Aufgaben:Aufgabe 5.1Z: cos² -Rauschbegrenzung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 77: Zeile 77:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Die Varianz (Leistung)   ⇒   Effektivwert zum Quadrat des Signals $x(t)$ beträgt
+
'''(1)'''  Die Varianz (Leistung)   ⇒   Effektivwert zum Quadrat des Signals  $x(t)$  beträgt
 
:$$\sigma _x ^2  = \frac{N_0 }{2} \cdot 2B_x  = N_0  \cdot B_x  = 10^{ - 12} \;{\rm{V}}^2
 
:$$\sigma _x ^2  = \frac{N_0 }{2} \cdot 2B_x  = N_0  \cdot B_x  = 10^{ - 12} \;{\rm{V}}^2
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
Zeile 83: Zeile 83:
  
  
'''(2)'''  Entsprechend dem Kapitel „Gaußverteilte Zufallsgrößen” und der hier angegebenen Näherung (für große $x$) erhält man:
+
'''(2)'''  Entsprechend dem Kapitel „Gaußverteilte Zufallsgrößen” und der hier angegebenen Näherung  $($für große  $x)$  erhält man:
 
:$$\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}}  \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 0.6 \cdot 10^{ - 6}} .$$
 
:$$\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}}  \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 0.6 \cdot 10^{ - 6}} .$$
  
  
'''(3)'''  Das Eingangssignal $x(t)$ ist mittelwertfrei $(m_x = 0)$.  
+
'''(3)'''  Das Eingangssignal  $x(t)$  ist mittelwertfrei  $(m_x = 0)$.  
*Sonst müsste ${\it Φ}_x(f)$ noch eine Diracfunktion bei $f= 0$ beinhalten.  
+
*Sonst müsste  ${\it Φ}_x(f)$  noch eine Diracfunktion bei  $f= 0$  beinhalten.  
 
*Der Mittelwert wird durch das lineare Filter nicht verändert   ⇒   $m_y\hspace{0.05cm}\underline{ = 0}$.
 
*Der Mittelwert wird durch das lineare Filter nicht verändert   ⇒   $m_y\hspace{0.05cm}\underline{ = 0}$.
 +
  
  
Zeile 95: Zeile 96:
 
:$${\it \Phi}_y (f) = {N_0 }/{2} \cdot \left| {H( f )} \right|^2 .$$
 
:$${\it \Phi}_y (f) = {N_0 }/{2} \cdot \left| {H( f )} \right|^2 .$$
  
*Damit kann die Varianz $\sigma _y^2$ berechnet werden. Unter Ausnützung der Symmetrie erhält man:
+
*Damit kann die Varianz  $\sigma _y^2$  berechnet werden.  Unter Ausnützung der Symmetrie erhält man:
 
:$$\sigma _y ^2  = {N_0 }/{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \left( f \right)\hspace{0.1cm}{\rm{d}}f} =  N_0  \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .$$
 
:$$\sigma _y ^2  = {N_0 }/{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \left( f \right)\hspace{0.1cm}{\rm{d}}f} =  N_0  \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .$$
  
*Das bestimmte Integral ist vorgegeben. Bei jedem der drei Lösungsterme ergibt sich für die untere Grenze der Wert $0$. Daraus folgt:
+
*Das bestimmte Integral ist vorgegeben.  Bei jedem der drei Lösungsterme ergibt sich für die untere Grenze der Wert Null.  Daraus folgt:
 
:$$\sigma _y ^2  = {N_0}/{2} \cdot \left( {\frac{3}{8} \cdot f_0  + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0  \cdot f_0 $$
 
:$$\sigma _y ^2  = {N_0}/{2} \cdot \left( {\frac{3}{8} \cdot f_0  + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0  \cdot f_0 $$
 
:$$\Rightarrow \hspace{0.3cm} f_0 = B_x/2\text{:}\hspace{0.2cm}\sigma _y ^2  = \frac{3}{16} \cdot N_0  \cdot B_x  = \frac{3}{16} \cdot \sigma _x ^2  = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2  \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{µ V}}}{\rm{.}}$$
 
:$$\Rightarrow \hspace{0.3cm} f_0 = B_x/2\text{:}\hspace{0.2cm}\sigma _y ^2  = \frac{3}{16} \cdot N_0  \cdot B_x  = \frac{3}{16} \cdot \sigma _x ^2  = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2  \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{µ V}}}{\rm{.}}$$
  
  
'''(5)'''  Nun besitzt das Eingangs-LDS für $|f| > B_x$ keine Anteile.  
+
 
 +
'''(5)'''  Nun besitzt das Eingangs-LDS für  $|f| > B_x$  keine Anteile.  
 
*Deshalb gilt:
 
*Deshalb gilt:
 
:$$\sigma _y ^2  = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0  \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}$$
 
:$$\sigma _y ^2  = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0  \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}$$
Zeile 111: Zeile 113:
  
  
'''(6)'''  Analog zur Musterlösung der Teilaufgabe '''(2)''' gilt:
+
 
 +
'''(6)'''  Analog zur Musterlösung der Teilaufgabe  '''(2)'''  gilt:
 
:$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{\mu V}}}}{{0.731\;{\rm{\mu V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).$$
 
:$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{\mu V}}}}{{0.731\;{\rm{\mu V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).$$
  
Mit der angegebenen Näherung hat diese Wahrscheinlichkeit den Wert  
+
*Mit der angegebenen Näherung hat diese Wahrscheinlichkeit folgenden Wert:
 
:$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) \hspace{0.15cm} \underline{ \approx 8 \cdot 10^{ - 12}}.$$
 
:$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) \hspace{0.15cm} \underline{ \approx 8 \cdot 10^{ - 12}}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Version vom 7. Dezember 2019, 14:21 Uhr

oben:  Eingangs–LDS  ${\it Φ}_x(f)$,
unten:  Filterfrequenzgang $H(f)$

Wir betrachten bandbegrenztes weißes Rauschen  $x(t)$  mit dem oben skizzierten Leistungsdichtespektrum  ${\it Φ}_x(f)$.  Dieses ist im Bereich  $|f| \le B_x$  konstant gleich  $N_0/2$  und außerhalb gleich Null.

Gehen Sie von folgenden Zahlenwerten aus:

  • Rauschleistungsdichte  $N_0 = 10^{-16} \ \rm V^2/Hz$,
  • (einseitige) Rauschbandbreite  $B_x = 10 \ \rm kHz$.


Dieses Signal wird an den Eingang eines Tiefpassfilters mit dem Frequenzgang $$H(f) = \left\{ {\begin{array}{*{20}c} {\cos ^2 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)} & {\rm{f\ddot{u}r}\quad \left| \it f \right| \le \it f_{\rm 0} ,} \\ 0 & {{\rm{sonst}}} \\\end{array}} \right.$$

angelegt.  Hierbei bezeichnet  $f_0$  die absolute Filterbandbreite, die zwischen  $B_x/2$  und  $2B_x$  variieren kann.

Das Filterausgangssignal wird mit  $y(t)$  bezeichnet.





Hinweise:

  • Benutzen Sie, falls nötig, die nachfolgenden Gleichungen:
$${\rm Q}(x) \approx \frac{1}{{\sqrt {2{\rm{\pi }}} \cdot x}} \cdot {\rm{e}}^{ - x^2 /2} \hspace{0.15cm}( \text{für große }x),$$
$$\int {\rm{cos}}^{\rm{2}}( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{1}{2} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ),$$
$$\int {\cos ^4 } ( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ) + \frac{1}{32a} \cdot \sin ( {4ax} ).$$



Fragebogen

1

Wie groß ist der Effektivwert des Eingangssignals  $x(t)$?

$\sigma_x \ = \ $

$\ \rm µ V$

2

Wie groß ist die Wahrscheinlichkeit, dass ein momentaner Spannungswert des Eingangssignals betragsmäßig größer als  $5 \hspace{0.05cm} \rm µ V$  ist?

${\rm Pr}(|x(t)| > 5 \hspace{0.05cm} \rm µ V) \ = \ $

$\ \cdot 10^{-6}$

3

Wie groß ist der Mittelwert (Gleichanteil) des Ausgangssignals  $y(t)$?

$m_y\ \ = \ $

$\ \rm µ V$

4

Berechnen Sie den Effektivwert des Ausgangssignals  $y(t)$  für  $f_0 = B_x/2$.

$\sigma_y \ = \ $

$\ \rm µ V$

5

Berechnen Sie den Effektivwert von  $y(t)$  unter der Bedingung  $f_0 = 2 \cdot B_x$.

$\sigma_y \ = \ $

$\ \rm µ V$

6

Es gelte weiter  $f_0 = 2 \cdot B_x$.  Wie groß ist die Wahrscheinlichkeit, dass das Ausgangssignal  $y(t)$  betragsmäßig größer als  $5 \hspace{0.05cm} \rm µ V$  ist?

${\rm Pr}(|y(t)| > 5 \hspace{0.05cm} \rm µ V) \ = \ $

$\ \cdot 10^{-12}$


Musterlösung

(1)  Die Varianz (Leistung)   ⇒   Effektivwert zum Quadrat des Signals  $x(t)$  beträgt

$$\sigma _x ^2 = \frac{N_0 }{2} \cdot 2B_x = N_0 \cdot B_x = 10^{ - 12} \;{\rm{V}}^2 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma _x \hspace{0.15cm}\underline{ = 1\,\,{\rm µ}{\rm V}}.$$


(2)  Entsprechend dem Kapitel „Gaußverteilte Zufallsgrößen” und der hier angegebenen Näherung  $($für große  $x)$  erhält man:

$$\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}} \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 0.6 \cdot 10^{ - 6}} .$$


(3)  Das Eingangssignal  $x(t)$  ist mittelwertfrei  $(m_x = 0)$.

  • Sonst müsste  ${\it Φ}_x(f)$  noch eine Diracfunktion bei  $f= 0$  beinhalten.
  • Der Mittelwert wird durch das lineare Filter nicht verändert   ⇒   $m_y\hspace{0.05cm}\underline{ = 0}$.


(4)  Für das Leistungsdichtespektrum des Ausgangssignals gilt allgemein:

$${\it \Phi}_y (f) = {N_0 }/{2} \cdot \left| {H( f )} \right|^2 .$$
  • Damit kann die Varianz  $\sigma _y^2$  berechnet werden.  Unter Ausnützung der Symmetrie erhält man:
$$\sigma _y ^2 = {N_0 }/{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \left( f \right)\hspace{0.1cm}{\rm{d}}f} = N_0 \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .$$
  • Das bestimmte Integral ist vorgegeben.  Bei jedem der drei Lösungsterme ergibt sich für die untere Grenze der Wert Null.  Daraus folgt:
$$\sigma _y ^2 = {N_0}/{2} \cdot \left( {\frac{3}{8} \cdot f_0 + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0 \cdot f_0 $$
$$\Rightarrow \hspace{0.3cm} f_0 = B_x/2\text{:}\hspace{0.2cm}\sigma _y ^2 = \frac{3}{16} \cdot N_0 \cdot B_x = \frac{3}{16} \cdot \sigma _x ^2 = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2 \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{µ V}}}{\rm{.}}$$


(5)  Nun besitzt das Eingangs-LDS für  $|f| > B_x$  keine Anteile.

  • Deshalb gilt:
$$\sigma _y ^2 = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0 \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}$$
  • Die numerische Auswertung liefert hierfür:
$$\sigma _y ^2 = N_0 \left( {\frac{3}{8} \cdot B_x + \frac{B_x }{{2{\rm{\pi }}}} \cdot \sin ( {\frac{{\rm{\pi }}}{2}} ) + \frac{B_x }{{{\rm{16\pi }}}} \cdot \sin ( {\rm{\pi }} )} \right) = N_0 \cdot B_x \left( {\frac{3}{8} + \frac{1}{{2{\rm{\pi }}}}} \right) = 0.534\cdot \sigma _x ^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma _y \hspace{0.15cm}\underline{ = 0.731\;{\rm{µ V}}}{\rm{.}}$$


(6)  Analog zur Musterlösung der Teilaufgabe  (2)  gilt:

$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{\mu V}}}}{{0.731\;{\rm{\mu V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).$$
  • Mit der angegebenen Näherung hat diese Wahrscheinlichkeit folgenden Wert:
$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{\mu V}}} \right) \hspace{0.15cm} \underline{ \approx 8 \cdot 10^{ - 12}}.$$