Aufgabe 5.4Z: Zum Hanning-Fenster

Aus LNTwww
Wechseln zu:Navigation, Suche

Hanning-Fenster

In dieser Aufgabe sollen wichtige Eigenschaften des häufig verwendeten Hanning–Fensters hergeleitet werden. Die zeitkontinuierliche Darstellung im Intervall von $–T_{\rm P}/2$ bis $+T_{\rm P}/2$ lautet hier wie folgt: $$w(t)= {\rm cos}^2(\pi \cdot {t}/{T_{\rm P}})= 0.5\cdot \left(1 + {\rm cos}(2\pi \cdot {t}/{T_{\rm P}}) \right ) \hspace{0.05cm}.$$ Außerhalb des symmetrischen Zeitbereichs der Dauer $T_{\rm P}$ ist $w(t) \equiv 0$.

Die obere Grafik zeigt die zeitdiskrete Darstellung $w(\nu) = w({\nu} \cdot T_{\rm A})$, wobei $T_{\rm A}$ um den Faktor $N = 32$ kleiner ist als $T_{\rm P}$. Der Definitionsbereich der diskreten Zeitvariablen $ν$ reicht von $–16$ bis $+15$.

In der unteren Grafik ist die Fouriertransformierte $W(f)$ der zeitkontinuierlichen Fensterfunktion $w(t)$ logarithmisch dargestellt. Die Abszisse ist hierbei auf $f_{\rm A} = 1/T_{\rm P}$ normiert ist. Man erkennt:

  • Die äquidistanten Werte $W({\mu} \cdot f_{\rm A})$ sind $0$ mit Ausnahme von $μ = 0$ und $μ = ±1$.
  • Die Hauptkeule erstreckt sich somit auf den Frequenzbereich $|f| ≤ 2 · f_{\rm A}$.
  • $W(f)$ ist außerhalb der Hauptkeule betragsmäßig für $f = ±2.5 · f_{\rm A}$ am größten.
  • Somit gilt hier für den minimalen Abstand zwischen Haupt– und Seitenkeulen:

$$A_{\rm H/S} = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} \hspace{0.15cm}{\rm (in}\hspace{0.1cm}{\rm dB)}\hspace{0.05cm}.$$

Hinweise:

  • Die Aufgabe gehört zum Kapitel Spektralanalyse.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Geben Sie die zeitdiskreten Koeffizienten $w(ν)$ des Hanning–Fensters analytisch an. Welche Zahlenwerte ergeben sich für $ν = 0$, $ν = 1$ und $ν = -\hspace{0.05cm}8$?

$w(ν = 0) \ =$

$w(ν = 1) \ =$

$w(ν = -\hspace{0.05cm}8) \ =$

2

Berechnen Sie die Spektralfunktion $W(f)$ allgemein. Welche der folgenden Aussagen sind zutreffend??

$W(f)$ liefert für spezielle Frequenzwerte komplexe Ergebnisse.
$W(f)$ ist bezüglich $f$ gerade, das heißt, es gilt stets $W(–f) = W(f)$.
Der Spektralwert $W(f = 0)$ ist gleich $0.5/f_{\rm A}$ und somit reell.

3

Wie groß sind $W(f = ±f_{\rm A})$ und die auf $f_{\rm A}$ normierte 6 dB–Bandbreite?

$B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \ =$

4

Wie groß ist der minimale Abstand zwischen Hauptkeule und Seitenkeule.

$A_{\rm H/S} \ =$

$\ \rm dB$


Musterlösung

1. Richtig sind die Lösungsvorschläge 1 und 4:

  • Bei Verwendung des Hanning–Fensters müssten selbst dann drei Diracfunktionen zu erkennen sein, auch wenn $x(t)$ nur eine Frequenz beinhaltet   ⇒   es wurde das Rechteckfenster verwendet.
  • Mit $T_{\rm P} = 4 \ \text{ms}$ ergibt sich für die Frequenzauflösung $f_{\rm A}= 1/T_{\rm P} = 0.25 \ \text{kHz}$ Damit liegt die Frequenz $f_2$ nicht im vorgegebenen Raster und $Y(f)$ würde sich aus sehr vielen Diraclinien zusammensetzen. Das heißt: die dritte Aussage ist falsch.
  • Wie aus der nachfolgenden Grafik hervorgeht, hat $x(t)$ die Periodendauer $T_{\rm 0} = 8 \ \text{ms}$. Wählt man den DFT–Parameter gleich $T_{\rm P} = 4 \ \text{ms}$ (oder ein ganzzahliges Vielfaches davon), so stimmt die periodische Fortsetzung ${\rm P}\{ x(t)\} $ im Intervall $|t| \leq T_{\rm P}/2$ mit $x(t)$ überein, so dass sich die Gewichtungsfunktion $w(t)$ nicht störend auswirkt: Das DFT–Spektrum $Y(f)$ stimmt somit mit dem tatsächlichen Spektrum überein.

Beispielsignal 1 zur Spektralanalyse


2. Wegen $T_{\rm 0} = 8 \ \text{ms}$ setzt sich das Hanning–Spektrum $W(f)$ aus drei Diracfunktionen bei positiven Frequenzen und drei dazu achsensymmetrischen Diracs bei negativen Frequenzen zusammen. Für die positiven Frequenzen lautet die Spektralfunktion:

$$W(f) =0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm \delta}(f-f_{\rm A})+ 0.25\cdot {\rm \delta}(f+f_{\rm A})\hspace{0.05cm}.$$

Das Ausgangsspektrum ergibt sich aus der Faltung zwischen $X(f)$ und $W(f)$. Bei positiven Frequenzen ergeben sich nun vier Diracs mit folgenden Gewichten:

$$\begin{align*} G(f = 0.875\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.25 = 0.250\, {\rm V}, \\ G(f = f_1 = 1.000\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.5 + 0.5\, {\rm V}\cdot 0.25 \hspace{0.15 cm}\underline{ = 0.625\, {\rm V}}, \\ G(f = f_2 = 1.125\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.25 + 0.5\, {\rm V}\cdot 0.5 \hspace{0.15 cm}\underline{= 0.500\, {\rm V}}, \\ G(f = 1.250\,{\rm kHz}) & = 0.5\, {\rm V}\cdot 0.25 = 0.125\, {\rm V} \hspace{0.05cm}.\end{align*}$$

Die folgende Grafik zeigt die Abschwächung der Ränder durch die Gewichtungsfunktion $w(t)$ des Hanning–Fensters.

Beispielsignal 2 zur Spektralanalyse

3. Das Rechteck–Fenster liefert dann ein sehr stark verfälschtes Ergebnis, wenn die Fensterbreite $T_{\rm P}$ (wie hier) nicht an die Frequenz des Cosinussignals angepasst ist. In diesem Fall ist das Hanning–Fenster besser geeignet. Daraus folgt: Richtig ist der zweite Lösungsvorschlag.