Aufgaben:Aufgabe 4.5: 2D-Prüfungsauswertung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)
 
(7 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID267__Sto_A_4_5.png|right|Betrachtete Gaußsche 2D-WDF]]
+
[[Datei:P_ID267__Sto_A_4_5.png|right|frame|Gegebene Gaußsche 2D-WDF  $f_{tp}(t,\hspace{0.08cm}p)$]]
In einer Studie wurden die Meisterprüfungen für das Handwerk  untersucht, die sich stets aus einem theoretischen und zusätzlich einem praktischen Teil zusammensetzen. In der Grafik bezeichnet
+
In einer Studie wurden die Meisterprüfungen für das Handwerk  untersucht,  die sich stets aus einem theoretischen und zusätzlich einem praktischen Teil zusammensetzen.  In der Grafik bezeichnet
* $t$ die Punktzahl in der theoretischen Prüfung,
+
* $t$  die Punktzahl in der theoretischen Prüfung,
* $p$  die Punktzahl in der praktischen Prüfung.
+
* $p$  die Punktzahl in der praktischen Prüfung.
  
Beide  Zufallsgrößen ($t$ und $p$) sind dabei jeweils auf die Maximalpunktezahlen normiert und können deshalb nur Werte zwischen 0 und 1 annehmen.
 
  
Beide Zufallsgrößen sind zudem als kontinuierliche Zufallsgrößen zu interpretieren, das heißt: $t$ und $p$ sind nicht auf diskrete Zahlenwerte beschränkt.
+
Beide Zufallsgrößen  $(t$  und  $p)$  sind dabei jeweils auf die Maximalpunktzahlen normiert und können deshalb nur Werte zwischen  $0$  und  $1$  annehmen.
  
Die Grafik zeigt die WDF $f_{tp}(t, p)$ der zweidimensionalen Zufallsgröße $(t, p)$, die nach der Auswertung von insgesamt $N = 10\hspace{0.05cm}000$ Abschlussarbeiten veröffentlicht wurde. Diese Funktion wurde mit Hilfe eines Auswertungsprogramms empirisch wie folgt  angenähert:
+
Beide Zufallsgrößen sind zudem als kontinuierliche Zufallsgrößen zu interpretieren,  das heißt:   $t$  und  $p$  sind nicht auf diskrete Zahlenwerte beschränkt.
:$$f_{tp}(t,p) = \rm 13.263\cdot \rm exp \Bigg\{-\frac{(\it t - \rm 0.5)^{\rm 2}}{\rm 0.0288}-\frac{(\it p-\rm 0.7)^{\rm 2}}{\rm 0.0072} + \frac{(\it t-\rm 0.5)(\it p-\rm 0.7)}{\rm 0.0090}\Bigg\}.$$
 
  
 +
*Die Grafik zeigt die WDF  $f_{tp}(t,\hspace{0.08cm} p)$  der zweidimensionalen Zufallsgröße  $(t,\hspace{0.08cm} p)$,  die nach der Auswertung von insgesamt  $N = 10\hspace{0.08cm}000$  Abschlussarbeiten veröffentlicht wurde.
 +
*Diese Funktion wurde mit Hilfe eines Auswertungsprogramms empirisch wie folgt  angenähert:
 +
:$$f_{tp}(t,\hspace{0.08cm}p) = \rm 13.263\cdot \rm exp \Bigg\{-\frac{(\it t - \rm 0.5)^{\rm 2}}{\rm 0.0288}-\frac{(\it p-\rm 0.7)^{\rm 2}}{\rm 0.0072} + \frac{(\it t-\rm 0.5)(\it p-\rm 0.7)}{\rm 0.0090}\Bigg\}.$$
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Gaußsche_Zufallsgrößen|Zweidimensionale Gaußsche Zufallsgrößen]].
+
 
 +
Hinweise:  
 +
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Zweidimensionale_Gaußsche_Zufallsgrößen|Zweidimensionale Gaußsche Zufallsgrößen]].
 
   
 
   
*Die hier behandelte Thematik ist in zwei Lernvideos zusammengefasst:
+
*Weitere Informationen zu dieser Thematik liefert das Lernvideo  [[Gaußsche_2D-Zufallsgrößen_(Lernvideo)|Gaußsche 2D-Zufallsgrößen]]:
:[[Gaußsche Zufallsgrößen ohne statistische Bindungen]]
+
::Teil 1:   Gaußsche Zufallsgrößen ohne statistische Bindungen
:[[Gaußsche Zufallsgrößen mit statistischen Bindungen]]
+
::Teil 2:   Gaußsche Zufallsgrößen mit statistischen Bindungen.
  
  
Zeile 28: Zeile 31:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie gro&szlig; ist der Mittelwert $m_t$ der im Theorieteil erzielten Ergebnisse?
+
{Wie gro&szlig; ist der Mittelwert&nbsp; $m_t$&nbsp; der im Theorieteil erzielten Ergebnisse?
 
|type="{}"}
 
|type="{}"}
$m_t \ = $ { 0.5 3% }
+
$m_t \ = \ $ { 0.5 3% }
  
  
{Wie gro&szlig; ist der Mittelwert $m_p$ der im Praxisteilteil erzielten Ergebnisse? Geben Sie auch die WDF der mittelwertfreien Zufallsgr&ouml;&szlig;e $(t', p')$ an.
+
{Wie gro&szlig; ist der Mittelwert&nbsp; $m_p$&nbsp; der im Praxisteilteil erzielten Ergebnisse?&nbsp; Geben Sie auch die WDF der mittelwertfreien Zufallsgr&ouml;&szlig;e&nbsp; $(t\hspace{0.05cm}',\hspace{0.08cm} p\hspace{0.05cm}')$&nbsp; an.
 
|type="{}"}
 
|type="{}"}
$m_p \ = $ { 0.7 3% }
+
$m_p \ = \ $ { 0.7 3% }
  
  
{Berechnen Sie die Streuungen (Standardabweichungen) $\sigma_t$ und $\sigma_p$ sowie den Korrelationskoeffizienten $\rho$ zwischen den beiden Gr&ouml;&szlig;en an.
+
{Berechnen Sie die Streuungen (Standardabweichungen)&nbsp; $\sigma_t$&nbsp; und&nbsp; $\sigma_p$&nbsp; sowie den Korrelationskoeffizienten&nbsp; $\rho$&nbsp; zwischen den beiden Gr&ouml;&szlig;en.
 
|type="{}"}
 
|type="{}"}
$\sigma_t \ = $ { 0.2 3% }
+
$\sigma_t \ = \ $ { 0.2 3% }
$\sigma_p \ = $ { 0.1 3% }
+
$\sigma_p \ = \ $ { 0.1 3% }
$\rho \ = $ { 0.8 3% }
+
$\rho \ = \ $ { 0.8 3% }
  
  
Zeile 48: Zeile 51:
 
|type="[]"}
 
|type="[]"}
 
+ Der Gauß-Ansatz ist f&uuml;r dieses Problem nur eine N&auml;herung.
 
+ Der Gauß-Ansatz ist f&uuml;r dieses Problem nur eine N&auml;herung.
- War ein Pr&uuml;fling im Theoretieteil &uuml;berdurchschnittlich gut, so ist zu erwarten, dass er in der Praxis eher schlecht ist.
+
- War ein Pr&uuml;fling im Theoretieteil &uuml;berdurchschnittlich gut,&nbsp; so ist zu erwarten,&nbsp; dass er in der Praxis eher schlecht ist.
  
  
{Mit welcher Wahrscheinlichkeit hat ein Teilnehmer in der Theorie&ndash; und der Praxis&ndash;Pr&uuml;fung jeweils zwischen $49\%$ und $51\%$ der Punkte erreicht?
+
{Mit welcher Wahrscheinlichkeit hat ein Teilnehmer in der Theorie&ndash; und der Praxis&ndash;Pr&uuml;fung jeweils zwischen&nbsp; $49\%$&nbsp; und&nbsp; $51\%$&nbsp; der Punkte erreicht?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}[(0.49 ≤ t ≤0.51)∩(0.49≤ p ≤0.51)]\ = $ { 2 3% } $\ \cdot 10^{-5}$
+
${\rm Pr}\big [(0.49 ≤ t ≤0.51)∩(0.49≤ p ≤0.51)\big]\ = \ $ { 2 3% } $\ \cdot 10^{-5}$
  
  
Zeile 60: Zeile 63:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; und '''(2)'''&nbsp; Die Mittelwerte $m_t\hspace{0.15cm}\underline{= 0.5}$  und $m_p\hspace{0.15cm}\underline{= 0.7}$ k&ouml;nnen aus der Skizze abgeschätzt und aus der angegebenen Gleichung exakt ermittelt werden. Die 2D&ndash;WDF der mittelwertfreien Gr&ouml;&szlig;e lautet:
+
'''(1)'''&nbsp; und '''(2)'''&nbsp;  
:$$f_{\it t'p'}(\it  t', \it p') = \rm 13.263\cdot \rm exp\Bigg (-\frac{\it t'^{\rm 2}}{\rm 0.0288} - \frac{\it p'^{\rm 2}}{\rm 0.0072}+\frac{\it t'\cdot p'}{\rm 0.0090}\Bigg ). $$
+
*Die Mittelwerte&nbsp; $m_t\hspace{0.15cm}\underline{= 0.5}$&nbsp; und&nbsp; $m_p\hspace{0.15cm}\underline{= 0.7}$&nbsp; k&ouml;nnen aus der Skizze abgeschätzt und aus der angegebenen Gleichung exakt ermittelt werden.  
Zur Vereinfachung wird im Folgenden auf den Apostroph zur Kennzeichnung mittelwertfreier Gr&ouml;&szlig;en verzichtet. Sowohl $t$ als auch $p$ sind bis einschlie&szlig;lich der Teilaufgabe (4) als mittelwertfrei zu verstehen.
+
*Die 2D&ndash;WDF der mittelwertfreien Gr&ouml;&szlig;e lautet:
 +
:$$f_{\it t\hspace{0.05cm}'\hspace{0.05cm}p\hspace{0.05cm}'}(\it  t\hspace{0.05cm}',\hspace{0.08cm} \it p\hspace{0.05cm}'{\rm )} = \rm 13.263\cdot \rm exp\Bigg (-\frac{\it {\rm (}t\hspace{0.05cm}'{\rm )}^{\rm 2}}{\rm 0.0288} - \frac{\it {\rm (}p\hspace{0.05cm}'{\rm )}^{\rm 2}}{\rm 0.0072}+\frac{\it t\hspace{0.05cm}'\cdot p\hspace{0.05cm}'}{\rm 0.0090}\Bigg ). $$
 +
*Zur Vereinfachung wird im Folgenden auf den Apostroph zur Kennzeichnung mittelwertfreier Gr&ouml;&szlig;en verzichtet.&nbsp;
 +
*Sowohl&nbsp; $t$&nbsp; als auch&nbsp; $p$&nbsp; sind bis einschlie&szlig;lich der Teilaufgabe&nbsp; '''(4)'''&nbsp; als mittelwertfrei zu verstehen.
 +
 
 +
 
  
 
'''(3)'''&nbsp; Die allgemeine Gleichung einer mittelwertfreien 2D-Zufallsgr&ouml;&szlig;e lautet:
 
'''(3)'''&nbsp; Die allgemeine Gleichung einer mittelwertfreien 2D-Zufallsgr&ouml;&szlig;e lautet:
:$$f_{\it tp}(\it  t, \it p)=\frac{\rm 1}{\rm 2\it \pi \cdot \sigma_{\it t} \cdot \sigma_{\it p} \cdot \sqrt{\rm 1- \it\rho^{\rm 2}}}\hspace{0.1cm}\cdot  
+
:$$f_{\it tp}(\it  t,\hspace{0.08cm} \it p)=\frac{\rm 1}{\rm 2\it \pi \cdot \sigma_{\it t}\cdot \sigma_{\it p} \cdot\sqrt{\rm 1- \it\rho^{\rm 2}}}\hspace{0.1cm}\cdot \hspace{0.1cm}\rm exp\Bigg\{-\hspace{0.1cm}\frac{\it t^{\rm 2}}{\rm 2\cdot (\rm 1-\rho^{\rm 2})\cdot \sigma_{\it t}^{\rm 2}} -\hspace{0.1cm}\frac{\it p^{\rm 2}}{\rm 2\cdot (\rm 1-\it\rho^{\rm 2}{\rm )}\cdot \sigma_{\it p}^{\rm 2}}+\hspace{0.1cm}\frac{\rho\cdot \it t\cdot \it p}{ (\rm 1-\it \rho^{\rm 2}{\rm )}\cdot\sigma_{\it t}\cdot\sigma_{\it p}}\Bigg\}.$$
\hspace{0.1cm} \rm exp\Bigg\{-\hspace{0.1cm}\frac{\it t^{\rm 2}}{\rm 2 \cdot (\rm 1-\rho^{\rm 2})\cdot \sigma_{\it t}^{\rm 2}} \hspace{0.1cm}-\hspace{0.1cm}\frac{\it p^{\rm 2}}{\rm 2 \cdot (\rm 1-\it\rho^{\rm 2})\sigma_{\it p}^{\rm 2}}\hspace{0.1cm}+\hspace{0.1cm}\frac{\rho\cdot \it t\cdot \it p}{(\rm 1-\it \rho^{\rm 2})\cdot \sigma_{\it t}\cdot\sigma_{\it p}}\Bigg\}.$$
 
  
Die Standardabweichungen $\sigma_t$ und $\sigma_p$ sowie der Korrelationskoeffizient  $\rho$ lassen sich durch Koeffizientenvergleich ermitteln:  
+
*Die Standardabweichungen&nbsp; $\sigma_t$&nbsp; und&nbsp; $\sigma_p$&nbsp; sowie der Korrelationskoeffizient&nbsp; $\rho$&nbsp; lassen sich durch Koeffizientenvergleich ermitteln:  
*Ein Vergleich der beiden ersten Terme im Exponenten zeigt, dass $\sigma_t = 2 \cdot \sigma_p$ gelten muss. Damit lautet die WDF:
+
*Ein Vergleich der beiden ersten Terme im Exponenten zeigt,&nbsp; dass&nbsp; $\sigma_t = 2 \cdot \sigma_p$&nbsp; gelten muss.&nbsp; Damit lautet die WDF:
:$$f_{\it tp}(\it  t, \it p)=\frac{\rm 1}{\rm 4\it \pi \cdot \sigma_{\it p}^{\rm 2} \cdot\sqrt{\rm 1- \it\rho^{\rm 2}}}\hspace{0.1cm}\cdot \hspace{0.1cm}\rm exp\Bigg\{-\hspace{0.1cm}\frac{\it t^{\rm 2}}{\rm 8\cdot (\rm 1-\rho^{\rm 2})\cdot \sigma_{\it p}^{\rm 2}} -\hspace{0.1cm}\frac{\it p^{\rm 2}}{\rm 2\cdot (\rm 1-\it\rho^{\rm 2})\cdot \sigma_{\it p}^{\rm 2}}+\hspace{0.1cm}\frac{\rho\cdot \it t\cdot \it p}{\rm 2\cdot (\rm 1-\it \rho^{\rm 2})\cdot\sigma_{\it p}^{\rm 2}}\Bigg\}.$$
+
:$$f_{\it tp}(\it  t,\hspace{0.08cm} \it p)=\frac{\rm 1}{\rm 4\it \pi \cdot \sigma_{\it p}^{\rm 2} \cdot\sqrt{\rm 1- \it\rho^{\rm 2}}}\hspace{0.1cm}\cdot \hspace{0.1cm}\rm exp\Bigg\{-\hspace{0.1cm}\frac{\it t^{\rm 2}}{\rm 8\cdot (\rm 1-\rho^{\rm 2})\cdot \sigma_{\it p}^{\rm 2}} -\hspace{0.1cm}\frac{\it p^{\rm 2}}{\rm 2\cdot (\rm 1-\it\rho^{\rm 2}{\rm )}\cdot \sigma_{\it p}^{\rm 2}}+\hspace{0.1cm}\frac{\rho\cdot \it t\cdot \it p}{\rm 2\cdot (\rm 1-\it \rho^{\rm 2}{\rm )}\cdot\sigma_{\it p}^{\rm 2}}\Bigg\}.$$
 
*Aus dem zweiten Term des Exponenten folgt:
 
*Aus dem zweiten Term des Exponenten folgt:
:$$\rm 2\cdot(\rm 1-\it\rho^{\rm 2})\cdot\it\sigma_{\it p}^{\rm 2}=\rm 0.0072\hspace{0.5cm}\Rightarrow \hspace{0.5cm} \it \sigma_{\it p}^{\rm 2} = \frac{\rm 0.0036}{\it({\rm 1}-\rho^{\rm 2})}.$$
+
:$$2\cdot(1-\rho^{\rm 2})\cdot\sigma_{p}^{ 2}=0.0072\hspace{0.5cm}\Rightarrow \hspace{0.5cm} \sigma_{p}^{2} = \frac{ 0.0036}{(1-\rho^{\rm 2})}.$$
*Der Faktor $K = 13.263$ liefert nun das Ergebnis
+
*Der Faktor&nbsp; $K = 13.263$&nbsp; liefert nun das Ergebnis
 
:$$K = \frac{\sqrt{\rm 1-\it\rho^{\rm 2}}}{\rm 4\it\pi\cdot \rm 0.0036}=\rm 13.263 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\sqrt{\rm 1-\it\rho^{\rm 2}}=\rm 0.6 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\hspace{0.15cm}\underline{ \rm \rho = \rm 0.8}.$$
 
:$$K = \frac{\sqrt{\rm 1-\it\rho^{\rm 2}}}{\rm 4\it\pi\cdot \rm 0.0036}=\rm 13.263 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\sqrt{\rm 1-\it\rho^{\rm 2}}=\rm 0.6 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\hspace{0.15cm}\underline{ \rm \rho = \rm 0.8}.$$
*Daraus ergeben sich die Streuungen zu $\sigma_t\hspace{0.15cm}\underline{= 0.2}$ und  $\sigma_p\hspace{0.15cm}\underline{= 0.1}$. Zur Kontrolle verwenden wir den letzten Term des Exponenten:
+
*Daraus ergeben sich die Streuungen zu&nbsp; $\sigma_t\hspace{0.15cm}\underline{= 0.2}$&nbsp; und&nbsp; $\sigma_p\hspace{0.15cm}\underline{= 0.1}$.
:$$\frac{(\rm 1 - \it \rho^{\rm 2})\cdot\it\sigma_{\it t}\cdot\sigma_{\it p}}{\it \rho} = \rm \frac{0.36\cdot 0.1\cdot 0.2}{0.8} = \rm 0.009.$$
+
 +
*Zur Kontrolle verwenden wir den letzten Term des Exponenten:
 +
:$$\frac{(1 - \rho^{2})\cdot \sigma_{\it t}\cdot\sigma_{\it p}}{\it \rho} = \frac{0.36\cdot 0.1\cdot 0.2}{0.8} = \rm 0.009.$$
 
*Dies stimmt mit dem vorgegebenen Wert &uuml;berein.
 
*Dies stimmt mit dem vorgegebenen Wert &uuml;berein.
 +
  
  
 
'''(4)'''&nbsp; Der <u>Lösungsvorschlag 1</u> ist richtig.  
 
'''(4)'''&nbsp; Der <u>Lösungsvorschlag 1</u> ist richtig.  
*Im Grunde genommen ist $(t, p)$keine echte Gau&szlig;sche Zufallsgr&ouml;&szlig;e, da beide Komponenten begrenzt sind.  
+
*Im Grunde genommen ist&nbsp; $(t,\hspace{0.08cm} p)$&nbsp; keine echte Gau&szlig;sche Zufallsgr&ouml;&szlig;e,&nbsp; da beide Komponenten begrenzt sind.  
*Die Wahrscheinlichkeiten f&uuml;r die Ereignisse $t < 0$, $t >1$, $p < 0$ und $p >1$ sind somit Null.  
+
*Die Wahrscheinlichkeiten f&uuml;r die Ereignisse&nbsp; $t < 0$, &nbsp; &nbsp; $t >1$, &nbsp; &nbsp;  $p < 0$ &nbsp; und &nbsp; $p >1$ &nbsp; sind somit Null.  
 
*Bei Gau&szlig;schen Gr&ouml;&szlig;en mit den hier vorliegenden Mittelwerten und Streuungen ergeben sich jedoch
 
*Bei Gau&szlig;schen Gr&ouml;&szlig;en mit den hier vorliegenden Mittelwerten und Streuungen ergeben sich jedoch
 
:$$\rm Pr(\it t < \rm 0) = \rm Pr(\it t > \rm 1) = \rm Q(2.5)\approx 6\cdot 10^{-3},$$
 
:$$\rm Pr(\it t < \rm 0) = \rm Pr(\it t > \rm 1) = \rm Q(2.5)\approx 6\cdot 10^{-3},$$
Zeile 88: Zeile 98:
 
:$$\rm Pr(\it p < \rm 0) = \rm Q(7)\approx 10^{-12}.$$
 
:$$\rm Pr(\it p < \rm 0) = \rm Q(7)\approx 10^{-12}.$$
  
Der Korrelationskoeffizient $\rho = 0.8$ ist hier positiv. Hat der Pr&uuml;fling im Theorieteil eher gut abgeschnitten, so ist (zumindest bei dieser Aufgabe) zu erwarten, dass auch der praktische Teil gut l&auml;uft. Hier ist also der Lösungsvorschlag 2 falsch. In der Praxis ist das sicher nicht immer so.
+
*Der Korrelationskoeffizient&nbsp; $\rho = 0.8$&nbsp; ist hier positiv:&nbsp; Hat der Pr&uuml;fling im Theorieteil eher gut abgeschnitten,&nbsp; so ist&nbsp; (zumindest bei dieser Aufgabe)&nbsp; zu erwarten,&nbsp; dass auch der praktische Teil gut l&auml;uft.  
 +
*Hier ist also der Lösungsvorschlag 2 falsch.&nbsp; In der Praxis ist das sicher nicht immer so.
 +
 
  
  
'''(5)'''&nbsp; F&uuml;r diese Wahrscheinlichkeit gilt mit $\Delta t = \Delta p  = 0.02$:
+
'''(5)'''&nbsp; F&uuml;r diese Wahrscheinlichkeit gilt mit&nbsp; $\Delta t = \Delta p  = 0.02$:
:$$\rm Pr\left [( \rm 0.5-\frac{\rm\Delta\it t}{\rm 2}\le \it t \le \rm 0.5+\frac{\rm\Delta\it t}{\rm 2})\cap(\rm 0.5-\frac{\rm\Delta\it p}{\rm 2}\le \it p \le \rm 0.5+\frac{\rm\Delta\it p}{\rm 2})\right ] \approx  \rm\Delta\it t\cdot\rm\Delta\it p\cdot \it f_{tp}(t=\rm 0.5, \it p = \rm 0.5).$$
+
:$$\rm Pr\left [( \rm 0.5-\frac{\rm\Delta\it t}{\rm 2}\le \it t \le \rm 0.5+\frac{\rm\Delta\it t}{\rm 2})\cap(\rm 0.5-\frac{\rm\Delta\it p}{\rm 2}\le \it p \le \rm 0.5+\frac{\rm\Delta\it p}{\rm 2})\right ] \approx  \rm\Delta\it t\cdot\rm\Delta\it p\cdot \it f_{tp}{\rm (}t=\rm 0.5,\hspace{0.08cm} \it p = \rm 0.5).$$
  
F&uuml;r die 2D-WDF gilt unter Ber&uuml;cksichtigung der Mittelwerte $m_t{= 0.5}$ und $m_p{= 0.7}$:
+
*F&uuml;r die 2D-WDF gilt unter Ber&uuml;cksichtigung der Mittelwerte&nbsp; $m_t{= 0.5}$&nbsp; und&nbsp; $m_p{= 0.7}$:
:$$f_{tp}(\it t=\rm 0.5, \it p=\rm 0.5) = \rm 13.263\cdot exp(-\frac{(-0.2)^{2}}{0.0072})\approx 0.0513.$$
+
:$$f_{tp}(\it t=\rm 0.5,\hspace{0.08cm} \it p=\rm 0.5) = \rm 13.263\cdot {\rm e}^{-(-0.2)^2/0.0072}\approx 0.0513.$$
  
Damit ergibt sich die gesuchte Wahrscheinlichkeit zu ${\rm Pr}[(0.49 ≤ t ≤0.51)∩(0.49≤ p ≤0.51)] =0.02 \cdot 0.02 \cdot 0.0513\hspace{0.15cm}\underline{\approx 2 &middot; 10^{-5}}$.
+
*Damit ergibt sich die gesuchte Wahrscheinlichkeit zu  
 +
:$${\rm Pr}\big[(0.49 ≤ t ≤0.51)∩(0.49≤ p ≤0.51)\big] =0.02 \cdot 0.02 \cdot 0.0513\hspace{0.15cm}\underline{\approx 2 &middot; 10^{-5}}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 24. Februar 2022, 16:40 Uhr

Gegebene Gaußsche 2D-WDF  $f_{tp}(t,\hspace{0.08cm}p)$

In einer Studie wurden die Meisterprüfungen für das Handwerk untersucht,  die sich stets aus einem theoretischen und zusätzlich einem praktischen Teil zusammensetzen.  In der Grafik bezeichnet

  • $t$  die Punktzahl in der theoretischen Prüfung,
  • $p$  die Punktzahl in der praktischen Prüfung.


Beide Zufallsgrößen  $(t$  und  $p)$  sind dabei jeweils auf die Maximalpunktzahlen normiert und können deshalb nur Werte zwischen  $0$  und  $1$  annehmen.

Beide Zufallsgrößen sind zudem als kontinuierliche Zufallsgrößen zu interpretieren,  das heißt:   $t$  und  $p$  sind nicht auf diskrete Zahlenwerte beschränkt.

  • Die Grafik zeigt die WDF  $f_{tp}(t,\hspace{0.08cm} p)$  der zweidimensionalen Zufallsgröße  $(t,\hspace{0.08cm} p)$,  die nach der Auswertung von insgesamt  $N = 10\hspace{0.08cm}000$  Abschlussarbeiten veröffentlicht wurde.
  • Diese Funktion wurde mit Hilfe eines Auswertungsprogramms empirisch wie folgt angenähert:
$$f_{tp}(t,\hspace{0.08cm}p) = \rm 13.263\cdot \rm exp \Bigg\{-\frac{(\it t - \rm 0.5)^{\rm 2}}{\rm 0.0288}-\frac{(\it p-\rm 0.7)^{\rm 2}}{\rm 0.0072} + \frac{(\it t-\rm 0.5)(\it p-\rm 0.7)}{\rm 0.0090}\Bigg\}.$$


Hinweise:

Teil 1:   Gaußsche Zufallsgrößen ohne statistische Bindungen,
Teil 2:   Gaußsche Zufallsgrößen mit statistischen Bindungen.


Fragebogen

1

Wie groß ist der Mittelwert  $m_t$  der im Theorieteil erzielten Ergebnisse?

$m_t \ = \ $

2

Wie groß ist der Mittelwert  $m_p$  der im Praxisteilteil erzielten Ergebnisse?  Geben Sie auch die WDF der mittelwertfreien Zufallsgröße  $(t\hspace{0.05cm}',\hspace{0.08cm} p\hspace{0.05cm}')$  an.

$m_p \ = \ $

3

Berechnen Sie die Streuungen (Standardabweichungen)  $\sigma_t$  und  $\sigma_p$  sowie den Korrelationskoeffizienten  $\rho$  zwischen den beiden Größen.

$\sigma_t \ = \ $

$\sigma_p \ = \ $

$\rho \ = \ $

4

Welche der folgenden Aussagen sind zutreffend?

Der Gauß-Ansatz ist für dieses Problem nur eine Näherung.
War ein Prüfling im Theoretieteil überdurchschnittlich gut,  so ist zu erwarten,  dass er in der Praxis eher schlecht ist.

5

Mit welcher Wahrscheinlichkeit hat ein Teilnehmer in der Theorie– und der Praxis–Prüfung jeweils zwischen  $49\%$  und  $51\%$  der Punkte erreicht?

${\rm Pr}\big [(0.49 ≤ t ≤0.51)∩(0.49≤ p ≤0.51)\big]\ = \ $

$\ \cdot 10^{-5}$


Musterlösung

(1)  und (2) 

  • Die Mittelwerte  $m_t\hspace{0.15cm}\underline{= 0.5}$  und  $m_p\hspace{0.15cm}\underline{= 0.7}$  können aus der Skizze abgeschätzt und aus der angegebenen Gleichung exakt ermittelt werden.
  • Die 2D–WDF der mittelwertfreien Größe lautet:
$$f_{\it t\hspace{0.05cm}'\hspace{0.05cm}p\hspace{0.05cm}'}(\it t\hspace{0.05cm}',\hspace{0.08cm} \it p\hspace{0.05cm}'{\rm )} = \rm 13.263\cdot \rm exp\Bigg (-\frac{\it {\rm (}t\hspace{0.05cm}'{\rm )}^{\rm 2}}{\rm 0.0288} - \frac{\it {\rm (}p\hspace{0.05cm}'{\rm )}^{\rm 2}}{\rm 0.0072}+\frac{\it t\hspace{0.05cm}'\cdot p\hspace{0.05cm}'}{\rm 0.0090}\Bigg ). $$
  • Zur Vereinfachung wird im Folgenden auf den Apostroph zur Kennzeichnung mittelwertfreier Größen verzichtet. 
  • Sowohl  $t$  als auch  $p$  sind bis einschließlich der Teilaufgabe  (4)  als mittelwertfrei zu verstehen.


(3)  Die allgemeine Gleichung einer mittelwertfreien 2D-Zufallsgröße lautet:

$$f_{\it tp}(\it t,\hspace{0.08cm} \it p)=\frac{\rm 1}{\rm 2\it \pi \cdot \sigma_{\it t}\cdot \sigma_{\it p} \cdot\sqrt{\rm 1- \it\rho^{\rm 2}}}\hspace{0.1cm}\cdot \hspace{0.1cm}\rm exp\Bigg\{-\hspace{0.1cm}\frac{\it t^{\rm 2}}{\rm 2\cdot (\rm 1-\rho^{\rm 2})\cdot \sigma_{\it t}^{\rm 2}} -\hspace{0.1cm}\frac{\it p^{\rm 2}}{\rm 2\cdot (\rm 1-\it\rho^{\rm 2}{\rm )}\cdot \sigma_{\it p}^{\rm 2}}+\hspace{0.1cm}\frac{\rho\cdot \it t\cdot \it p}{ (\rm 1-\it \rho^{\rm 2}{\rm )}\cdot\sigma_{\it t}\cdot\sigma_{\it p}}\Bigg\}.$$
  • Die Standardabweichungen  $\sigma_t$  und  $\sigma_p$  sowie der Korrelationskoeffizient  $\rho$  lassen sich durch Koeffizientenvergleich ermitteln:
  • Ein Vergleich der beiden ersten Terme im Exponenten zeigt,  dass  $\sigma_t = 2 \cdot \sigma_p$  gelten muss.  Damit lautet die WDF:
$$f_{\it tp}(\it t,\hspace{0.08cm} \it p)=\frac{\rm 1}{\rm 4\it \pi \cdot \sigma_{\it p}^{\rm 2} \cdot\sqrt{\rm 1- \it\rho^{\rm 2}}}\hspace{0.1cm}\cdot \hspace{0.1cm}\rm exp\Bigg\{-\hspace{0.1cm}\frac{\it t^{\rm 2}}{\rm 8\cdot (\rm 1-\rho^{\rm 2})\cdot \sigma_{\it p}^{\rm 2}} -\hspace{0.1cm}\frac{\it p^{\rm 2}}{\rm 2\cdot (\rm 1-\it\rho^{\rm 2}{\rm )}\cdot \sigma_{\it p}^{\rm 2}}+\hspace{0.1cm}\frac{\rho\cdot \it t\cdot \it p}{\rm 2\cdot (\rm 1-\it \rho^{\rm 2}{\rm )}\cdot\sigma_{\it p}^{\rm 2}}\Bigg\}.$$
  • Aus dem zweiten Term des Exponenten folgt:
$$2\cdot(1-\rho^{\rm 2})\cdot\sigma_{p}^{ 2}=0.0072\hspace{0.5cm}\Rightarrow \hspace{0.5cm} \sigma_{p}^{2} = \frac{ 0.0036}{(1-\rho^{\rm 2})}.$$
  • Der Faktor  $K = 13.263$  liefert nun das Ergebnis
$$K = \frac{\sqrt{\rm 1-\it\rho^{\rm 2}}}{\rm 4\it\pi\cdot \rm 0.0036}=\rm 13.263 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\sqrt{\rm 1-\it\rho^{\rm 2}}=\rm 0.6 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\hspace{0.15cm}\underline{ \rm \rho = \rm 0.8}.$$
  • Daraus ergeben sich die Streuungen zu  $\sigma_t\hspace{0.15cm}\underline{= 0.2}$  und  $\sigma_p\hspace{0.15cm}\underline{= 0.1}$.
  • Zur Kontrolle verwenden wir den letzten Term des Exponenten:
$$\frac{(1 - \rho^{2})\cdot \sigma_{\it t}\cdot\sigma_{\it p}}{\it \rho} = \frac{0.36\cdot 0.1\cdot 0.2}{0.8} = \rm 0.009.$$
  • Dies stimmt mit dem vorgegebenen Wert überein.


(4)  Der Lösungsvorschlag 1 ist richtig.

  • Im Grunde genommen ist  $(t,\hspace{0.08cm} p)$  keine echte Gaußsche Zufallsgröße,  da beide Komponenten begrenzt sind.
  • Die Wahrscheinlichkeiten für die Ereignisse  $t < 0$,     $t >1$,     $p < 0$   und   $p >1$   sind somit Null.
  • Bei Gaußschen Größen mit den hier vorliegenden Mittelwerten und Streuungen ergeben sich jedoch
$$\rm Pr(\it t < \rm 0) = \rm Pr(\it t > \rm 1) = \rm Q(2.5)\approx 6\cdot 10^{-3},$$
$$\rm Pr(\it p > \rm 1) = \rm Q(3)\approx 1.3\cdot 10^{-3},$$
$$\rm Pr(\it p < \rm 0) = \rm Q(7)\approx 10^{-12}.$$
  • Der Korrelationskoeffizient  $\rho = 0.8$  ist hier positiv:  Hat der Prüfling im Theorieteil eher gut abgeschnitten,  so ist  (zumindest bei dieser Aufgabe)  zu erwarten,  dass auch der praktische Teil gut läuft.
  • Hier ist also der Lösungsvorschlag 2 falsch.  In der Praxis ist das sicher nicht immer so.


(5)  Für diese Wahrscheinlichkeit gilt mit  $\Delta t = \Delta p = 0.02$:

$$\rm Pr\left [( \rm 0.5-\frac{\rm\Delta\it t}{\rm 2}\le \it t \le \rm 0.5+\frac{\rm\Delta\it t}{\rm 2})\cap(\rm 0.5-\frac{\rm\Delta\it p}{\rm 2}\le \it p \le \rm 0.5+\frac{\rm\Delta\it p}{\rm 2})\right ] \approx \rm\Delta\it t\cdot\rm\Delta\it p\cdot \it f_{tp}{\rm (}t=\rm 0.5,\hspace{0.08cm} \it p = \rm 0.5).$$
  • Für die 2D-WDF gilt unter Berücksichtigung der Mittelwerte  $m_t{= 0.5}$  und  $m_p{= 0.7}$:
$$f_{tp}(\it t=\rm 0.5,\hspace{0.08cm} \it p=\rm 0.5) = \rm 13.263\cdot {\rm e}^{-(-0.2)^2/0.0072}\approx 0.0513.$$
  • Damit ergibt sich die gesuchte Wahrscheinlichkeit zu
$${\rm Pr}\big[(0.49 ≤ t ≤0.51)∩(0.49≤ p ≤0.51)\big] =0.02 \cdot 0.02 \cdot 0.0513\hspace{0.15cm}\underline{\approx 2 · 10^{-5}}.$$