Aufgaben:Aufgabe 4.3: Algebraische und Modulo-Summe: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Stochastische Signaltheorie/Zweidimensionale Zufallsgrößen }} right| :Ein „getakteter”…“)
 
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID253__Sto_A_4_3.png|right|]]
+
[[Datei:P_ID253__Sto_A_4_3.png|right|Algebraische und Modulo-2-Summe]]
:Ein &bdquo;getakteter&rdquo; Zufallsgenerator liefert eine Folge &#9001;<i>x<sub>&nu;</sub></i>&#9002; von bin&auml;ren Zufallszahlen. Es wird nun vorausgesetzt, dass die Bin&auml;rzahlen 0 und 1 mit gleichen Wahrscheinlichkeiten auftreten und dass die einzelnen Zufallszahlen nicht statistisch voneinander abh&auml;ngen. Die Zufallszahlen <i>x<sub>&nu;</sub></i> &#8712; {0, 1} werden in die erste Speicherstelle eines Schieberegisters eingetragen und mit jeden Takt um eine Stelle nach unten verschoben.
+
Ein &bdquo;getakteter&rdquo; Zufallsgenerator liefert eine Folge &#9001;<i>x<sub>&nu;</sub></i>&#9002; von bin&auml;ren Zufallszahlen. Es wird nun vorausgesetzt, dass die Bin&auml;rzahlen 0 und 1 mit gleichen Wahrscheinlichkeiten auftreten und dass die einzelnen Zufallszahlen nicht statistisch voneinander abh&auml;ngen. Die Zufallszahlen <i>x<sub>&nu;</sub></i> &#8712; {0, 1} werden in die erste Speicherstelle eines Schieberegisters eingetragen und mit jeden Takt um eine Stelle nach unten verschoben.
  
 
:Aus den Inhalten des dreistelligen Schieberegisters werden zwei neue Zufallsfolgen &#9001;<i>a<sub>&nu;</sub></i>&#9002; und &#9001;<i>m<sub>&nu;</sub></i>&#9002; gebildet. Hierbei bezeichnet:
 
:Aus den Inhalten des dreistelligen Schieberegisters werden zwei neue Zufallsfolgen &#9001;<i>a<sub>&nu;</sub></i>&#9002; und &#9001;<i>m<sub>&nu;</sub></i>&#9002; gebildet. Hierbei bezeichnet:
Zeile 15: Zeile 15:
  
 
:Dieser Sachverhalt ist in der nachfolgenden Tabelle nochmals dargestellt:
 
:Dieser Sachverhalt ist in der nachfolgenden Tabelle nochmals dargestellt:
[[Datei:P_ID254__Sto_A_4_3Tab.png|mitte|]]
+
[[Datei:P_ID254__Sto_A_4_3Tab.png|mitte|Tabelle zur Momentenberechnung]]
 +
 
 +
''Hinweise:''
 +
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Zufallsgrößen|Zweidimensionale Zufallsgrößen]].
 +
*Bezug genommen wird auch auf das Kapitel [[Stochastische_Signaltheorie/Erwartungswerte_und_Momente|Erwartungswerte und Momente]].
 +
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 +
*Berücksichtigen Sie, dass im betrachteten Bereich von $-1 ≤ x ≤ +1$ die Exponentialfunktion wie folgt angenähert werden kann:
 +
:$$y={\rm e}^{x}\approx 1+ \frac{ x}{1!} + \frac{{ x}^{\rm 2}}{\rm 2!}+ \frac{{x}^{\rm 3}}{\rm 3!}+ \frac{{x}^{\rm 4}}{\rm 4!}.$$
  
 
:<b>Hinweis</b>: Die Aufgabe bezieht sich auf den Inhalt von Kapitel 4.1.
 
:<b>Hinweis</b>: Die Aufgabe bezieht sich auf den Inhalt von Kapitel 4.1.

Version vom 18. März 2017, 17:40 Uhr

Algebraische und Modulo-2-Summe

Ein „getakteter” Zufallsgenerator liefert eine Folge 〈xν〉 von binären Zufallszahlen. Es wird nun vorausgesetzt, dass die Binärzahlen 0 und 1 mit gleichen Wahrscheinlichkeiten auftreten und dass die einzelnen Zufallszahlen nicht statistisch voneinander abhängen. Die Zufallszahlen xν ∈ {0, 1} werden in die erste Speicherstelle eines Schieberegisters eingetragen und mit jeden Takt um eine Stelle nach unten verschoben.

Aus den Inhalten des dreistelligen Schieberegisters werden zwei neue Zufallsfolgen 〈aν〉 und 〈mν〉 gebildet. Hierbei bezeichnet:
aν die algebraische Summe:
$$a_\nu=x_\nu+x_{\nu-1}+x_{\nu-2},$$
mν die Modulo&#150;2-Summe:
$$m_\nu=x_\nu\oplus x_{\nu-1}\oplus x_{\nu-2}.$$
Dieser Sachverhalt ist in der nachfolgenden Tabelle nochmals dargestellt:

Tabelle zur Momentenberechnung

Hinweise:

  • Die Aufgabe gehört zum Kapitel Zweidimensionale Zufallsgrößen.
  • Bezug genommen wird auch auf das Kapitel Erwartungswerte und Momente.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Berücksichtigen Sie, dass im betrachteten Bereich von $-1 ≤ x ≤ +1$ die Exponentialfunktion wie folgt angenähert werden kann:
$$y={\rm e}^{x}\approx 1+ \frac{ x}{1!} + \frac{{ x}^{\rm 2}}{\rm 2!}+ \frac{{x}^{\rm 3}}{\rm 3!}+ \frac{{x}^{\rm 4}}{\rm 4!}.$$
Hinweis: Die Aufgabe bezieht sich auf den Inhalt von Kapitel 4.1.


Fragebogen

1

Berechnen Sie die Wahrscheinlichkeiten der Zufallsgröße mν. Wie groß ist die Wahrscheinlichkeit, dass die Modulo-2-Summe gleich 0 ist?

$Pr(mν = 0)$ =

2

Bestehen statistiche Abhängigkeiten innerhalb der Folge 〈mν〉?

Die Folgenelemente mν sind statistisch unabhängig.
Es bestehen statistische Bindungen innerhalb der Folgen 〈mν〉.

3

Ermitteln Sie die Verbund-WDF fxm(xν, mν) und bewerten Sie aufgrund des Resultats die nachfolgenden Aussagen (zutreffend oder nicht).

Die Zufallsgröße xν und mν sind statistisch abhängig.
Die Zufallsgröße xν und mν sind statistisch unabhängig.
Die Zufallsgröße xν und mν sind korreliert.
Die Zufallsgröße xν und mν sind unkorreliert.

4

Bestehen innerhalb der Folge 〈aν〉 statistische Abhängigkeiten?

Die Folgenelemente aν sind statistisch unabhängig.
Es bestehen statistische Bindungen innerhalb der Folgen 〈aν〉.

5

Ermitteln Sie die 2D-WDF fam(aν, mν) und den Korrelationskoeffizienten ρam. Welche der nachfolgenden Aussagen treffen zu?

Die Zufallsgröße aν und mν sind statistisch abhängig.
Die Zufallsgröße aν und mν sind statistisch unabhängig.
Die Zufallsgröße aν und mν sind korreliert.
Die Zufallsgröße aν und mν sind unkorreliert.


Musterlösung

1.  Aus der Tabelle auf der Angabenseite ist ersichtlich, dass bei der Modulo-2-Summe die beiden Werte 0 und 1 mit gleicher Wahrscheinlichkeit (also jeweils 0.5) auftreten.
2.  Die Tabelle zeigt, dass bei jeder Vorbelegung, - das heißt (xν–1, xν–2) = (0,0), (0,1), (1,0), (1,1) - die Werte mν = 0 bzw. mν = 1 mit gleicher Wahrscheinlichkeit auftreten. Anders ausgedrückt:
$$\rm Pr(\it m_{\nu}|m_{\nu-\rm 1}) = \rm Pr(\it m_{\nu}).$$
Dies entspricht genau der Definition der statistischen Unabhängigkeit.
P ID224 Sto A 4 3 c.png
3.  Die 2D–WDF besteht aus vier Diracfunktionen, jeweils mit dem Gewicht 1/4. Man erhält dieses Ergebnis beispielsweise durch Auswertung der Tabelle auf der Angabenseite.
Da fxm(xν, mν) gleich dem Produkt fx(xν) · fm(mν) ist, sind die Größen xν und mν statistisch unabhängig. Statistisch unabhängige Zufallsgrößen sind aber natürlich auch linear statistisch unabhängig, also mit Sicherheit unkorreliert. Richtig sind also der zweite und der letzte Lösungsvorschlag.
4.  Innerhalb der Folge 〈aν〉 der algebraischen Summe gibt es statistische Bindungen  ⇒  Vorschlag 2. Man erkennt dies daran, dass die unbedingte Wahrscheinlichkeit Pr(aν = 0) = 1/8 ist, während zum Beispiel Pr(aν = 0 | aν–1 = 3) gleich 0 ist.
P ID225 Sto A 4 3 e.png
5.  Wie bei der Teilaufgabe (3) erhält man wieder vier Diracfunktionen, diesmal aber nicht mit jeweils gleichem Impulsgewicht 1/4.
Die zweidimensionale WDF lässt sich nicht als Produkt der zwei Randwahrscheinlichkeitsdichten schreiben. Das bedeutet aber, dass statistische Bindungen zwischen aν und mν bestehen müssen.
Für den gemeinsamen Erwartungswert erhält man:
$$\rm E[\it a\cdot \it m] = \rm \frac{1}{8}\cdot 0 \cdot 0 +\frac{3}{8}\cdot 2 \cdot 0 +\frac{3}{8}\cdot 1 \cdot 1 + \frac{1}{8}\cdot 3 \cdot 1 = \frac{3}{4}.$$
Mit den linearen Mittelwerten E[a] = 1.5 und E[m] = 0.5 folgt damit für die Kovarianz:
$$\mu_{am}= \rm E[\it a\cdot m] - \rm E[\it a]\cdot \rm E[\it m] = \rm 0.75-1.5\cdot 0.5 = \rm 0.$$
Damit ist auch der Korrelationskoeffizient ρam = 0. Das heißt: Die vorhandenen Abhängigkeiten sind nichtlinear. Die Größen aν und mν sind zwar statistisch abhängig, aber trotzdem unkorreliert. Richtig sind der erste und der letzte Lösungsvorschlag.