Aufgaben:Aufgabe 4.7Z: Erzeugung einer 2D–WDF: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID423__Sto_Z_4_7.png|right|frame|Vorgaben zur Erzeugung einer <br>2D-Zufallsgröße]]
 
[[Datei:P_ID423__Sto_Z_4_7.png|right|frame|Vorgaben zur Erzeugung einer <br>2D-Zufallsgröße]]
Ausgehend von statistisch unabhängigen Größen&nbsp; $u$&nbsp; und&nbsp; $v$, die beide zwischen&nbsp; $-1$&nbsp; und&nbsp; $+1$&nbsp; gleichverteilt sind und somit jeweils die Varianz&nbsp; $\sigma^2 = 2/3$&nbsp; besitzen, soll eine 2D-Zufallsgröße&nbsp; $(x, y)$&nbsp; generiert werden, wobei für die Komponenten gilt:
+
Ausgehend von statistisch unabhängigen Größen&nbsp; $u$&nbsp; und&nbsp; $v$,  
 +
*die beide zwischen&nbsp; $-1$&nbsp; und&nbsp; $+1$&nbsp; gleichverteilt sind und  
 +
*somit jeweils die Varianz&nbsp; $\sigma^2 = 2/3$&nbsp; besitzen,  
 +
 
 +
 
 +
soll eine 2D-Zufallsgröße&nbsp; $(x,\hspace{0.08cm} y)$&nbsp; generiert werden,&nbsp; wobei für die Komponenten gilt:
 
:$$x = A \cdot u + B \cdot  v + C,$$
 
:$$x = A \cdot u + B \cdot  v + C,$$
 
:$$y= D \cdot u + E \cdot  v + F.$$
 
:$$y= D \cdot u + E \cdot  v + F.$$
  
Die zu erzeugende 2D&ndash;Zufallsgröße&nbsp; $(x, y)$&nbsp; soll die folgenden statistischen Eigenschaften aufweisen:
+
Die zu erzeugende 2D&ndash;Zufallsgröße&nbsp; $(x,\hspace{0.08cm} y)$&nbsp; soll die folgenden statistischen Eigenschaften aufweisen:
 
* Die Varianzen seien&nbsp; $\sigma_x^2 = 4$&nbsp; und&nbsp; $\sigma_y^2 = 10$.
 
* Die Varianzen seien&nbsp; $\sigma_x^2 = 4$&nbsp; und&nbsp; $\sigma_y^2 = 10$.
 
* Die Zufallsgröße&nbsp; $x$&nbsp; sei mittelwertfrei&nbsp; $(m_x =0)$.
 
* Die Zufallsgröße&nbsp; $x$&nbsp; sei mittelwertfrei&nbsp; $(m_x =0)$.
 
* Für den Mittelwert von&nbsp; $y$&nbsp; gelte&nbsp; $m_y = 1$.
 
* Für den Mittelwert von&nbsp; $y$&nbsp; gelte&nbsp; $m_y = 1$.
 
* Der Korrelationskoeffizient zwischen&nbsp; $x$&nbsp; und&nbsp; $y$&nbsp; betrage&nbsp; $\rho_{xy} = \sqrt{0.9} = 0.949.$
 
* Der Korrelationskoeffizient zwischen&nbsp; $x$&nbsp; und&nbsp; $y$&nbsp; betrage&nbsp; $\rho_{xy} = \sqrt{0.9} = 0.949.$
* Die Zufallsgröße&nbsp; $x$&nbsp; besitze eine dreieckförmige WDF  $f_x(x)$&nbsp; entsprechend der oberen Grafik.
+
* Die Zufallsgröße&nbsp; $x$&nbsp; besitze eine dreieckförmige WDF  $f_x(x)$&nbsp; entsprechend der oberen Skizze.
* Die Zufallsgröße&nbsp; $y$&nbsp; besitze eine trapezförmige WDF  $f_y(y)$&nbsp; entsprechend der unteren Grafik.
+
* Die Zufallsgröße&nbsp; $y$&nbsp; besitze eine trapezförmige WDF  $f_y(y)$&nbsp; entsprechend der unteren Skizze.
 
 
 
 
 
 
  
  
Zeile 23: Zeile 25:
  
  
''Hinweise:''
+
Hinweise:  
 
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen|Linearkombinationen von Zufallsgrößen]].
 
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen|Linearkombinationen von Zufallsgrößen]].
 
*Insbesondere wird Bezug genommen auf die Seite&nbsp; [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen#Erzeugung_korrelierter_Zufallsgr.C3.B6.C3.9Fen|Erzeugung korrelierter Zufallsgrößen]].
 
*Insbesondere wird Bezug genommen auf die Seite&nbsp; [[Stochastische_Signaltheorie/Linearkombinationen_von_Zufallsgrößen#Erzeugung_korrelierter_Zufallsgr.C3.B6.C3.9Fen|Erzeugung korrelierter Zufallsgrößen]].
*Um Mehrdeutigkeiten zu vermeiden wird festgelegt, dass alle Koeffizienten&nbsp; $A$, ... , $F$&nbsp; nicht negativ sein sollen.
+
*Um Mehrdeutigkeiten zu vermeiden wird festgelegt,&nbsp; dass alle Koeffizienten&nbsp; $A$, ... , $F$&nbsp; nicht negativ sein sollen.
 
   
 
   
  
Zeile 45: Zeile 47:
  
  
{Bestimmen Sie die Koeffizienten&nbsp; $D$&nbsp; und&nbsp; $E$, wobei&nbsp; $D > E$&nbsp; gelten soll.
+
{Bestimmen Sie die Koeffizienten&nbsp; $D$&nbsp; und&nbsp; $E$,&nbsp; wobei&nbsp; $D > E$&nbsp; gelten soll.
 
|type="{}"}
 
|type="{}"}
 
$D \ = \ $ { 3.464 3% }
 
$D \ = \ $ { 3.464 3% }
Zeile 65: Zeile 67:
 
:$$ F = m_y\hspace{0.15cm}\underline{ = 1}.$$
 
:$$ F = m_y\hspace{0.15cm}\underline{ = 1}.$$
  
'''(2)'''&nbsp; Unter Ber&uuml;cksichtigung von $\sigma^2 = 2/3$ gilt:
+
 
 +
'''(2)'''&nbsp; Unter Ber&uuml;cksichtigung von&nbsp; $\sigma^2 = 2/3$&nbsp; gilt:
 
:$$\sigma_x^2 =  \sigma^2 \cdot ( A^2 + B^2)= {2}/{3} \cdot ( A^2 + B^2) .$$
 
:$$\sigma_x^2 =  \sigma^2 \cdot ( A^2 + B^2)= {2}/{3} \cdot ( A^2 + B^2) .$$
  
*Wegen $\sigma_x^2 = 4$ folgt daraus $A^2 + B^2= 6$.  
+
*Wegen&nbsp; $\sigma_x^2 = 4$&nbsp; folgt&nbsp; $A^2 + B^2= 6$.  
*Eine dreieckf&ouml;rmige WDF bedeutet, dass $A = \pm B$ gelten muss.  
+
*Eine dreieckf&ouml;rmige WDF bedeutet,&nbsp; dass&nbsp; $A = \pm B$&nbsp; gelten muss.  
*Somit erh&auml;lt man, da  negative Koeffizienten  ausgeschlossen wurden:  
+
*Somit erh&auml;lt man,&nbsp; da  negative Koeffizienten  ausgeschlossen wurden:  
 
:$$ A = B = \sqrt{3}\hspace{0.15cm}\underline{ = 1.732}.$$
 
:$$ A = B = \sqrt{3}\hspace{0.15cm}\underline{ = 1.732}.$$
 +
 
   
 
   
 
[[Datei:P_ID424__Sto_Z_4_7_d.png|right|frame|Rautenförmige 2D-WDF]]
 
[[Datei:P_ID424__Sto_Z_4_7_d.png|right|frame|Rautenförmige 2D-WDF]]
'''(3)'''&nbsp; Mit $ A = B = \sqrt{3}$ entsprechend der letzten Teilaufgabe verbleiben zwei Bestimmungsgleichungen f&uuml;r $D$ und $E$:
+
'''(3)'''&nbsp; Mit&nbsp; $ A = B = \sqrt{3}$&nbsp; entsprechend der letzten Teilaufgabe verbleiben zwei Bestimmungsgleichungen f&uuml;r&nbsp; $D$&nbsp; und&nbsp; $E$:
 
:$$\sigma_y^2 =  \sigma^2 \cdot ( D^2 + E^2)= 10 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} D^2 + E^2 = \frac {\sigma_y^2}{\sigma^2}  = \frac {10}{2/3} \stackrel{!}{=}15,$$
 
:$$\sigma_y^2 =  \sigma^2 \cdot ( D^2 + E^2)= 10 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} D^2 + E^2 = \frac {\sigma_y^2}{\sigma^2}  = \frac {10}{2/3} \stackrel{!}{=}15,$$
 
:$$\rho_{xy} = \frac{A \cdot D + B \cdot E}{\sqrt{(A^2 + B^2)(D^2 + E^2)}} = \frac{\sqrt{3} \cdot (D +  E)}{\sqrt{6 \cdot (D^2 + E^2)}}  \stackrel{!}{=} \sqrt{0.9}.$$
 
:$$\rho_{xy} = \frac{A \cdot D + B \cdot E}{\sqrt{(A^2 + B^2)(D^2 + E^2)}} = \frac{\sqrt{3} \cdot (D +  E)}{\sqrt{6 \cdot (D^2 + E^2)}}  \stackrel{!}{=} \sqrt{0.9}.$$
  
*Daraus folgt weiter: $D + E = \sqrt{1.8 \cdot ( D^2 + E^2)} = \sqrt{27} = 3 \cdot \sqrt{3}.$  
+
*Daraus folgt weiter:&nbsp; $D + E = \sqrt{1.8 \cdot ( D^2 + E^2)} = \sqrt{27} = 3 \cdot \sqrt{3}.$  
*Die Gleichung führt in Verbindung mit $D^2 + E^2 = 15$ und der oben angegebenen Nebenbedingung$(D>E)$  zum Ergebnis:
+
*Die Gleichung führt in Verbindung mit&nbsp; $D^2 + E^2 = 15$&nbsp; und der Nebenbedingung&nbsp; $(D>E)$&nbsp; zum Ergebnis:
 
:$$ D= 2 \cdot \sqrt{3}\hspace{0.15cm}\underline{ = 3.464}, \hspace{0.5cm}E= \sqrt{3} \hspace{0.15cm}\underline{= 1.732}.$$
 
:$$ D= 2 \cdot \sqrt{3}\hspace{0.15cm}\underline{ = 3.464}, \hspace{0.5cm}E= \sqrt{3} \hspace{0.15cm}\underline{= 1.732}.$$
  
'''(4)'''&nbsp; Die Zufallsgr&ouml;&szlig;e $x$&nbsp; bzw. $y$&nbsp; nehmen ihre maximalen Werte  an, wenn jeweils $u= +1$ und $v= +1$ gilt:
+
 
 +
'''(4)'''&nbsp; Die Zufallsgr&ouml;&szlig;e&nbsp; $x$&nbsp; bzw.&nbsp; $y$&nbsp; nehmen ihre maximalen Werte  an,&nbsp; wenn jeweils&nbsp; $u= +1$ und&nbsp; $v= +1$&nbsp; gilt:
 
:$$ x_\text{max}= A+B \hspace{0.15cm}\underline{ = +3.464}, \hspace{0.5cm} x_\text{min} = -  A - B= -3.464.$$
 
:$$ x_\text{max}= A+B \hspace{0.15cm}\underline{ = +3.464}, \hspace{0.5cm} x_\text{min} = -  A - B= -3.464.$$
 
:$$ y_\text{max}= D+E+F \hspace{0.15cm}\underline{ = +6.196}, \hspace{0.5cm} y_\text{min} = -D-E+F= -4.196.$$
 
:$$ y_\text{max}= D+E+F \hspace{0.15cm}\underline{ = +6.196}, \hspace{0.5cm} y_\text{min} = -D-E+F= -4.196.$$

Aktuelle Version vom 25. Februar 2022, 19:01 Uhr

Vorgaben zur Erzeugung einer
2D-Zufallsgröße

Ausgehend von statistisch unabhängigen Größen  $u$  und  $v$,

  • die beide zwischen  $-1$  und  $+1$  gleichverteilt sind und
  • somit jeweils die Varianz  $\sigma^2 = 2/3$  besitzen,


soll eine 2D-Zufallsgröße  $(x,\hspace{0.08cm} y)$  generiert werden,  wobei für die Komponenten gilt:

$$x = A \cdot u + B \cdot v + C,$$
$$y= D \cdot u + E \cdot v + F.$$

Die zu erzeugende 2D–Zufallsgröße  $(x,\hspace{0.08cm} y)$  soll die folgenden statistischen Eigenschaften aufweisen:

  • Die Varianzen seien  $\sigma_x^2 = 4$  und  $\sigma_y^2 = 10$.
  • Die Zufallsgröße  $x$  sei mittelwertfrei  $(m_x =0)$.
  • Für den Mittelwert von  $y$  gelte  $m_y = 1$.
  • Der Korrelationskoeffizient zwischen  $x$  und  $y$  betrage  $\rho_{xy} = \sqrt{0.9} = 0.949.$
  • Die Zufallsgröße  $x$  besitze eine dreieckförmige WDF $f_x(x)$  entsprechend der oberen Skizze.
  • Die Zufallsgröße  $y$  besitze eine trapezförmige WDF $f_y(y)$  entsprechend der unteren Skizze.



Hinweise:


Fragebogen

1

Bestimmen Sie die Koeffizienten  $C$  und  $F$.

$C \ = \ $

$F\ = \ $

2

Bestimmen Sie die Koeffizienten  $A$  und  $B$.

$A \ = \ $

$B \ = \ $

3

Bestimmen Sie die Koeffizienten  $D$  und  $E$,  wobei  $D > E$  gelten soll.

$D \ = \ $

$E \ = \ $

4

Geben Sie die Maximalwerte für  $x$  und  $y$  an.

$x_\text{max}\ = \ $

$y_\text{max}\ = \ $


Musterlösung

(1)  Aufgrund der angegebenen Mittelwerte muss gelten:

$$ C = m_x\hspace{0.15cm}\underline{ = 0},$$
$$ F = m_y\hspace{0.15cm}\underline{ = 1}.$$


(2)  Unter Berücksichtigung von  $\sigma^2 = 2/3$  gilt:

$$\sigma_x^2 = \sigma^2 \cdot ( A^2 + B^2)= {2}/{3} \cdot ( A^2 + B^2) .$$
  • Wegen  $\sigma_x^2 = 4$  folgt  $A^2 + B^2= 6$.
  • Eine dreieckförmige WDF bedeutet,  dass  $A = \pm B$  gelten muss.
  • Somit erhält man,  da negative Koeffizienten ausgeschlossen wurden:
$$ A = B = \sqrt{3}\hspace{0.15cm}\underline{ = 1.732}.$$


Rautenförmige 2D-WDF

(3)  Mit  $ A = B = \sqrt{3}$  entsprechend der letzten Teilaufgabe verbleiben zwei Bestimmungsgleichungen für  $D$  und  $E$:

$$\sigma_y^2 = \sigma^2 \cdot ( D^2 + E^2)= 10 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} D^2 + E^2 = \frac {\sigma_y^2}{\sigma^2} = \frac {10}{2/3} \stackrel{!}{=}15,$$
$$\rho_{xy} = \frac{A \cdot D + B \cdot E}{\sqrt{(A^2 + B^2)(D^2 + E^2)}} = \frac{\sqrt{3} \cdot (D + E)}{\sqrt{6 \cdot (D^2 + E^2)}} \stackrel{!}{=} \sqrt{0.9}.$$
  • Daraus folgt weiter:  $D + E = \sqrt{1.8 \cdot ( D^2 + E^2)} = \sqrt{27} = 3 \cdot \sqrt{3}.$
  • Die Gleichung führt in Verbindung mit  $D^2 + E^2 = 15$  und der Nebenbedingung  $(D>E)$  zum Ergebnis:
$$ D= 2 \cdot \sqrt{3}\hspace{0.15cm}\underline{ = 3.464}, \hspace{0.5cm}E= \sqrt{3} \hspace{0.15cm}\underline{= 1.732}.$$


(4)  Die Zufallsgröße  $x$  bzw.  $y$  nehmen ihre maximalen Werte an,  wenn jeweils  $u= +1$ und  $v= +1$  gilt:

$$ x_\text{max}= A+B \hspace{0.15cm}\underline{ = +3.464}, \hspace{0.5cm} x_\text{min} = - A - B= -3.464.$$
$$ y_\text{max}= D+E+F \hspace{0.15cm}\underline{ = +6.196}, \hspace{0.5cm} y_\text{min} = -D-E+F= -4.196.$$