Aufgabe 4.6: Quantisierungskennlinien

Aus LNTwww
Wechseln zu:Navigation, Suche

P ID1623 Mod Z 4 5.png

Es wird die nichtlineare Quantisierung betrachtet und es gilt weiterhin das Systemmodell gemäß Aufgabe A4.5. Die Grafik zeigt zwei Kompressorkennlinien $q_K(q_A)$:

  • Rot eingezeichnet ist die sogenannte A–Kennlinie, die vom CCITT für das Standardsystem PCM 30/32 empfohlen wurde. Für $0 ≤ q_A ≤ 1$ gilt:

$$q_{\rm K}(q_{\rm A}) = \left\{ \begin{array}{l} \frac{1 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A})} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \\ \frac{A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A}} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \end{array} \right.\quad \begin{array}{*{10}c} {\frac{1}{A} \le q_{\rm A} \le 1} \hspace{0.05cm}, \\ \\ {q_{\rm A} < \frac{1}{A}} \hspace{0.05cm}. \\ \end{array}$$

  • Der blau–gestrichelte Kurvenzug gilt für die sog. 13–Segment–Kennlinie. Diese ergibt sich aus der A–Kennlinie durch stückweise Linearisierung; sie wird in der Aufgabe A4.5 ausführlich behandelt.

Für die durchgehend rot gezeichnete A-Kennlinie ist der Quantisierungsparameter A = 100 gewählt. Mit dem vom CCITT vorgeschlagenen Wert A = 87.56 ergibt sich näherungsweise der gleiche Verlauf. Für die beiden weiteren Kurven gilt $A = A_1$ (oberer Kurvenzug) bzw. $A = A_2$ (punktierte Kurve), wobei für $A_1$ bzw. $A_2$ die beiden möglichen Zahlenwerte 50 und 200 vorgegeben sind. In der Teilaufgabe c) sollen Sie entscheiden, welche Kurve zu welchem Wert gehört.

Hinweis: Die Aufgabe bezieht sich auf die letzte Theorieseite von Kapitel 4.1.


Fragebogen

1

Welche Argumente sprechen für die nichtlineare Quantisierung?

Das größere SNR – auch bei gleichwahrscheinlichen Amplituden.
Bei Audio sind kleine Amplituden wahrscheinlicher als große.
Die Verfälschung kleiner Amplituden ist subjektiv störender.

2

Welche Unterschiede gibt es zwischen der A– und der 13–Segment–Kennlinie?

Die A–Kennlinie beschreibt einen kontinuierlichen Verlauf.
Die 13–Seg–Kurve nähert die A–Kennlinie stückweise linear an.
Bei der Realisierung zeigt die A–Kennlinie wesentliche Vorteile.

3

Lässt sich allein aus $q_A = 1 ⇒ q_K = 1$ der Parameter A ableiten?

ja
nein

4

Lässt sich A bestimmen, wenn man vorgibt, dass der Übergang zwischen den beiden Bereichen kontinuierlich sein soll?

ja
nein

5

Bestimmen Sie A aus der Bedingung $q_K(q_A = 1/2) = 0.875$.

$q_K(q_A = 1/2) = 0.875: A$ =

6

Welche Parameterwerte werden für die weiteren Kurven verwendet?

Es gilt $A_1 = 50$ und $A_2 = 200$.
Es gilt $A_1 = 200$ und $A_2 = 50$.


Musterlösung

1. Die Impulsantwort $h_K(t)$ ergibt sich als das Empfangssignal r(t), wenn am Eingang ein Diracimpuls anliegt ⇒ $s(t) = δ(t)$. Daraus folgt $$ h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$ Richtig ist also der Lösungsvorschlag 1.


2. Der Kanalfrequenzgang $H_K(f)$ ist definitionsgemäß die Fouriertransformierte der Impulsantwort $h_K(t)$. Mit dem Verschiebungssatz ergibt sich hierfür: $$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$ Der erste Lösungsvorschlag ist dementsprechend falsch im Gegensatz zu den beiden anderen: $H_K(f)$ ist komplexwertig und der Betrag ist periodisch mit $1/τ$, wie die nachfolgende Rechnung zeigt: $$|H_{\rm K}(f)|^2 = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 =$$ $$ = \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] + 2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau)$$ $$\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = \sqrt { 0.52 + 0.48 \cdot \cos(2 \pi f \tau) } \hspace{0.05cm}.$$ Für $f = 0$ ist $|H_K(f)| = 1$. Im jeweiligen Frequenzabstand $1/τ$ wiederholt sich dieser Wert.


3. Wir setzen zunächst vereinbarungsgemäß K = 1. Insgesamt kommt man über vier Wege von $s(t)$ zum Ausgangssignal $b(t)$. Um die vorgegebene $h_{KR}(t)$–Gleichung zu erfüllen, muss entweder $τ_0 = 0$ gelten oder $τ_1 = 0$. Mit $τ_0 = 0$ erhält man für die Impulsantwort: $$h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) +$$ $$ + 0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$ Um die „Hauptenergie” auf einen Zeitpunkt bündeln zu können, müsste dann $τ_1 = τ$ gewählt werden. Mit $h_0 = 0.6$ und $h_1 = 0.4$ erhält man dann $A_0 ≠ A_2$: $$ h_{\rm KR}(t) = 0.36 \cdot \delta (t ) +0.48 \cdot \delta (t - \tau) + 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$ Dagegen ergibt sich mit $h_0 = 0.6$, $h_1 = 0.4$, $τ_0 = τ$ und $τ_1 = 0$: $$h_{\rm KR}(t) = 0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) +$$ $$ + 0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)=$$ $$ = 0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}.$$ Hier ist die Zusatzbedingung $A_0 = A_2$ erfüllt. Somit lautet das gesuchte Ergebnis: $$\underline{\tau_0 = \tau = 1\,{\rm \mu s} \hspace{0.05cm},\hspace{0.2cm}\tau_1 =0} \hspace{0.05cm}.$$

4. Für den Normierungsfaktor muss gelten: $$ K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52} \hspace{0.15cm}\underline {\approx 1.923} \hspace{0.05cm}.$$ Damit erhält man für die gemeinsame Impulsantwort (es gilt 0.24/0.52 = 6/13): $$ h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$

5. Für das Empfangssignal $r(t)$ und für das RAKE–Ausgangssignal $b(t)$ gilt: $$r(t) = 0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm \mu s})\hspace{0.05cm},$$ $$b(t) = \frac{6}{13} \cdot s(t) + 1.00 \cdot s (t - 1\,{\rm \mu s}) + \frac{6}{13} \cdot s (t - 2\,{\rm \mu s}) \hspace{0.05cm}.$$ Richtig sind die Aussagen 1 und 4, wie die folgende Grafik zeigt. Die Überhöhung des Ausgangssignals ⇒ $b(t) > 1$ ist auf den Normierungsfaktor K = 25/13 zurückzuführen. Mit K = 1 wäre der Maximalwert von $b(t)$ tatsächlich 1. P ID1902 Mod Z 5 5e.png