Aufgaben:Aufgabe 4.6Z: Ortskure bei Phasenmodulation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID768__Sig_Z_4_6.png|right|Eine mögliche Ortskurve bei Phasenmodulation]]
+
[[Datei:P_ID768__Sig_Z_4_6.png|right|frame|Eine mögliche Ortskurve bei Phasenmodulation]]
Wir gehen hier von einem Nachrichtensignal $q(t)$ aus, das normiert (dimensionslos) betrachtet wird. Der Maximalwert dieses Signal ist $q_{\rm max} = 1$ und der minimale Signalwert beträgt $q_{\rm min} = -0.5$. Ansonsten ist über $q(t)$ nichts bekannt.
+
Wir gehen hier von einem Nachrichtensignal $q(t)$ aus, das normiert (dimensionslos) betrachtet wird.  
 +
*Der Maximalwert dieses Signal ist $q_{\rm max} = 1$ und der minimale Signalwert beträgt $q_{\rm min} = -0.5$.  
 +
*Ansonsten ist über $q(t)$ nichts bekannt.
 +
 
  
 
Das modulierte Signal lautet bei Phasenmodulation:
 
Das modulierte Signal lautet bei Phasenmodulation:
Zeile 24: Zeile 27:
 
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]].
 
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]].
 
   
 
   
*Sie können Ihre Lösung mit dem Interaktionsmodul [[Ortskurve_–_Darstellung_des_äquivalenten_Tiefpass-Signals_(Applet)|Ortskurve – Darstellung des äquivalenten Tiefpass-Signals]] überprüfen.
+
*Sie können Ihre Lösung mit dem interaktiven Applet [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]]   ⇒   Ortskurve überprüfen.
  
  
Zeile 49: Zeile 52:
 
|type="[]"}
 
|type="[]"}
 
- Aus $q(t) = -0.5 = \text{const.}$ folgt $s(t) = s_0 \cdot \cos (\omega_T \cdot t)$.
 
- Aus $q(t) = -0.5 = \text{const.}$ folgt $s(t) = s_0 \cdot \cos (\omega_T \cdot t)$.
+ Bei einem Rechtecksignal $q(t)$ (⇒  nur  zwei mögliche Signalwerte $\pm 0.5$) entartet die Ortskurve zu zwei Punkten.
+
+ Bei einem Rechtecksignal $q(t)$ (mit nur  zwei möglichen Signalwerten $\pm 0.5$) entartet die Ortskurve zu zwei Punkten.
+ Mit den Signalwerten $\pm 1$ (⇒  es gilt dann nicht $q_{\rm min} = -0.5$) entartet die Ortskurve zu einem Punkt: $s_{\rm TP}(t) = -s_0$.  
+
+ Mit den Signalwerten $\pm 1$ ($q_{\rm min} = -0.5$ ist dann nicht mehr gültig) entartet die Ortskurve zu einem Punkt:   $s_{\rm TP}(t) = -s_0$.  
  
  
Zeile 62: Zeile 65:
  
 
'''(2)'''  Aus der Grafik ist zu erkennen, dass folgende Zahlenwerte gelten:  
 
'''(2)'''  Aus der Grafik ist zu erkennen, dass folgende Zahlenwerte gelten:  
*$\phi_{min} =-  \pi /2 \;  \Rightarrow  \;  \underline{-90^\circ}$,
+
*$\phi_{\rm min} =-  \pi /2 \;  \Rightarrow  \;  \underline{-90^\circ}$,
*$\phi_{max} = +\pi \; \Rightarrow  \; \underline{+180^\circ}$.
+
*$\phi_{\rm max} = +\pi \; \Rightarrow  \; \underline{+180^\circ}$.
  
  
'''(3)'''  Allgemein gilt hier der Zusammenhang $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\cdot \hspace{0.05cm}
+
'''(3)'''  Allgemein gilt hier der Zusammenhang $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
 
\phi(t)}.$ Ein Vergleich mit der gegebenen Funktion liefert:
 
\phi(t)}.$ Ein Vergleich mit der gegebenen Funktion liefert:
 
:$$\phi(t) = \eta \cdot q(t).$$
 
:$$\phi(t) = \eta \cdot q(t).$$
*Der maximale Phasenwert $\phi_{max} = +\pi \; \Rightarrow  \; {180^\circ}$ ergibt sich für die Signalamplitude $q_{\rm max} = 1$. Daraus folgt direkt ${\eta = \pi} \; \underline{\approx 3.14}$.  
+
*Der maximale Phasenwert $\phi_{\rm max} = +\pi \; \Rightarrow  \; {180^\circ}$ ergibt sich für die Signalamplitude $q_{\rm max} = 1$. Daraus folgt direkt ${\eta = \pi} \; \underline{\approx 3.14}$.  
 
*Dieser Modulationsindex wird durch die Werte $\phi_{\rm min} = -\pi /2$ und $q_{\rm min} = -0.5$ bestätigt.
 
*Dieser Modulationsindex wird durch die Werte $\phi_{\rm min} = -\pi /2$ und $q_{\rm min} = -0.5$ bestätigt.
  
  
[[Datei:P_ID769__Sig_Z_4_6_d_neu.png|right|frame|Ortskurve (Phasendiagramm) bei Rechtecksignal]]
+
[[Datei:P_ID769__Sig_Z_4_6_d_neu.png|right|frame|Ortskurve (Phasendiagramm) beim Rechtecksignal]]
'''(4)'''&nbsp;  Richtig sind somit der <u>zweite und der dritte Lösungsvorschlag</u>:
+
'''(4)'''&nbsp;  Richtig sind der <u>zweite und der dritte Lösungsvorschlag</u>:
 
*Ist $q(t) = \text{const.} =-0.5$, so ist die Phasenfunktion ebenfalls konstant:
 
*Ist $q(t) = \text{const.} =-0.5$, so ist die Phasenfunktion ebenfalls konstant:
:$$\phi(t) = \eta \cdot q(t) = - \frac{\pi}{2}\hspace{0.3cm}
+
:$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0  = - 2{\rm j}.$$
 
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0  = - 2{\rm j}.$$
 
*Somit gilt für das tatsächliche, physikalische Signal:
 
*Somit gilt für das tatsächliche, physikalische Signal:
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t -
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t -
 
  {\pi}/{2}) = 2 \cdot  {\sin} (  \omega_{\rm T} \hspace{0.05cm} t ).$$
 
  {\pi}/{2}) = 2 \cdot  {\sin} (  \omega_{\rm T} \hspace{0.05cm} t ).$$
*Dagegen führt $q(t) = +0.5$ zu $\phi (t) = \pi /2$ und $s_{\rm TP}(t) = 2{\rm j}$.  
+
*Dagegen führt $q(t) = +0.5$ zu &nbsp;$\phi (t) = \pi /2$&nbsp; und zu &nbsp;$s_{\rm TP}(t) = 2{\rm j}$.  
*Ist $q(t)$ ein Rechtecksignal, das abwechselnd die Werte $+0.5$ und $–0.5$ annimmt, besteht somit die Ortskurve nur aus zwei Punkten auf der imaginären Achse, und zwar unabhängig davon, wie lange die Intervalle mit $+0.5$ und $–0.5$ dauern.
+
*Ist $q(t)$ ein Rechtecksignal, das abwechselnd die Werte $+0.5$ und $–0.5$ annimmt, dann besteht die Ortskurve nur aus zwei Punkten auf der imaginären Achse, und zwar unabhängig davon, wie lange die Intervalle mit $+0.5$ und $–0.5$ dauern.
 
*Gilt dagegen $q(t) = \pm 1$, so ergeben sich rein formal die möglichen Phasenwerte $+\pi$ und $-\pi$, die aber identisch sind.  
 
*Gilt dagegen $q(t) = \pm 1$, so ergeben sich rein formal die möglichen Phasenwerte $+\pi$ und $-\pi$, die aber identisch sind.  
*Die „Ortskurve” besteht dann nur aus einem einzigen Punkt: $s_{\rm TP}(t) = - s_0$ &nbsp; &rArr; &nbsp;  das Signal $s(t)$ ist für alle Zeiten $t$  „minus-cosinusförmig”.
+
*Die „Ortskurve” besteht dann nur aus einem einzigen Punkt: &bsp; $s_{\rm TP}(t) = - s_0$ &nbsp; <br>&rArr; &nbsp;  das Signal $s(t)$ ist für alle Zeiten $t$  „minus-cosinusförmig”.
  
  

Version vom 26. Juli 2018, 17:17 Uhr

Eine mögliche Ortskurve bei Phasenmodulation

Wir gehen hier von einem Nachrichtensignal $q(t)$ aus, das normiert (dimensionslos) betrachtet wird.

  • Der Maximalwert dieses Signal ist $q_{\rm max} = 1$ und der minimale Signalwert beträgt $q_{\rm min} = -0.5$.
  • Ansonsten ist über $q(t)$ nichts bekannt.


Das modulierte Signal lautet bei Phasenmodulation:

$$s(t) = s_0 \cdot {\cos} ( \omega_{\rm T}\hspace{0.05cm} t + \eta \cdot q(t)).$$

Hierbei bezeichnet $\eta$ den so genannten Modulationsindex. Auch die konstante Hüllkurve $s_0$ sei eine dimensionslose Größe, die im Folgenden zu $s_0 = 2$ gesetzt wird (siehe Grafik).

Ersetzt man in dieser Gleichung die Cosinus– durch die komplexe Exponentialfunktion, so kommt man zum analytischen Signal

$$s_{\rm +}(t) = s_0\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}( \omega_{\rm T} \hspace{0.05cm}\cdot \hspace{0.05cm} t + \eta \hspace{0.05cm} \cdot \hspace{0.05cm} q(t)) }.$$

Daraus kann man das in der Grafik skizzierte äquivalente TP-Signal wie folgt berechnen:

$$s_{\rm TP}(t) = s_{\rm +}(t) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot\hspace{0.05cm} \omega_{\rm T} \hspace{0.05cm}\cdot\hspace{0.05cm} t } = s_0\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} \eta \hspace{0.05cm} \cdot \hspace{0.05cm} q(t) }.$$



Hinweise:


Fragebogen

1

Wie lautet die Betragsfunktion $a(t) = |s_{\rm TP}(t)|$? Welcher Wert gilt für $t = 0$?

$a(t = 0)\ = \ $

2

Zwischen welchen Extremwerten $\phi_{\rm min}$ und $\phi_{\rm max}$ schwankt die Phase $\phi (t)$?

$\phi_{\rm min}\ = \ $

 $\text{Grad}$
$\phi_{\rm min}\ = \ $

 $\text{Grad}$

3

Bestimmen Sie aus der Phasenfunktion $\phi (t)$ den Modulationsindex $\eta$.

$\eta\ = \ $

4

Welche der folgenden Aussagen sind zutreffend?

Aus $q(t) = -0.5 = \text{const.}$ folgt $s(t) = s_0 \cdot \cos (\omega_T \cdot t)$.
Bei einem Rechtecksignal $q(t)$ (mit nur zwei möglichen Signalwerten $\pm 0.5$) entartet die Ortskurve zu zwei Punkten.
Mit den Signalwerten $\pm 1$ ($q_{\rm min} = -0.5$ ist dann nicht mehr gültig) entartet die Ortskurve zu einem Punkt:   $s_{\rm TP}(t) = -s_0$.


Musterlösung

(1)  Die Ortskurve ist ein Kreisbogen mit Radius $2$. Deshalb ist die Betragsfunktion konstant $\underline{a(t) = 2}$.


(2)  Aus der Grafik ist zu erkennen, dass folgende Zahlenwerte gelten:

  • $\phi_{\rm min} =- \pi /2 \; \Rightarrow \; \underline{-90^\circ}$,
  • $\phi_{\rm max} = +\pi \; \Rightarrow \; \underline{+180^\circ}$.


(3)  Allgemein gilt hier der Zusammenhang $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)}.$ Ein Vergleich mit der gegebenen Funktion liefert:

$$\phi(t) = \eta \cdot q(t).$$
  • Der maximale Phasenwert $\phi_{\rm max} = +\pi \; \Rightarrow \; {180^\circ}$ ergibt sich für die Signalamplitude $q_{\rm max} = 1$. Daraus folgt direkt ${\eta = \pi} \; \underline{\approx 3.14}$.
  • Dieser Modulationsindex wird durch die Werte $\phi_{\rm min} = -\pi /2$ und $q_{\rm min} = -0.5$ bestätigt.


Ortskurve (Phasendiagramm) beim Rechtecksignal

(4)  Richtig sind der zweite und der dritte Lösungsvorschlag:

  • Ist $q(t) = \text{const.} =-0.5$, so ist die Phasenfunktion ebenfalls konstant:
$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0 = - 2{\rm j}.$$
  • Somit gilt für das tatsächliche, physikalische Signal:
$$s(t) = s_0 \cdot {\cos} ( \omega_{\rm T}\hspace{0.05cm} t - {\pi}/{2}) = 2 \cdot {\sin} ( \omega_{\rm T} \hspace{0.05cm} t ).$$
  • Dagegen führt $q(t) = +0.5$ zu  $\phi (t) = \pi /2$  und zu  $s_{\rm TP}(t) = 2{\rm j}$.
  • Ist $q(t)$ ein Rechtecksignal, das abwechselnd die Werte $+0.5$ und $–0.5$ annimmt, dann besteht die Ortskurve nur aus zwei Punkten auf der imaginären Achse, und zwar unabhängig davon, wie lange die Intervalle mit $+0.5$ und $–0.5$ dauern.
  • Gilt dagegen $q(t) = \pm 1$, so ergeben sich rein formal die möglichen Phasenwerte $+\pi$ und $-\pi$, die aber identisch sind.
  • Die „Ortskurve” besteht dann nur aus einem einzigen Punkt: &bsp; $s_{\rm TP}(t) = - s_0$  
    ⇒   das Signal $s(t)$ ist für alle Zeiten $t$ „minus-cosinusförmig”.