}({\rm G\hspace{0.05cm}|\hspace{0.05cm} B})= 0.01, \hspace{0.2cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.0005\hspace{0.05cm}.$$

Die Fehlerwahrscheinlichkeit im Zustand „$\rm G$” wurde so gewählt, dass sich die mittlere Fehlerwahrscheinlichkeit ebenfalls zu $p_{\rm M} = 0.01$ ergibt.

Die beiden unteren Bilder „E3” und „E4” können entstanden sein durch Verfälschung mit

  • dem BSC–Modell $(p = 0.01)$,
  • dem gleichen GE–Modell, das zu „W1” geführt hat,
  • dem gleichen GE–Modell, das zu „W2” geführt hat.


Dies zu klären, ist Ihre Aufgabe. Eine der Antworten ist jeweils richtig.


Hinweise:



Fragebogen

1

Ermitteln Sie für das mit dem Gilbert–Elliott–Modell verfälschte Bild „W2” die Fehlerwahrscheinlichkeit im Zustand „GOOD”, so dass sich $p_{\rm M} = 1\%$ ergibt?

$p_{\rm G} \ = \ $

$\ \%$

2

Wie groß ist die Korrelationsdauer der Fehler im Bild „W2”?

$D_{\rm K} \ = \ $

3

Wieviele Bitfehler $(N_{\rm (3)})$ treten (statistisch gesehen) im „W2” auf?

$N_{\rm (3)} \ = \ $

4

Wieviele Bitfehler $(N_{\rm (4)})$ treten im Bild „E3” (oder „E4”) bei $p_{\rm M} = 1\%$ auf?

$N_{\rm (4)} \ = \ $

5

Welches Fehlermodell liegt dem Bild „E3” zugrunde?

BSC–Modell mit $p = 1\%$,
gleiches GE–Modell wie für „W1”,
gleiches GE–Modell wie für „W2

6

Welches Fehlermodell liegt dem Bild „E4” zugrunde?

BSC–Modell mit $p = 1\%$,
gleiches GE–Modell wie für „W1”,
gleiches GE–Modell wie für „W2


Musterlösung

(1)  Die Umstellung der vorgegebenen $p_{\rm M}$–Gleichung führt zum gesuchten Ergebnis:

$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{p_{\rm M} \cdot [{\rm Pr}({\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}+ {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)] - p_{\rm B} \cdot {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) } = \frac{ 0.01 \cdot [0.01+0.0005] - 0.2 \cdot 0.0005}{0.01} \hspace{0.15cm}\underline {= 0.05\%}\hspace{0.05cm}.$$

(2)  Mit der angegebenen Gleichung erhält man:

$$D_{\rm K} =\frac{1}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )}-1 =\frac{1}{0.0105}-1\hspace{0.15cm}\underline {\approx 94.2}\hspace{0.05cm}.$$


(3)  Das Bild „Weiß” besteht aus $160 \cdot 120 = 19200 \ \rm Pixel$ und wird wegen der Farbtiefe $1 \ \rm BPP$ auch durch $19200 \ \rm Bit$ beschrieben. Mit der mittleren Bitfehlerwahrscheinlichkeit $p_{\rm M} = 0.01$ sind in beiden Bildern (W1 und W2) jeweils $N_{\rm (3)} \underline{= 192}$ Bitfehler zu erwarten.


(4)  Bei gleicher Bildgröße und Fehlerwahrscheinlichkeit gibt es wegen der Farbtiefe $24 \ \rm BPP$ nun deutlich mehr Bitfehler, nämlich $N_{\rm (4)} = 24 \cdot 192 \ \underline{= 4608}$ (statistischer Wert).


(5)  Richtig ist Antwort 1: Das Bild „E3” zeigt die typische Struktur statistisch unabhängiger Fehler.


(6)  Richtig ist Antwort 3:

  • Das Bild „E4” zeigt eine typische Bündelfehlerstruktur.
  • Verwendet wurde hierbei das GE–Modell mit $D_{\rm K} \approx 94$, das auch für „W2” verwendet wurde.
  • Da aber nun jedes einzelne Pixel durch $24 \ \rm Bit$ dargestellt wird, ergibt sich die mittlere Fehlerkorrelationsdauer (bezogen auf Pixel) nur etwa zu ${D_{\rm K}}' = 4$.
  • Das GE–Modell mit $D_{\rm K} \approx 8$ (bezogen auf Bit) würde bei einem $24 \ \rm BPP$–Bild etwa so aussehen wie das auf dem BSC–Modell basierende Bild „E3”.
  • Bezogen auf Pixel ergäben sich dann eher statistisch unabhängige Fehler.