Aufgabe 5.7: Rechteck-Matched-Filter

Aus LNTwww
Wechseln zu:Navigation, Suche

Rechteckförmige Matched-Filter-Signale

Am Eingang eines Tiefpasses mit einer rechteckförmigen Impulsantwort $h(t)$ liegt das Empfangssignal $r(t)$ an, das sich additiv aus einem impulsförmigen Nutzsignal $g(t)$ und einem Rauschsignal $n(t)$ zusammensetzt. Es gelte:

  • Der Nutzimpuls $g(t)$ ist rechteckförmig.
  • Die Impulsdauer beträgt $\Delta t_g = 2 \hspace{0.05cm}\rm \mu s$.
  • Die Impulsamplitude ist $g_0 = 2 \hspace{0.05cm}\rm V$.
  • Die Mitte des Impulses $T_g = 3 \hspace{0.05cm}\rm \mu s$.
  • Das Rauschen $n(t)$ ist weiß und gaußverteilt.
  • Die Leistungsdichte beträgt $N_0 = 4 \cdot 10^{-6} \hspace{0.05cm}\rm V^2\hspace{-0.1cm}/Hz$ bezogen auf den Widerstand $1 \hspace{0.05cm}\rm \Omega$.


Die rechteckförmige Impulsantwort des Filters beginnt bei $t = 0$. Die Impulsantwortdauer $\Delta t_h$ ist frei wählbar. Die Höhe $1/\Delta t_h$ der Impulsantwort ist jeweils so angepasst, dass $H(f = 0) = 1$ gilt.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Matched-Filter.
  • Für die Teilfragen (1) bis (6) gelte stets $\Delta t_h =\Delta t_g = 2 \hspace{0.05cm}\rm \mu s$.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Welche der drei Aussagen sind unter der Annahme $\Delta t_h =\Delta t_g$ zutreffend?

Das Filter ist an den Eingangsimpuls $g(t)$ angepasst.
Es gibt ein anderes Filter mit größerem S/N-Verhältnis.
Das Filter lässt sich als Integrator über die Zeit $\Delta t_h$ realisieren.

2

Was ist der optimale Detektionszeitpunkt?

$T_\text{D, opt} \ = $

$\ \rm \mu s$

3

Welchen Wert besitzt hier die Matched-Filter-Konstante?

$K_\text{MF} \ = $

$\cdot 10^6 \ \rm 1/Vs$

4

Welches S/N-Verhältnis ergibt sich zum optimalen Detektionszeitpunkt?

$\rho_d(T_\text{D, opt}) \ = $

5

Wie groß sind der Nutzabtastwert zum optimalen Zeitpunkt TD, opt und die Störleistung vor dem Detektor?

$d_S(T_\text{D, opt}) \ = $

$\ \rm V$
$\sigma_d^2 \ = $

$\ \rm V^2$

6

Welches S/N-Verhältnis ergibt sich zum Detektionszeitpunkt $T_{\rm D} = 3 \hspace{0.05cm}\rm \mu s$?

$\rho_d(T_{\rm D} = 3 \hspace{0.05cm}\rm \mu s) \ = $

7

Welche der folgenden Aussagen treffen zu, wenn $\Delta t_h =1 \hspace{0.05cm}\rm \mu s$ gilt?
Hinweis: Im Bereich von $0$ bis $1 \hspace{0.05cm}\rm \mu s$ hat die Impulsantwort somit den Wert $10^6 \ \rm 1/s$.

Jedes $T_{\rm D}$ im Bereich $3 \hspace{0.05cm}\rm \mu s$ ... $4 \hspace{0.05cm}\rm \mu s$ führt zum maximalen SNR.
Der Nutzwert $d_S(T_\text{D, opt})$ ist kleiner als in der Teilaufgabe (5) berechnet.
Die Störleistung $\sigma_d^2$ ist größer als in der Teilaufgabe (5) berechnet.
Das S/N-Verhältnis ist kleiner als in der Teilaufgabe (3) berechnet.

8

Welche der folgenden Aussagen treffen zu, wenn $\Delta t_h =3 \hspace{0.05cm}\rm \mu s$ gilt?
Hinweis: Im Bereich von $0$ bis $13 \hspace{0.05cm}\rm \mu s$ hat die Impulsantwort den Wert $0.33 \cdot 10^6 \ \rm 1/s$.

Jedes $T_{\rm D}$ im Bereich $3 \hspace{0.05cm}\rm \mu s$ ... $4 \hspace{0.05cm}\rm \mu s$ führt zum maximalen SNR.
Der Nutzwert $d_S(T_\text{D, opt})$ ist kleiner als in der Teilaufgabe (5) berechnet.
Die Störleistung $\sigma_d^2$ ist größer als in der Teilaufgabe (5) berechnet.
Das S/N-Verhältnis ist kleiner als in der Teilaufgabe (3) berechnet.


Musterlösung

1.  Bei gleicher Impulsdauer (Δth = Δtg)  handelt es sich um ein Matched-Filter, auch wenn Amplitude (0.5 · 10–6 1/s bzw. 2 V) und zeitliche Lage von g(t) und h(t) nicht übereinstimmen. Damit gibt es auch kein anderes Filter mit besserem Signal-zu-Rauschleistungsverhältnis. Das Filter mit rechteckförmiger Impulsantwort lässt sich auch als ein Integrator über die Zeitdauer Δth interpretieren. Richtig sind somit die Lösungsvorschläge 1 und 3.
2.  Die Impulsantwort des Matched-Filters lautet: hMF(t) = KMF · g(TDt). Der Eingangsimpuls ist im Bereich von 2 μs bis 4 μs ungleich Null, bei Spiegelung im Bereich von –4 μs bis –2 μs. Durch eine Verschiebung um 4 μs wird erreicht, dass g(TDt) wie die Impulsantwort hMF(t) zwischen 0 und 2 μs liegt. Daraus folgt: TD, opt = 4 μs.
3.  Mit Δth = Δtg = 2 · 10–6 s und g0 = 2 V erhält man KMF = 1/(Δtg · g0) = 0.25 · 106 1/Vs.
4.  Die Energie des Nutzimpulses g(t) ist Eg = g02 · Δtg = 8 · 10–6 V2s. Daraus folgt für das maximale S/N-Verhältnis:
$$\rho _d (T_{{\rm{D, \hspace{0.05cm}opt}}} ) = \frac{2 \cdot E_g }{N_0 } = \frac{{2 \cdot 8 \cdot 10^{ - 6} \;{\rm{V}}^2 {\rm{s}}}}{{4 \cdot 10^{ - 6} \;{\rm{V}}^2 /{\rm{Hz}}}}\hspace{0.15cm}\underline{ = 4}.$$
P ID575 Sto A 5 7 f.png
5.  Der Ausgangsimpuls dS(t) ist dreieckförmig zwischen 2 und 6 Mikrosekunden mit dem Maximum g0 = 2 V bei TD, opt = 4 μs. Die Störleistung ergibt sich zu:
$$\sigma _d ^2 = \frac{N_0 }{2 \cdot \Delta t_h } \hspace{0.15 cm}\underline{= 1\;{\rm{V}}^2} .$$
Mit diesen beiden Rechengrößen kann man wiederum das maximale S/N-Verhältnis berechnen:
$$\rho _d (T_{{\rm{D, \hspace{0.05cm}opt}}} ) = \frac{{d_{\rm S} (T_{{\rm{D, \hspace{0.05cm}opt}}} )^2}}{\sigma _d ^2 } = \frac{({2\;{\rm{V}})^2 }}{{1\;{\rm{V}}^2 }} = 4.$$
6.  Aus obiger Skizze erkennt man, dass nun der Nutzabtastwert nur mehr halb so groß ist, nämlich 1 V. Damit ist für TD = 3 μs das S/N-Verhältnis um den Faktor 4 kleiner, also gleich 1.
P ID576 Sto A 5 7 g.png
7.  Die Skizze zeigt, dass nun der Ausgangsimpuls dS(t) trapezförmig verläuft. Im Bereich von 3 μs bis 4 μs ist der Nutzabtastwert konstant gleich g0 = 2 V.
Wegen der nur halb so breiten Impulsantwort h(t) ist der Frequenzgang H(f) um den Faktor 2 breitbandiger und dadurch die Störleistung größer:
$$\sigma_d ^2 = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {h^2 (t)\,{\rm{d}}t} = \frac{N_0 }{2 \cdot \Delta t_h } = 2\;{\rm{V}}^2 .$$
Damit ergibt sich für das S/N-Verhältnis nun der Wert:
$$\rho_d (T_{{\rm{D, \hspace{0.05cm}opt}}} ) \hspace{0.15cm}\underline{= 2}.$$
Richtig sind somit die Lösungsvorschläge 1, 3 und 4.
P ID577 Sto A 5 7 h.png
8.  Rechts ist der Ausgangsimpuls dS(t) für Δth = 3 μs skizziert. Auch dieses ist trapezförmig. Der optimale Detektionszeitpunkt liegt nun im Bereich zwischen <nobr>4 μs</nobr> und 5 μs, und das Nutzsignal ist nur mehr ein Drittel so groß wie bei Anpassung: dS(TD, opt) = 2/3V.
Für die Störleistung gilt nun:
$$\sigma_d ^2 = \frac{N_0 }{2 \cdot \Delta t_h } = \frac{2}{3}\;{\rm{V}}^2 .$$
Die Störleistung ist zwar kleiner – also günstiger – als bei Anpassung (Punkt 5). Trotzdem ist das S/N-Verhältnis aufgrund des kleineren Nutzabtastwertes schlechter als unter Punkt (7) berechnet:
$$\rho _d (T_{{\rm{D\hspace{0.05cm},opt}}} ) = \frac{{(2/3\;{\rm{V}})^2 }}{{2/3\;{\rm{V}}^2 }} = {2}/{3}.$$
Richtig sind somit die Lösungsvorschläge 2 und 4.