Aufgaben:Aufgabe 4.7: Kupfer-Doppelader 0.5 mm: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 28: Zeile 28:
 
* die Teilimpulsantwort $h_1(t)$ auf den dritten Term in obiger Gleichung zurückgeht, und
 
* die Teilimpulsantwort $h_1(t)$ auf den dritten Term in obiger Gleichung zurückgeht, und
 
* $h_2(t)$ die gemeinsame Zeitbereichsdarstellung der beiden letzten Terme angibt.
 
* $h_2(t)$ die gemeinsame Zeitbereichsdarstellung der beiden letzten Terme angibt.
 +
  
 
Die Grafik zeigt den Anteil $h_2(t)$ der Impulsantwort und das Faltungsprodukt $h_1(t) \star h_2(t)$. Dabei ist $h_2(t)$ gleich der [[Lineare_zeitinvariante_Systeme/Eigenschaften_von_Koaxialkabeln#Impulsantworten_von_Koaxialkabeln|Koaxialkabel–Impulsantwort]] mit der charakteristischen Kabeldämpfung ${\rm a}_\star = {\rm a}_2$.
 
Die Grafik zeigt den Anteil $h_2(t)$ der Impulsantwort und das Faltungsprodukt $h_1(t) \star h_2(t)$. Dabei ist $h_2(t)$ gleich der [[Lineare_zeitinvariante_Systeme/Eigenschaften_von_Koaxialkabeln#Impulsantworten_von_Koaxialkabeln|Koaxialkabel–Impulsantwort]] mit der charakteristischen Kabeldämpfung ${\rm a}_\star = {\rm a}_2$.

Version vom 17. Februar 2017, 14:03 Uhr

Impulsantwort der Kupfer-Doppelader

Hier soll das Zeitverhalten einer Kupferdoppelader mit Durchmesser $d = 0.5 \ \rm mm$ analysiert werden. Der Frequenzgang lautet mit der Leitungslänge $l = 1.5 \ \rm km$ und der Bitrate $R = 10 \rm Mbit/s$:

$$H_{\rm K}(f) = {\rm e}^{-{\rm a}_0 } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot \hspace{0.01cm}\tau_{\rm P}} \cdot {\rm e}^{-{\rm a}_1 \hspace{0.05cm}\cdot \hspace{0.02cm}2f/R}\cdot {\rm e}^{-{\rm a}_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}} \hspace{0.05cm}.$$

Verwendet sind folgende Größen, die sich aus dem Dämpfungs– und Phasenmaß ableiten lassen: $${\rm a}_0 = \alpha_0 \cdot l\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}\alpha_0 = 0.5066\,\, \frac{\rm Np}{\rm km}\hspace{0.05cm},$$ $$ \tau_{\rm P} = \frac{\beta_1 \cdot l}{2 \pi} \hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}\beta_1 = 30.6\,\, \frac{\rm rad}{\rm km \cdot MHz}\hspace{0.05cm},$$ $$ {\rm a}_1 = \alpha_1 \cdot l \cdot {{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm} \alpha_1 = 0.136\,\, \frac{\rm Np}{\rm km \cdot MHz}\hspace{0.05cm},$$ $$ {\rm a}_2 = \alpha_2 \cdot l \cdot \sqrt{{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm} \alpha_2 = 1.1467\,\, \frac{\rm Np}{\rm km \cdot MHz^{0.5}}\hspace{0.05cm},$$ $$ {\rm b}_2 = \beta_2 \cdot l \cdot \sqrt{{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm} \beta_2 = 1.1467\,\, \frac{\rm rad}{\rm km \cdot MHz^{0.5}}\hspace{0.05cm}.$$

Die Impulsantwort lässt sich somit in der Form $$h_{\rm K}(t ) = K \cdot \left [ \delta(t - \tau_{\rm P})\star h_{1}(t) \star h_{2}(t) \right ]$$ darstellen, wobei

  • die Teilimpulsantwort $h_1(t)$ auf den dritten Term in obiger Gleichung zurückgeht, und
  • $h_2(t)$ die gemeinsame Zeitbereichsdarstellung der beiden letzten Terme angibt.


Die Grafik zeigt den Anteil $h_2(t)$ der Impulsantwort und das Faltungsprodukt $h_1(t) \star h_2(t)$. Dabei ist $h_2(t)$ gleich der Koaxialkabel–Impulsantwort mit der charakteristischen Kabeldämpfung ${\rm a}_\star = {\rm a}_2$.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Eigenschaften von Kupfer–Doppeladern.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Die Parameter $\alpha_0$, $\alpha_1$ und $\alpha_2$ wurden aus den $k$–Parametern umgerechnet, wie in [[Aufgaben:4.6_$k$-_und_$\alpha$-Parameter|Aufgabe 4.6]] gezeigt.
  • Der Phasenmaßparameter β2 wurde hier zahlenmäßig gleich dem Dämpfungsmaßparameter α2 gesetzt. a2 und b2 unterscheiden sich deshalb nur in der Einheit.
  • Im Theorieteil zu diesem Kapitel 4.3 wird dargelegt, warum diese Maßnahme erforderlich ist.



Fragebogen

1

Berechnen Sie die Konstante der Impulsantwort.

$K$ =

2

Berechnen Sie die Phasenlaufzeit, bezogen auf die Symboldauer T.

$\tau_P/T$ =

3

Wie groß ist die charakteristische Dämpfung des vergleichbaren Koaxialkabels?

$a_\star$ =

$dB$

4

Welche Eigenschaften weist die Teilimpulsantwort h1(t) auf?

h1(t) ist eine gerade Funktion.
Das Maximum von h1(t) liegt bei t = 0.
Das Integral über h1(t) ergibt den Wert 2.

5

Welche Eigenschaften erkennt man an der Funktion h1(t) ∗ h2(t)?

h1(t) ∗ h2(t) gibt die Verzerrungen von hK(t) vollständig wieder.
h1(t) ∗ h2(t) unterscheidet sich von hK(t) nur durch einen Faktor.


Musterlösung

1.  Mit a0 = α0 · l ≈ 0.76 Np erhält man für die Konstante K, die den Einfluss des Koeffizienten α0 auf die Impulsantwort angibt:
$$K = {\rm e}^{-{\rm a}_0 }= {\rm e}^{-0.76} \hspace{0.15cm}\underline{= 0.468} \hspace{0.05cm}.$$
2.  Für die Phasenlaufzeit gilt mit der angegebenen Gleichung:
$$\tau_{\rm P} = \frac{\beta_1 \cdot l}{2 \pi}= \frac{30.6 \cdot 1.5}{2 \pi}\, {\rm \mu s}\approx 7.31\, {\rm \mu s}\hspace{0.05cm},$$
und bezogen auf die Symboldauer T = 0.1 μs:
$${\tau_{\rm P}}/{T} \hspace{0.15cm}\underline{ \approx 73}\hspace{0.05cm}.$$
3.  Die Impulsantwort eines Koaxialkabels ist näherungsweise gleich h2(t), wenn dieses Koaxialkabel folgende charakteristische Kabeldämpfung aufweist:
$${\rm a}_\star ={\rm a}_2 = \alpha_2 \cdot l \cdot \sqrt{{R}/{2}} = 1.1467\,\, \frac{\rm Np}{\rm km \cdot MHz^{0.5}} \cdot 1.5\,{\rm km} \cdot \sqrt{\frac{10\,{\rm MHz}}{2}}=\\ = 2.93\,{\rm Np} = 2.93\,{\rm Np} \cdot8.686\,\frac {\rm dB}{\rm Np} \hspace{0.15cm}\underline{ =25.5\,{\rm dB}}\hspace{0.05cm}.$$
4.  Richig sind die Aussagen 1 und 2. Die Fouriertransformierte H1(f) = eA · |f| mit A = 2a1/R ist reell und gerade, so dass h(t) ebenfalls reell und gerade ist. Aufgrund der Tiefpass–Charakteristik von H1(f) liegt das Maximum bei t = 0. Dagegen ist die letzte Aussage falsch: Das Integral über h1(t) im Bereich von ± ∞ ist gleich H1(f = 0), also 1.
5.  Richtig ist nur der Lösungsvorschlag 1: Die Teilimpulsantwort h1(t) ∗ h2(t) berücksichtigt den Einfluss von α1, α2 und β2 und damit alle Terme, die zu Verzerrungen führen. Dagegen führt α0 nur zu einer frequenzunabhängigen Dämpfung und β1 zu einer für alle Frequenzen konstanten Laufzeit.
Der Lösungsvorschlag 2 trifft dagegen nicht zu. Zunächst (bei kleinen t–Werten) ist h1(t) ∗ h2(t) kleiner als h2(t). Bei großen t–Werten liegt dann die blaue Kurve oberhalb der roten. Das bedeutet: a1 und damit auch h1(t) bewirken tatsächlich zusätzliche Verzerrungen, auch wenn diese nicht ins Gewicht fallen.