Aufgaben:Aufgabe 5.2: Inverse Diskrete Fouriertransformation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)
Zeile 5: Zeile 5:
 
[[Datei:P_ID1138__Sig_A_5_2.png|250px|right|frame|Fünf verschiedene Sätze für die Spektralkoeffizienten $D(\mu)$]]
 
[[Datei:P_ID1138__Sig_A_5_2.png|250px|right|frame|Fünf verschiedene Sätze für die Spektralkoeffizienten $D(\mu)$]]
  
Bei der ''Diskreten Fouriertransformation'' (DFT) werden aus den $N$ Zeitkoeffizienten $d(\nu)$   ⇒    Abtastwerte des zeitkontinuierlichen Signals $x(t)$ – die $N$ Spektralbereichskoeffizienten $D(\mu)$ berechnet.
+
Bei der ''Diskreten Fouriertransformation'' (DFT) werden  
 +
*aus den $N$ Zeitkoeffizienten $d(\nu)$   ⇒    Abtastwerte des zeitkontinuierlichen Signals $x(t)$ –  
 +
*die $N$ Spektralbereichskoeffizienten $D(\mu)$  
  
Mit $\nu = 0$, ... , $N – 1$ und $\mu = 0$, ... , $N – 1$ gilt:
+
 
 +
berechnet. Mit $\nu = 0$, ... , $N – 1$ und $\mu = 0$, ... , $N – 1$ gilt:
 
   
 
   
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1}
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1}
   d(\nu)\cdot  {w}^{\hspace{0.05cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
+
   d(\nu)\cdot  {w}^{\hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
  
 
Hierbei bezeichnet $w$ den komplexen Drehfaktor:
 
Hierbei bezeichnet $w$ den komplexen Drehfaktor:
Zeile 21: Zeile 24:
 
   
 
   
 
:$$d(\nu) =  \sum_{\mu = 0 }^{N-1}
 
:$$d(\nu) =  \sum_{\mu = 0 }^{N-1}
  D(\mu) \cdot  {w}^{-\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
+
  D(\mu) \cdot  {w}^{-\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
  
In dieser Aufgabe sollen für verschiedene Beispielfolgen $D(\mu)$ die in obiger Tabelle mit $\rm A$, ... , $\rm E$ bezeichnet sind die Zeitkoeffizienten $d(\nu)$ ermittelt werden. Es gilt somit stets $N = 8$.
+
In dieser Aufgabe sollen für verschiedene Beispielfolgen $D(\mu)$ (die in der obigen Tabelle mit $\rm A$, ... , $\rm E$ bezeichnet sind) die Zeitkoeffizienten $d(\nu)$ ermittelt werden. Es gilt somit stets $N = 8$.
  
  
Zeile 32: Zeile 35:
 
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Diskrete_Fouriertransformation_(DFT)|Diskrete Fouriertransformation (DFT)]].
 
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Diskrete_Fouriertransformation_(DFT)|Diskrete Fouriertransformation (DFT)]].
 
   
 
   
*Die hier behandelte Thematik wird auch im Interaktionsmodul [[Applets:Diskrete_Fouriertransformation_(Applet)|Diskrete Fouriertransformation]] behandelt.
+
*Die hier behandelte Thematik wird auch im interaktiven Applet [[Applets:Diskrete_Fouriertransformation_(Applet)|Diskrete Fouriertransformation]] behandelt.
  
  
Zeile 97: Zeile 100:
  
  
'''(3)'''  Gegenüber der Teilaufgabe (2) ist nun die Frequenz doppelt so groß, nämlich $2 f_{\rm A}$ anstelle von $f_{\rm A}$:
+
'''(3)'''  Gegenüber der Teilaufgabe '''(2)''' ist nun die Frequenz doppelt so groß, nämlich $2 f_{\rm A}$ anstelle von $f_{\rm A}$:
 
   
 
   
 
:$$x(t) = \cos(2 \pi \cdot (2f_{\rm A}) \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
:$$x(t) = \cos(2 \pi \cdot (2f_{\rm A}) \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
  X(f) = {1}/{2} \cdot {\delta}(f + 2f_{\rm A}) + {1}/{2} \cdot {\delta}(f - 2f_{\rm A}) \hspace{0.05cm},$$
 
  X(f) = {1}/{2} \cdot {\delta}(f + 2f_{\rm A}) + {1}/{2} \cdot {\delta}(f - 2f_{\rm A}) \hspace{0.05cm},$$
  
Damit beschreibt die Folge  $\langle d(ν)\rangle $ zwei Perioden der Cosinusschwingung, und es gilt für $0 ≤ ν ≤ 7$:
+
Damit beschreibt die Folge  $\langle \hspace{0.1cm}d(ν)\hspace{0.1cm}\rangle $ zwei Perioden der Cosinusschwingung, und es gilt für $0 ≤ ν ≤ 7$:
 
   
 
   
 
:$$ d(\nu)  =  0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{2} \cdot \nu \right)\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1, \hspace{0.2cm}d(1) = 0}
 
:$$ d(\nu)  =  0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{2} \cdot \nu \right)\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1, \hspace{0.2cm}d(1) = 0}
Zeile 113: Zeile 116:
 
  \hspace{0.05cm}$$
 
  \hspace{0.05cm}$$
  
und damit zu den Zeitkoeffizienten
+
:und damit zu den Zeitkoeffizienten
 
   
 
   
 
:$$d(0) =d(2) =d(4) =d(6) \hspace{0.15 cm}\underline{= +1}, \hspace{0.2cm}d(1) =d(3) =d(5) =d(7)  \hspace{0.15 cm}\underline{= -1}
 
:$$d(0) =d(2) =d(4) =d(6) \hspace{0.15 cm}\underline{= +1}, \hspace{0.2cm}d(1) =d(3) =d(5) =d(7)  \hspace{0.15 cm}\underline{= -1}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Zu beachten ist, dass die beiden Diracfunktionen in der zeitdiskreten Darstellung aufgrund der Periodizität zusammenfallen   ⇒    die Koeffizienten $D (+4) = 0.5$ und $D (-4) = 0.5$ ergeben zusammen $D (4) = 1$.
+
*Zu beachten ist, dass die beiden Diracfunktionen in der zeitdiskreten Darstellung aufgrund der Periodizität zusammenfallen.
 +
*Die Koeffizienten $D (+4) = 0.5$ und $D (-4) = 0.5$ ergeben zusammen $D (4) = 1$.
  
  
 
'''(5)'''  Die Diskrete Fouriertransformation ist ebenfalls linear. Deshalb ist das Superpositionsprinzip weiterhin anwendbar:  
 
'''(5)'''  Die Diskrete Fouriertransformation ist ebenfalls linear. Deshalb ist das Superpositionsprinzip weiterhin anwendbar:  
 
*Die Koeffizienten $D(\mu )$ aus Spalte $\rm E$ ergeben sich als die Summen der Spalten $\rm A$ und $\rm D$.  
 
*Die Koeffizienten $D(\mu )$ aus Spalte $\rm E$ ergeben sich als die Summen der Spalten $\rm A$ und $\rm D$.  
*Deshalb wird aus der alternierenden Folge  $\langle d(ν) \rangle $ entsprechend Teilaufgabe (4) die um $1$ nach oben verschobene Folge:
+
*Deshalb wird aus der alternierenden Folge  $\langle \hspace{0.1cm}d(ν) \hspace{0.1cm}\rangle $ entsprechend Teilaufgabe '''(4)''' die um $1$ nach oben verschobene Folge:
 
   
 
   
 
:$$ \hspace{0.15 cm}\underline{d(0) =d(2) =d(4) =d(6)= 2}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) =d(3) =d(5) =d(7)  = 0}
 
:$$ \hspace{0.15 cm}\underline{d(0) =d(2) =d(4) =d(6)= 2}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) =d(3) =d(5) =d(7)  = 0}

Version vom 27. Juli 2018, 14:53 Uhr

Fünf verschiedene Sätze für die Spektralkoeffizienten $D(\mu)$

Bei der Diskreten Fouriertransformation (DFT) werden

  • aus den $N$ Zeitkoeffizienten $d(\nu)$   ⇒   Abtastwerte des zeitkontinuierlichen Signals $x(t)$ –
  • die $N$ Spektralbereichskoeffizienten $D(\mu)$


berechnet. Mit $\nu = 0$, ... , $N – 1$ und $\mu = 0$, ... , $N – 1$ gilt:

$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

Hierbei bezeichnet $w$ den komplexen Drehfaktor:

$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$

Für die Inverse Diskrete Fouriertransformation (IDFT)   ⇒   „Umkehrfunktion” der DFT gilt entsprechend:

$$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

In dieser Aufgabe sollen für verschiedene Beispielfolgen $D(\mu)$ (die in der obigen Tabelle mit $\rm A$, ... , $\rm E$ bezeichnet sind) die Zeitkoeffizienten $d(\nu)$ ermittelt werden. Es gilt somit stets $N = 8$.



Hinweise:


Fragebogen

1

Wie lauten die Zeitkoeffizienten $d(\nu)$ für die $D(\mu)$–Werte von Spalte $\rm A$?

$d(0)\ = \ $

$d(1)\ = \ $

2

Wie lauten die Zeitkoeffizienten $d(ν)$ für die $D(\mu)$–Werte von Spalte $\rm B$?

$d(0)\ = \ $

$d(1)\ = \ $

3

Wie lauten die Zeitkoeffizienten $d(ν)$ für die $D(\mu)$ –Werte von Spalte $\rm C$?

$d(0)\ = \ $

$d(1)\ = \ $

4

Wie lauten die Zeitkoeffizienten $d(ν)$ für die $D(\mu)$–Werte von Spalte $\rm D$?

$d(0)\ = \ $

$d(1)\ = \ $

5

Wie lauten die Zeitkoeffizienten $d(ν)$ für die $D(\mu)$–Werte von Spalte $\rm E$?

$d(0)\ = \ $

$d(1)\ = \ $


Musterlösung

(1)  Aus der IDFT–Gleichung wird mit $D(\mu) = 0$ für $\mu \ne 0$:

$$d(\nu) = D(0) \cdot w^0 = D(0) =1\hspace{0.5cm}(0 \le \nu \le 7)\ \hspace{0.5cm} \Rightarrow\hspace{0.5cm}\hspace{0.15 cm}\underline{d(0) = d(1) = 1}.$$

Dieser Parametersatz beschreibt die diskrete Form der Fourierkorrespondenz des Gleichsignals:

$$x(t) = 1 \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X(f) = {\delta}(f) \hspace{0.05cm}.$$


(2)  Alle Spektralkoeffizienten sind Null mit Ausnahme von $D_1 = D_7 = 0.5$. Daraus folgt für $0 ≤ ν ≤ 7$:

$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} \hspace{0.05cm}.$$

Aufgrund der Periodizität gilt aber auch:

$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{4} \cdot \nu \right) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) = {1}/{\sqrt{2}} \approx 0.707} \hspace{0.05cm}.$$

Es handelt sich also um das zeitdiskrete Äquivalent zu

$$x(t) = \cos(2 \pi \cdot f_{\rm A} \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X(f) = {1}/{2} \cdot {\delta}(f + f_{\rm A}) + {1}/{2} \cdot {\delta}(f - f_{\rm A}) \hspace{0.05cm},$$

wobei $f_{\rm A}$ die kleinste in der DFT darstellbare Frequenz bezeichnet.


(3)  Gegenüber der Teilaufgabe (2) ist nun die Frequenz doppelt so groß, nämlich $2 f_{\rm A}$ anstelle von $f_{\rm A}$:

$$x(t) = \cos(2 \pi \cdot (2f_{\rm A}) \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X(f) = {1}/{2} \cdot {\delta}(f + 2f_{\rm A}) + {1}/{2} \cdot {\delta}(f - 2f_{\rm A}) \hspace{0.05cm},$$

Damit beschreibt die Folge $\langle \hspace{0.1cm}d(ν)\hspace{0.1cm}\rangle $ zwei Perioden der Cosinusschwingung, und es gilt für $0 ≤ ν ≤ 7$:

$$ d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{2} \cdot \nu \right)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\hspace{0.15 cm}\underline{d(0) = 1, \hspace{0.2cm}d(1) = 0} \hspace{0.05cm}.$$


(4)  Durch eine weitere Verdoppelung der Cosinusfrequenz auf $4 f_{\rm A}$ kommt man schließlich zur zeitkontinuierlichen Fourierkorrespondenz

$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left(\pi \cdot \nu \right) \hspace{0.05cm}$$
und damit zu den Zeitkoeffizienten
$$d(0) =d(2) =d(4) =d(6) \hspace{0.15 cm}\underline{= +1}, \hspace{0.2cm}d(1) =d(3) =d(5) =d(7) \hspace{0.15 cm}\underline{= -1} \hspace{0.05cm}.$$
  • Zu beachten ist, dass die beiden Diracfunktionen in der zeitdiskreten Darstellung aufgrund der Periodizität zusammenfallen.
  • Die Koeffizienten $D (+4) = 0.5$ und $D (-4) = 0.5$ ergeben zusammen $D (4) = 1$.


(5)  Die Diskrete Fouriertransformation ist ebenfalls linear. Deshalb ist das Superpositionsprinzip weiterhin anwendbar:

  • Die Koeffizienten $D(\mu )$ aus Spalte $\rm E$ ergeben sich als die Summen der Spalten $\rm A$ und $\rm D$.
  • Deshalb wird aus der alternierenden Folge $\langle \hspace{0.1cm}d(ν) \hspace{0.1cm}\rangle $ entsprechend Teilaufgabe (4) die um $1$ nach oben verschobene Folge:
$$ \hspace{0.15 cm}\underline{d(0) =d(2) =d(4) =d(6)= 2}, \hspace{0.2cm}\hspace{0.15 cm}\underline{d(1) =d(3) =d(5) =d(7) = 0} \hspace{0.05cm}.$$