Aufgaben:Aufgabe 4.6Z: Ortskure bei Phasenmodulation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 64: Zeile 64:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''   Die Ortskurve ist ein Kreisbogen mit Radius $2$. Deshalb ist die Betragsfunktion  konstant  $\underline{a(t) = 2}$.
+
'''(1)'''   Die Ortskurve ist ein Kreisbogen mit dem Radius  $2$. Deshalb ist die Betragsfunktion  konstant  $\underline{a(t) = 2}$.
  
  
Zeile 72: Zeile 72:
  
  
'''(3)'''  Allgemein gilt hier der Zusammenhang $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
+
 
 +
'''(3)'''  Allgemein gilt hier der Zusammenhang  $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
 
\phi(t)}.$ Ein Vergleich mit der gegebenen Funktion liefert:
 
\phi(t)}.$ Ein Vergleich mit der gegebenen Funktion liefert:
 
:$$\phi(t) = \eta \cdot q(t).$$
 
:$$\phi(t) = \eta \cdot q(t).$$
*Der maximale Phasenwert $\phi_{\rm max} = +\pi \; \Rightarrow  \; {180^\circ}$ ergibt sich für die Signalamplitude $q_{\rm max} = 1$. Daraus folgt direkt ${\eta = \pi} \; \underline{\approx 3.14}$.  
+
*Der maximale Phasenwert  $\phi_{\rm max} = +\pi \; \Rightarrow  \; {180^\circ}$  ergibt sich für die Signalamplitude  $q_{\rm max} = 1$. Daraus folgt direkt  ${\eta = \pi} \; \underline{\approx 3.14}$.  
*Dieser Modulationsindex wird durch die Werte $\phi_{\rm min} = -\pi /2$ und $q_{\rm min} = -0.5$ bestätigt.
+
*Dieser Modulationsindex wird durch die Werte  $\phi_{\rm min} = -\pi /2$  und  $q_{\rm min} = -0.5$  bestätigt.
  
  
 
[[Datei:P_ID769__Sig_Z_4_6_d_neu.png|right|frame|Ortskurve (Phasendiagramm) beim Rechtecksignal]]
 
[[Datei:P_ID769__Sig_Z_4_6_d_neu.png|right|frame|Ortskurve (Phasendiagramm) beim Rechtecksignal]]
 
'''(4)'''&nbsp;  Richtig sind der <u>zweite und der dritte Lösungsvorschlag</u>:
 
'''(4)'''&nbsp;  Richtig sind der <u>zweite und der dritte Lösungsvorschlag</u>:
*Ist $q(t) = \text{const.} =-0.5$, so ist die Phasenfunktion ebenfalls konstant:
+
*Ist&nbsp; $q(t) = \text{const.} =-0.5$, so ist die Phasenfunktion ebenfalls konstant:
 
:$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm}
 
:$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0  = - 2{\rm j}.$$
 
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0  = - 2{\rm j}.$$
Zeile 87: Zeile 88:
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t -
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t -
 
  {\pi}/{2}) = 2 \cdot  {\sin} (  \omega_{\rm T} \hspace{0.05cm} t ).$$
 
  {\pi}/{2}) = 2 \cdot  {\sin} (  \omega_{\rm T} \hspace{0.05cm} t ).$$
*Dagegen führt $q(t) = +0.5$ zu &nbsp;$\phi (t) = \pi /2$&nbsp; und zu &nbsp;$s_{\rm TP}(t) = 2{\rm j}$.  
+
*Dagegen führt&nbsp; $q(t) = +0.5$&nbsp; zu &nbsp;$\phi (t) = \pi /2$&nbsp; und zu &nbsp;$s_{\rm TP}(t) = 2{\rm j}$.  
*Ist $q(t)$ ein Rechtecksignal, das abwechselnd die Werte $+0.5$ und $–0.5$ annimmt, dann besteht die Ortskurve nur aus zwei Punkten auf der imaginären Achse, und zwar unabhängig davon, wie lange die Intervalle mit $+0.5$ und $–0.5$ dauern.
+
*Ist&nbsp; $q(t)$&nbsp; ein Rechtecksignal, das abwechselnd die Werte&nbsp; $+0.5$&nbsp; und&nbsp; $–0.5$&nbsp; annimmt, dann besteht die Ortskurve nur aus zwei Punkten auf der imaginären Achse, und zwar unabhängig davon, wie lange die Intervalle mit&nbsp; $+0.5$&nbsp; und&nbsp; $–0.5$ dauern.
*Gilt dagegen $q(t) = \pm 1$, so ergeben sich rein formal die möglichen Phasenwerte $+\pi$ und $-\pi$, die aber identisch sind.  
+
*Gilt dagegen&nbsp; $q(t) = \pm 1$, so ergeben sich rein formal die möglichen Phasenwerte&nbsp; $+\pi$&nbsp; und&nbsp; $-\pi$, die aber identisch sind.  
*Die „Ortskurve” besteht dann nur aus einem einzigen Punkt: &bsp; $s_{\rm TP}(t) = - s_0$ &nbsp; <br>&rArr; &nbsp;  das Signal $s(t)$ ist für alle Zeiten $t$  „minus-cosinusförmig”.
+
*Die „Ortskurve” besteht dann nur aus einem einzigen Punkt: &nbsp; $s_{\rm TP}(t) = - s_0$ &nbsp; <br>&rArr; &nbsp;  das Signal&nbsp; $s(t)$&nbsp; ist für alle Zeiten&nbsp; $t$&nbsp; „minus-cosinusförmig”.
  
  

Version vom 8. Oktober 2019, 12:08 Uhr

Eine mögliche Ortskurve bei Phasenmodulation

Wir gehen hier von einem Nachrichtensignal  $q(t)$  aus, das normiert (dimensionslos) betrachtet wird.

  • Der Maximalwert dieses Signal ist  $q_{\rm max} = 1$  und der minimale Signalwert beträgt  $q_{\rm min} = -0.5$.
  • Ansonsten ist über  $q(t)$  nichts bekannt.


Das modulierte Signal lautet bei Phasenmodulation:

$$s(t) = s_0 \cdot {\cos} ( \omega_{\rm T}\hspace{0.05cm} t + \eta \cdot q(t)).$$

Hierbei bezeichnet  $\eta$  den so genannten Modulationsindex. Auch die konstante Hüllkurve  $s_0$  sei eine dimensionslose Größe, die im Folgenden zu  $s_0 = 2$  gesetzt wird (siehe Grafik).

Ersetzt man die Cosinusfunktion durch die komplexe Exponentialfunktion, so kommt man zum analytischen Signal

$$s_{\rm +}(t) = s_0\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}( \omega_{\rm T} \hspace{0.05cm}\cdot \hspace{0.05cm} t + \eta \hspace{0.05cm} \cdot \hspace{0.05cm} q(t)) }.$$

Daraus kann man das in der Grafik skizzierte äquivalente Tiefpass-Signal wie folgt berechnen:

$$s_{\rm TP}(t) = s_{\rm +}(t) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot\hspace{0.05cm} \omega_{\rm T} \hspace{0.05cm}\cdot\hspace{0.05cm} t } = s_0\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} \eta \hspace{0.05cm} \cdot \hspace{0.05cm} q(t) }.$$




Hinweise:


Fragebogen

1

Wie lautet die Betragsfunktion  $a(t) = |s_{\rm TP}(t)|$? Welcher Wert gilt für  $t = 0$?

$a(t = 0)\ = \ $

2

Zwischen welchen Extremwerten  $\phi_{\rm min}$  und  $\phi_{\rm max}$  schwankt die Phase  $\phi (t)$?

$\phi_{\rm min}\ = \ $

 $\text{Grad}$
$\phi_{\rm min}\ = \ $

 $\text{Grad}$

3

Bestimmen Sie den Modulationsindex  $\eta$  aus der Phasenfunktion  $\phi (t)$.

$\eta\ = \ $

4

Welche der folgenden Aussagen sind zutreffend?

Aus  $q(t) = -0.5 = \text{const.}$  folgt  $s(t) = s_0 \cdot \cos (\omega_T \cdot t)$.
Bei einem Rechtecksignal  $q(t)$  $($mit nur zwei möglichen Signalwerten  $\pm 0.5)$  entartet die Ortskurve zu zwei Punkten.
Mit den Signalwerten  $\pm 1$  $(q_{\rm min} = -0.5$  ist dann nicht mehr gültig$)$ entartet die Ortskurve zu einem Punkt:   $s_{\rm TP}(t) = -s_0$.


Musterlösung

(1)  Die Ortskurve ist ein Kreisbogen mit dem Radius  $2$. Deshalb ist die Betragsfunktion konstant  $\underline{a(t) = 2}$.


(2)  Aus der Grafik ist zu erkennen, dass folgende Zahlenwerte gelten:

  • $\phi_{\rm min} =- \pi /2 \; \Rightarrow \; \underline{-90^\circ}$,
  • $\phi_{\rm max} = +\pi \; \Rightarrow \; \underline{+180^\circ}$.


(3)  Allgemein gilt hier der Zusammenhang  $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)}.$ Ein Vergleich mit der gegebenen Funktion liefert:

$$\phi(t) = \eta \cdot q(t).$$
  • Der maximale Phasenwert  $\phi_{\rm max} = +\pi \; \Rightarrow \; {180^\circ}$  ergibt sich für die Signalamplitude  $q_{\rm max} = 1$. Daraus folgt direkt  ${\eta = \pi} \; \underline{\approx 3.14}$.
  • Dieser Modulationsindex wird durch die Werte  $\phi_{\rm min} = -\pi /2$  und  $q_{\rm min} = -0.5$  bestätigt.


Ortskurve (Phasendiagramm) beim Rechtecksignal

(4)  Richtig sind der zweite und der dritte Lösungsvorschlag:

  • Ist  $q(t) = \text{const.} =-0.5$, so ist die Phasenfunktion ebenfalls konstant:
$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0 = - 2{\rm j}.$$
  • Somit gilt für das tatsächliche, physikalische Signal:
$$s(t) = s_0 \cdot {\cos} ( \omega_{\rm T}\hspace{0.05cm} t - {\pi}/{2}) = 2 \cdot {\sin} ( \omega_{\rm T} \hspace{0.05cm} t ).$$
  • Dagegen führt  $q(t) = +0.5$  zu  $\phi (t) = \pi /2$  und zu  $s_{\rm TP}(t) = 2{\rm j}$.
  • Ist  $q(t)$  ein Rechtecksignal, das abwechselnd die Werte  $+0.5$  und  $–0.5$  annimmt, dann besteht die Ortskurve nur aus zwei Punkten auf der imaginären Achse, und zwar unabhängig davon, wie lange die Intervalle mit  $+0.5$  und  $–0.5$ dauern.
  • Gilt dagegen  $q(t) = \pm 1$, so ergeben sich rein formal die möglichen Phasenwerte  $+\pi$  und  $-\pi$, die aber identisch sind.
  • Die „Ortskurve” besteht dann nur aus einem einzigen Punkt:   $s_{\rm TP}(t) = - s_0$  
    ⇒   das Signal  $s(t)$  ist für alle Zeiten  $t$  „minus-cosinusförmig”.