Aufgaben:Aufgabe 4.7Z: Zum Water–Filling–Algorithmus: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Informationstheorie/AWGN–Kanalkapazität bei wertkontinuierlichem Eingang }} right| Wir betra…“)
 
 
(15 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID2903__Inf_T_4_2_S4d.png|right|]]
+
[[Datei:P_ID2903__Inf_T_4_2_S4d.png|right|frame|Water–Filling–Prinzip  $(K = 4)$]]
Wir betrachten <i>K</i> parallele Gaußsche Kanäle (AWGN) mit unterschiedlichen Störleistungen <i>&sigma;<sub>k</sub></i><sup>2</sup> (1 &#8804; <i>k</i> &#8804; <i>K</i>), wie in der nebenstehenden Grafik am Beispiel <i>K</i> = 4 verdeutlicht ist. Die Sendeleistung in den einzelnen Kanälen wird mit <i>P<sub>k</sub></i> bezeichnet, deren Summe den vorgegebenen Wert <i>P<sub>X</sub></i> nicht überschreiten darf:
+
Wir betrachten&nbsp; $K$&nbsp; parallele Gaußsche Kanäle&nbsp; $\rm (AWGN)$&nbsp; mit unterschiedlichen Störleistungen&nbsp; $\sigma_k^2$,&nbsp; wobei&nbsp;  $1 \le k \le K$&nbsp; gelten soll.&nbsp; Die Grafik verdeutlicht diese Konstellation am Beispiel&nbsp; $K = 4$.  
$$P_1 + ... \hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K  
+
 
 +
Die Sendeleistung in den einzelnen Kanälen wird mit &nbsp;$P_k$&nbsp; bezeichnet,&nbsp; deren Summe den vorgegebenen Wert &nbsp;$P_X$&nbsp; nicht überschreiten darf:
 +
:$$P_1 +\text{...}\hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K  
 
  \hspace{0.1cm}{\rm E} \left [ X_k^2\right ] \le P_{X} \hspace{0.05cm}.$$
 
  \hspace{0.1cm}{\rm E} \left [ X_k^2\right ] \le P_{X} \hspace{0.05cm}.$$
Sind die Zufallsgrößen <i>X</i><sub>1</sub>, ..., <i>X<sub>k</sub></i> gaußisch, so kann für die (gesamte) Transinformation zwischen dem Eingang <i>X</i> und dem Ausgang <i>Y</i> geschrieben werden:
+
Sind die Zufallsgrößen &nbsp;$X_1$, ... , $X_K$&nbsp; gaußisch,&nbsp; so kann für die (gesamte) Transinformation zwischen dem Eingang &nbsp;$X$&nbsp; und dem Ausgang &nbsp;$Y$&nbsp; geschrieben werden:
$$I(X_1, ... \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, ... \hspace{0.05cm}, Y_K)  
+
:$$I(X_1,\text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K)  
 
=  1/2 \cdot \sum_{k= 1}^K  \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_k}{\sigma_k^2})\hspace{0.05cm},\hspace{0.5cm}
 
=  1/2 \cdot \sum_{k= 1}^K  \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_k}{\sigma_k^2})\hspace{0.05cm},\hspace{0.5cm}
 
{\rm Ergebnis\hspace{0.15cm} in \hspace{0.15cm} bit}
 
{\rm Ergebnis\hspace{0.15cm} in \hspace{0.15cm} bit}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Das Maximum hierfür ist die Kanalkapazität des Gesamtsystems, wobei sich die Maximierung auf die Aufteilung der Gesamtleistung <i>P<sub>X</sub></i> auf die einzelnen Kanäle bezieht.
 
$$C_K(P_X) = \max_{P_k\hspace{0.05cm},\hspace{0.15cm}{\rm mit} \hspace{0.15cm}P_1 + ... \hspace{0.05cm}+ P_K = P_X} \hspace{-0.5cm} I(X_1, ... \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, ... \hspace{0.05cm}, Y_K) \hspace{0.05cm}.$$
 
Diese Maximierung kann mit dem Water&ndash;Filling&ndash;Algorithmus geschehen, der in obiger Grafik für <i>K</i> = 4 dargestellt ist. Eine genaue Beschreibung finden Sie im [http://www.lntwww.de/Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Parallele_Gau.C3.9Fsche_Kan.C3.A4le '''Theorieteil''']
 
In der vorliegenden Aufgabe soll dieser Algorithmus angewendet werden, wobei von folgenden Voraussetzungen auszugehen ist:
 
:* Zwei parallele Gaußkanäle &nbsp;&#8658;&nbsp; <i>K</i> = 2,
 
:* Normierte Störleistungen <i>&sigma;</i><sub>1</sub><sup>2</sup> = 1 und <i>&sigma;</i><sub>2</sub><sup>2</sup> = 4, 
 
:*Normierte Sendeleistungen <i>P<sub>X</sub></i> = 10 bzw. <i>P<sub>X</sub></i> = 3.
 
  
<b>Hinweis:</b> Die Aufgabe bezieht sich auf das Themengebiet von [http://www.lntwww.de/Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang '''Kapitel 4.2.''']
+
Das Maximum hierfür ist die Kanalkapazität des Gesamtsystems,&nbsp; wobei sich die Maximierung auf die Aufteilung der Gesamtleistung &nbsp;$P_X$&nbsp; auf die einzelnen Kanäle bezieht:
 +
:$$C_K(P_X) = \max_{P_k\hspace{0.05cm},\hspace{0.15cm}{\rm mit} \hspace{0.15cm}P_1 + ... \hspace{0.05cm}+ P_K = P_X} \hspace{-0.5cm} I(X_1, \text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) \hspace{0.05cm}.$$
 +
 
 +
Diese Maximierung kann mit dem so genannten&nbsp; "Water&ndash;Filling&ndash;Algorithmus"&nbsp; geschehen,&nbsp; der in obiger Grafik für&nbsp; $K = 4$&nbsp; dargestellt ist.
 +
 
 +
In der vorliegenden Aufgabe soll dieser Algorithmus angewendet werden,&nbsp; wobei von folgenden Voraussetzungen auszugehen ist:
 +
* Zwei parallele Gaußkanäle &nbsp; &#8658; &nbsp; $K = 2$,
 +
* Normierte Störleistungen &nbsp; $\sigma_1^2 = 1$ &nbsp; und &nbsp; $\sigma_2^2 = 4$, 
 +
*Normierte Sendeleistungen &nbsp; $P_X = 10$ &nbsp; bzw. &nbsp; $P_X = 3$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hinweise:''
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]].
 +
*Bezug genommen wird insbesondere auf die Seite&nbsp; [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang#Parallele_Gau.C3.9Fsche_Kan.C3.A4le|Parallele Gaußkanäle]].
 +
*Da die Ergebnisse in &bdquo;bit&rdquo; angegeben werden sollen, wird in den Gleichungen  der Logarithmus zur Basis&nbsp; $2$&nbsp; verwendet: &nbsp; $\log_2$.  
 +
 +
 
  
 
===Fragebogen===
 
===Fragebogen===
Zeile 27: Zeile 41:
 
{Welche Strategien der Leistungszuteilung sind sinnvoll?
 
{Welche Strategien der Leistungszuteilung sind sinnvoll?
 
|type="[]"}
 
|type="[]"}
- Einem stark gestörten Kanal <i>k</i> (mit großer Störleistung <i>&sigma;<sub>k</sub></i><sup>2</sup>) sollte eine große Nutzleistung <i>P<sub>k</sub></i> zugewiesen werden.
+
- Einem stark gestörten Kanal&nbsp; $k$&nbsp; $($mit großer Störleistung&nbsp; $\sigma_k^2)$&nbsp; sollte eine große Nutzleistung&nbsp; $P_k$&nbsp; zugewiesen werden.
+ Einem stark gestörten Kanal <i>k</i> (mit großer Störleistung <i>&sigma;<sub>k</sub></i><sup>2</sup>) sollte nur eine kleine Nutzleistung <i>P<sub>k</sub></i> zugewiesen werden.
+
+ Einem stark gestörten Kanal&nbsp; $k$&nbsp; $($mit großer Störleistung&nbsp; $\sigma_k^2)$&nbsp;  sollte nur eine kleine Nutzleistung&nbsp; $P_k$&nbsp; zugewiesen werden.
+ Bei <i>K</i> gleich guten Kanälen &nbsp;&#8658;&nbsp; <i>&sigma;</i><sub>1</sub><sup>2</sup> = ... = <i>&sigma;<sub>K</sub></i><sup>2</sup> =  <i>&sigma;<sub>N</sub></i><sup>2</sup> sollte die Leistung gleichmäßig verteilt werden.       
+
+ Bei gleich guten Kanälen &nbsp; &#8658; &nbsp; $\sigma_1^2 = \text{...} = \sigma_K^2 = \sigma_N^2$&nbsp; $k$&nbsp; sollte die Leistung&nbsp; $P_k$&nbsp; gleichmäßig verteilt werden.       
  
  
{Welche Transinformation <i>I</i> =  <i>I</i>(<i>X</i><sub>1</sub>, <i>X</i><sub>2</sub></i>; <i>Y</i><sub>1</sub>, <i>Y</i><sub>2</sub>) ergibt sich, wenn man die Sendeleistung <i>P<sub>X</sub></i> = 10 gleichmäßig auf beide Kanäle verteilt?
+
{Welche Transinformation ergibt sich,&nbsp; wenn man die Sendeleistung &nbsp;$P_X = 10$&nbsp; gleichmäßig auf beide Kanäle verteilt &nbsp;  $(P_1= P_2 = 5)$?
 
|type="{}"}
 
|type="{}"}
$P1 = P2 = 5:  I$ = { 1.877 3% }
+
$I(X_1, X_2; Y_1, Y_2) \ = \ $ { 1.877 3% } $\ \rm bit$
  
  
{Es gelte weiter <i>P<sub>X</sub></i> = 10. Welche optimale Leistungsaufteilung ergibt sich nach dem Water&ndash;Filling&ndash;Algorithmus?
+
{Es gelte weiter&nbsp; $P_X = P_1 + P_2 = 10$.&nbsp; Welche optimale Leistungsaufteilung ergibt sich nach dem Water&ndash;Filling&ndash;Algorithmus?
 
|type="{}"}
 
|type="{}"}
$PX = 10:  P1$ = { 6.5 3% }
+
$P_1  \ = \ $ { 6.5 3% }
$P1 = P2 = 5:  I$ = { 3.5 3% }
+
$P_2  \ = \ $ { 3.5 3% }
  
  
  
{Wie groß ist die Kanalkapazität für <i>K</i> = 2 und <i>P<sub>X</sub></i> = 10?
+
{Wie groß ist die Kanalkapazität für&nbsp; $\underline{K = 2}$&nbsp; und&nbsp; $\underline{P_X = 10}$?
 
|type="{}"}
 
|type="{}"}
$C2(PX = 10)$ = { 1.907 3% }
+
$C  \ = \ $ { 1.907 3% } $\ \rm bit$
 +
 
  
 +
{Welche Transinformation ergibt sich,&nbsp; wenn man die Sendeleistung&nbsp; $P_X = 3$&nbsp; gleichmäßig auf beide Kanäle verteilt &nbsp; $(P_1= P_2 = 1.5)$?
 +
|type="{}"}
 +
$I(X_1, X_2; Y_1, Y_2) \ = \ $ { 0.891 3% }$\ \rm bit$
  
{Welche Ergebnisse erhält man mit <i>K</i> = 2 und <i>P<sub>X</sub></i> = 3?
+
{Wie groß ist die Kanalkapazität für&nbsp; $\underline{K = 2}$&nbsp; und&nbsp; $\underline{P_X = 3}$?
 
|type="{}"}
 
|type="{}"}
$P1 = P2 = 1.5:  I$ = { 0.891 3% }
+
$C  \ = \ $ { 1 3% } $\ \rm bit$
$C2(PX = 3)$ = { 1 3% }
 
  
  
Zeile 59: Zeile 76:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp;  Richtig sind die&nbsp; <u>Lösungsvorschläge 2 und 3</u>:
'''2.'''
+
*Nach den Ausführungen im  Theorieteil ist&nbsp; &bdquo;Water&ndash;Filling&rdquo; &nbsp; &#8658; &nbsp; <u>Vorschlag 2</u> anzuwenden,&nbsp; wenn ungleiche Bedingungen vorliegen.
'''3.'''
+
* Der&nbsp; <u>Lösungsvorschlag 3</u>&nbsp; ist aber ebenfalls richtig: &nbsp; Bei gleich guten Kanälen spricht nichts dagegen,&nbsp; alle&nbsp; $K$&nbsp; Kanäle mit gleicher Leistung &nbsp; &#8658; &nbsp; &nbsp;$P_1 = P_2 =$&nbsp; ...&nbsp; $= P_K = P_X/K$&nbsp; zu versorgen.
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
 
'''7.'''
+
'''(2)'''&nbsp;  Für die Transinformation gilt bei gleicher Leistungsaufteilung:
 +
:$$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) \ =  \ {1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{1} \right )
 +
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{4} \right )=1.292\,{\rm bit}+ 0.585\,{\rm bit}
 +
\hspace{0.15cm}\underline{= 1.877\,{\rm bit}}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
[[Datei:P_ID2906__Inf_Z_4_7b_neu.png|right|frame|Bestmögliche Aufteilung der Sendeleistung&nbsp; $P_X = 10$]]
 +
'''(3)'''&nbsp;  Entsprechend nebenstehender Skizze muss gelten:
 +
:$$P_2 = P_1 - (\sigma_2^2 - \sigma_1^2) = P_1 -3,\hspace{0.3cm}\text{wobei }\hspace{0.3cm}P_1 + P_2 =  P_X = 10$$
 +
:$$\Rightarrow \hspace{0.3cm}
 +
P_1 + (P_1 -3) = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
2 \cdot P_1 = 13 \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}
 +
\underline{P_1 = 6.5}\hspace{0.05cm},
 +
\hspace{0.3cm}\underline{P_2 = 3.5}\hspace{0.05cm}.$$
 +
 
 +
Für die&nbsp; &bdquo;Wasserstandshöhe&rdquo;&nbsp; gilt hier:&nbsp;
 +
:$$H= P_1 + \sigma_1^2= P_2 + \sigma_2^2 = 7.5 = 6.5+1 = 3.5+4.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp;  Die Kanalkapazität gibt die maximale Transinformation an.&nbsp;
 +
*Das Maximum liegt durch die bestmögliche Leistungsaufteilung gemäß der Teilaufgabe&nbsp; '''(3)'''&nbsp; bereits fest.&nbsp;
 +
*Für&nbsp; $P_X = 10$&nbsp; gilt:
 +
:$$C={1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{6.5}{1} \right )
 +
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3.5}{4} \right )$$
 +
:$$\Rightarrow\hspace{0.3cm} C=1.453\,{\rm bit}+ 0.453\,{\rm bit}
 +
\hspace{0.15cm}\underline{= 1.906\,{\rm bit}}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp;  Für&nbsp; $P_X = 3$&nbsp;  erhält man bei gleicher Leistungsaufteilung&nbsp; $(P_1 = P_2 =1.5)$:
 +
:$$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) ={1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{1} \right )
 +
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{4} \right )
 +
\hspace{0.15cm}\underline{= 0.891\,{\rm bit}}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
[[Datei:P_ID2907__Inf_Z_4_7e_neu.png|right|frame|Bestmögliche Aufteilung der Sendeleistung&nbsp; $P_X = 3$]]
 +
'''(6)'''&nbsp;  Entsprechend dem Water&ndash;Filling&ndash;Algorithmus wird die gesamte zur Verfügung stehende Sendeleistung&nbsp; $P_X = 3$&nbsp; nun vollständig dem ersten Kanal zugewiesen:
 +
:$${P_1 = 3}\hspace{0.05cm},
 +
\hspace{0.3cm}{P_2 = 0}\hspace{0.05cm}.$$
 +
*Hier gilt also für die&nbsp; &bdquo;Wasserstandshöhe&rdquo;:&nbsp;
 +
:$$H= 4= P_1 + \sigma_1^2= P_2 + \sigma_2^2= 3+1=0+4.$$
 +
*Damit erhält man für die Kanalkapazität:
 +
:$$C ={1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3}{1} \right )
 +
+{1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{0}{4} \right )=1\,{\rm bit}+ 0\,{\rm bit}
 +
\hspace{0.15cm}\underline{= 1\,{\rm bit}}
 +
\hspace{0.05cm}.$$
 +
 
 +
Weitere Anmerkungen:
 +
*Während für&nbsp; $P_X = 10$&nbsp; die Differenz zwischen gleichmäßiger und bester Leistungsaufteilung nur&nbsp; $0.03$&nbsp; bit betragen hat, ist bei&nbsp; $P_X = 3$&nbsp; die Differenz größer, nämlich&nbsp;  $0.109$&nbsp; bit.
 +
*Bei noch größerem&nbsp; $P_X > 10$&nbsp; wird der Unterschied zwischen gleichmäßiger und bestmöglicher Leistungsaufteilung noch geringer.
 +
 
 +
 
 +
Zum Beispiel beträgt die Differenz für&nbsp; $P_X = 100$&nbsp; nur noch&nbsp; $0.001$&nbsp; bit, wie die folgende Rechnung zeigt:
 +
*Für&nbsp; $P_1 = P_2 = 50$&nbsp; erhält man:
 +
:$$I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1,  Y_2) = {1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{1} \right )
 +
+{1}/{2}\cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{4} \right )= 2.836\,{\rm bit}+ 1.877\,{\rm bit}
 +
\hspace{0.15cm}\underline{= 4.713\,{\rm bit}}
 +
\hspace{0.05cm}.$$
 +
*Dagegen erhält man bei bestmöglicher Aufteilung &nbsp; &#8658; &nbsp; $P_1 = 51.5, \  P_2 = 48.5$:
 +
:$$C = {1}/{2} \cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{51.5}{1} \right )
 +
+{1}/{2}\cdot  {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{48.5}{4} \right )= 2.857\,{\rm bit}+ 1.857\,{\rm bit}
 +
\hspace{0.15cm}\underline{= 4.714\,{\rm bit}}
 +
\hspace{0.05cm}.$$
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Informationstheorie|^4.2 AWGN–Kanalkapazität bei wertkontinuierlichem Eingang^]]
+
[[Category:Aufgaben zu Informationstheorie|^4.2 AWGN & kontinuierlicher Eingang^]]

Aktuelle Version vom 4. Oktober 2021, 16:21 Uhr

Water–Filling–Prinzip  $(K = 4)$

Wir betrachten  $K$  parallele Gaußsche Kanäle  $\rm (AWGN)$  mit unterschiedlichen Störleistungen  $\sigma_k^2$,  wobei  $1 \le k \le K$  gelten soll.  Die Grafik verdeutlicht diese Konstellation am Beispiel  $K = 4$.

Die Sendeleistung in den einzelnen Kanälen wird mit  $P_k$  bezeichnet,  deren Summe den vorgegebenen Wert  $P_X$  nicht überschreiten darf:

$$P_1 +\text{...}\hspace{0.05cm}+ P_K = \hspace{0.1cm} \sum_{k= 1}^K \hspace{0.1cm}{\rm E} \left [ X_k^2\right ] \le P_{X} \hspace{0.05cm}.$$

Sind die Zufallsgrößen  $X_1$, ... , $X_K$  gaußisch,  so kann für die (gesamte) Transinformation zwischen dem Eingang  $X$  und dem Ausgang  $Y$  geschrieben werden:

$$I(X_1,\text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) = 1/2 \cdot \sum_{k= 1}^K \hspace{0.1cm} {\rm log}_2 \hspace{0.1cm} ( 1 + \frac{P_k}{\sigma_k^2})\hspace{0.05cm},\hspace{0.5cm} {\rm Ergebnis\hspace{0.15cm} in \hspace{0.15cm} bit} \hspace{0.05cm}.$$

Das Maximum hierfür ist die Kanalkapazität des Gesamtsystems,  wobei sich die Maximierung auf die Aufteilung der Gesamtleistung  $P_X$  auf die einzelnen Kanäle bezieht:

$$C_K(P_X) = \max_{P_k\hspace{0.05cm},\hspace{0.15cm}{\rm mit} \hspace{0.15cm}P_1 + ... \hspace{0.05cm}+ P_K = P_X} \hspace{-0.5cm} I(X_1, \text{...} \hspace{0.05cm}, X_K\hspace{0.05cm};\hspace{0.05cm}Y_1, \text{...}\hspace{0.05cm}, Y_K) \hspace{0.05cm}.$$

Diese Maximierung kann mit dem so genannten  "Water–Filling–Algorithmus"  geschehen,  der in obiger Grafik für  $K = 4$  dargestellt ist.

In der vorliegenden Aufgabe soll dieser Algorithmus angewendet werden,  wobei von folgenden Voraussetzungen auszugehen ist:

  • Zwei parallele Gaußkanäle   ⇒   $K = 2$,
  • Normierte Störleistungen   $\sigma_1^2 = 1$   und   $\sigma_2^2 = 4$,
  • Normierte Sendeleistungen   $P_X = 10$   bzw.   $P_X = 3$.



Hinweise:


Fragebogen

1

Welche Strategien der Leistungszuteilung sind sinnvoll?

Einem stark gestörten Kanal  $k$  $($mit großer Störleistung  $\sigma_k^2)$  sollte eine große Nutzleistung  $P_k$  zugewiesen werden.
Einem stark gestörten Kanal  $k$  $($mit großer Störleistung  $\sigma_k^2)$  sollte nur eine kleine Nutzleistung  $P_k$  zugewiesen werden.
Bei gleich guten Kanälen   ⇒   $\sigma_1^2 = \text{...} = \sigma_K^2 = \sigma_N^2$  $k$  sollte die Leistung  $P_k$  gleichmäßig verteilt werden.

2

Welche Transinformation ergibt sich,  wenn man die Sendeleistung  $P_X = 10$  gleichmäßig auf beide Kanäle verteilt   $(P_1= P_2 = 5)$?

$I(X_1, X_2; Y_1, Y_2) \ = \ $

$\ \rm bit$

3

Es gelte weiter  $P_X = P_1 + P_2 = 10$.  Welche optimale Leistungsaufteilung ergibt sich nach dem Water–Filling–Algorithmus?

$P_1 \ = \ $

$P_2 \ = \ $

4

Wie groß ist die Kanalkapazität für  $\underline{K = 2}$  und  $\underline{P_X = 10}$?

$C \ = \ $

$\ \rm bit$

5

Welche Transinformation ergibt sich,  wenn man die Sendeleistung  $P_X = 3$  gleichmäßig auf beide Kanäle verteilt   $(P_1= P_2 = 1.5)$?

$I(X_1, X_2; Y_1, Y_2) \ = \ $

$\ \rm bit$

6

Wie groß ist die Kanalkapazität für  $\underline{K = 2}$  und  $\underline{P_X = 3}$?

$C \ = \ $

$\ \rm bit$


Musterlösung

(1)  Richtig sind die  Lösungsvorschläge 2 und 3:

  • Nach den Ausführungen im Theorieteil ist  „Water–Filling”   ⇒   Vorschlag 2 anzuwenden,  wenn ungleiche Bedingungen vorliegen.
  • Der  Lösungsvorschlag 3  ist aber ebenfalls richtig:   Bei gleich guten Kanälen spricht nichts dagegen,  alle  $K$  Kanäle mit gleicher Leistung   ⇒    $P_1 = P_2 =$  ...  $= P_K = P_X/K$  zu versorgen.


(2)  Für die Transinformation gilt bei gleicher Leistungsaufteilung:

$$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) \ = \ {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{5}{4} \right )=1.292\,{\rm bit}+ 0.585\,{\rm bit} \hspace{0.15cm}\underline{= 1.877\,{\rm bit}} \hspace{0.05cm}.$$


Bestmögliche Aufteilung der Sendeleistung  $P_X = 10$

(3)  Entsprechend nebenstehender Skizze muss gelten:

$$P_2 = P_1 - (\sigma_2^2 - \sigma_1^2) = P_1 -3,\hspace{0.3cm}\text{wobei }\hspace{0.3cm}P_1 + P_2 = P_X = 10$$
$$\Rightarrow \hspace{0.3cm} P_1 + (P_1 -3) = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 2 \cdot P_1 = 13 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{P_1 = 6.5}\hspace{0.05cm}, \hspace{0.3cm}\underline{P_2 = 3.5}\hspace{0.05cm}.$$

Für die  „Wasserstandshöhe”  gilt hier: 

$$H= P_1 + \sigma_1^2= P_2 + \sigma_2^2 = 7.5 = 6.5+1 = 3.5+4.$$


(4)  Die Kanalkapazität gibt die maximale Transinformation an. 

  • Das Maximum liegt durch die bestmögliche Leistungsaufteilung gemäß der Teilaufgabe  (3)  bereits fest. 
  • Für  $P_X = 10$  gilt:
$$C={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{6.5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3.5}{4} \right )$$
$$\Rightarrow\hspace{0.3cm} C=1.453\,{\rm bit}+ 0.453\,{\rm bit} \hspace{0.15cm}\underline{= 1.906\,{\rm bit}} \hspace{0.05cm}.$$


(5)  Für  $P_X = 3$  erhält man bei gleicher Leistungsaufteilung  $(P_1 = P_2 =1.5)$:

$$I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) ={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{1.5}{4} \right ) \hspace{0.15cm}\underline{= 0.891\,{\rm bit}} \hspace{0.05cm}.$$


Bestmögliche Aufteilung der Sendeleistung  $P_X = 3$

(6)  Entsprechend dem Water–Filling–Algorithmus wird die gesamte zur Verfügung stehende Sendeleistung  $P_X = 3$  nun vollständig dem ersten Kanal zugewiesen:

$${P_1 = 3}\hspace{0.05cm}, \hspace{0.3cm}{P_2 = 0}\hspace{0.05cm}.$$
  • Hier gilt also für die  „Wasserstandshöhe”: 
$$H= 4= P_1 + \sigma_1^2= P_2 + \sigma_2^2= 3+1=0+4.$$
  • Damit erhält man für die Kanalkapazität:
$$C ={1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{3}{1} \right ) +{1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{0}{4} \right )=1\,{\rm bit}+ 0\,{\rm bit} \hspace{0.15cm}\underline{= 1\,{\rm bit}} \hspace{0.05cm}.$$

Weitere Anmerkungen:

  • Während für  $P_X = 10$  die Differenz zwischen gleichmäßiger und bester Leistungsaufteilung nur  $0.03$  bit betragen hat, ist bei  $P_X = 3$  die Differenz größer, nämlich  $0.109$  bit.
  • Bei noch größerem  $P_X > 10$  wird der Unterschied zwischen gleichmäßiger und bestmöglicher Leistungsaufteilung noch geringer.


Zum Beispiel beträgt die Differenz für  $P_X = 100$  nur noch  $0.001$  bit, wie die folgende Rechnung zeigt:

  • Für  $P_1 = P_2 = 50$  erhält man:
$$I = I(X_1, X_2\hspace{0.05cm};\hspace{0.05cm}Y_1, Y_2) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{1} \right ) +{1}/{2}\cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{50}{4} \right )= 2.836\,{\rm bit}+ 1.877\,{\rm bit} \hspace{0.15cm}\underline{= 4.713\,{\rm bit}} \hspace{0.05cm}.$$
  • Dagegen erhält man bei bestmöglicher Aufteilung   ⇒   $P_1 = 51.5, \ P_2 = 48.5$:
$$C = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{51.5}{1} \right ) +{1}/{2}\cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{48.5}{4} \right )= 2.857\,{\rm bit}+ 1.857\,{\rm bit} \hspace{0.15cm}\underline{= 4.714\,{\rm bit}} \hspace{0.05cm}.$$