Aufgaben:Aufgabe 4.1Z: Andere Basisfunktionen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 2: Zeile 2:
 
{{quiz-Header|Buchseite=Digitalsignalübertragung/Signale, Basisfunktionen und Vektorräume}}
 
{{quiz-Header|Buchseite=Digitalsignalübertragung/Signale, Basisfunktionen und Vektorräume}}
  
[[Datei:P_ID1996__Dig_Z_4_1.png|right|frame|Energiebegrenzte Signale]]
+
[[Datei:P_ID1996__Dig_Z_4_1.png|right|frame|Einige energiebegrenzte Signale]]
Diese Aufgabe verfolgt das genau gleiche Ziel wie die [[Aufgaben:4.1_Gram-Schmidt-Verfahren| Aufgabe A4.1]]. Für $M = 4$ energiebegrenzte Signale $s_i(t)$ mit $i = 1, \ ... \ , 4$ sollen die $N$ erforderlichen orthonormalen Basisfunktionen $\varphi_{\it j}(t)$ gefunden werden, die folgende Bedingung erfüllen müssen.
+
Diese Aufgabe verfolgt das genau gleiche Ziel wie die [[Aufgaben:4.1_Gram-Schmidt-Verfahren| Aufgabe 4.1]]: Für $M = 4$ energiebegrenzte Signale $s_i(t)$ mit $i = 1, \ ... \ , 4$ sollen die $N$ erforderlichen orthonormalen Basisfunktionen $\varphi_{\it j}(t)$ gefunden werden, die folgende Bedingung erfüllen müssen.
:$$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t =\\
+
:$$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t = {\rm \delta}_{jk} =
\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm \delta}_{jk} =
 
 
\left\{ \begin{array}{c} 1 \\
 
\left\{ \begin{array}{c} 1 \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
Zeile 14: Zeile 13:
 
Mit $M$ Sendesignale $s_i(t)$ können bereits weniger Basisfunktionen $\varphi_{\it j}(t)$ ausreichen, nämlich $N$. Allgemein gilt also $N &#8804; M$.
 
Mit $M$ Sendesignale $s_i(t)$ können bereits weniger Basisfunktionen $\varphi_{\it j}(t)$ ausreichen, nämlich $N$. Allgemein gilt also $N &#8804; M$.
  
Es handelt sich hier um die genau gleichen energiebegrenzten Signale $s_i(t)$ wie in der Aufgabe A4.1. Der Unterschied ist die unterschiedliche Reihenfolge der Signale $s_i(t)$. Diese sind in dieser Aufgabe so sortiert, dass die Basisfunktionen auch ohne Anwendung des umständlicheren [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Das_Verfahren_nach_Gram-Schmidt| Gram&ndash;Schmidt&ndash;Verfahrens]] gefunden werden können.  
+
Es handelt sich hier um die genau gleichen energiebegrenzten Signale $s_i(t)$ wie in der [[Aufgaben:4.1_Gram-Schmidt-Verfahren| Aufgabe 4.1]]:
 +
*Der Unterschied ist die unterschiedliche Reihenfolge der Signale $s_i(t)$.  
 +
*Diese sind in dieser Aufgabe so sortiert, dass die Basisfunktionen auch ohne Anwendung des umständlicheren [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Das_Verfahren_nach_Gram-Schmidt| Gram&ndash;Schmidt&ndash;Verfahrens]] gefunden werden können.  
  
''Hinweise:''
+
 
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume| Signale, Basisfunktionen und Vektorräume]].  
+
''Hinweise:''  
* Verwenden Sie für numerische Berechnungen:
+
*Die Aufgabe gehört zum  Kapitel [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume| Signale, Basisfunktionen und Vektorräume]].
:$$A = 1 \sqrt{\rm W} ,  \hspace{0.2cm} T = 1\,{\rm \mu s}  \hspace{0.05cm}.  $$
+
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 +
* Verwenden Sie für numerische Berechnungen: $A = 1 \sqrt{\rm W} ,  \hspace{0.2cm} T = 1\,{\rm \mu s}  \hspace{0.05cm}.  $
  
  
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{In Aufgabe A4.1 hat das Gram&ndash;Schmidt&ndash;Verfahren zu $N = 3$ Basisfunktionen geführt. Wieviele Basisfunktionen benötigt man hier?
+
{In Aufgabe 4.1 hat das Gram&ndash;Schmidt&ndash;Verfahren zu $N = 3$ Basisfunktionen geführt. Wieviele Basisfunktionen benötigt man hier?
 
|type="{}"}
 
|type="{}"}
 
$N$ = { 3 3% }  
 
$N$ = { 3 3% }  
Zeile 30: Zeile 32:
 
{Geben Sie die 2&ndash;Norm aller Signale an:
 
{Geben Sie die 2&ndash;Norm aller Signale an:
 
|type="{}"}
 
|type="{}"}
$||s_1(t)||$ = { 1 3% } $\ 10^{\rm &ndash;3} \ \rm (Ws)^{\rm 0.5} $
+
$||s_1(t)|| \ = \ $ { 1 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
$||s_2(t)||$ = { 1 3% } $\ 10^{\rm &ndash;3} \ \rm (Ws)^{\rm 0.5} $
+
$||s_2(t)|| \ = \ $ { 1 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
$||s_3(t)||$ = { 1 3% } $\ 10^{\rm &ndash;3} \ \rm (Ws)^{\rm 0.5} $
+
$||s_3(t)|| \ = \ $ { 1 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
$||s_4(t)||$ = { 1.414 3% } $\ 10^{\rm &ndash;3} \ \rm (Ws)^{\rm 0.5} $
+
$||s_4(t)|| \ = \ $ { 1.414 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
  
 
{Welche Aussagen gelten für die Basisfunktionen $\varphi_1(t)$, $\varphi_2(t)$ und $\varphi_3(t)$?
 
{Welche Aussagen gelten für die Basisfunktionen $\varphi_1(t)$, $\varphi_2(t)$ und $\varphi_3(t)$?
 
|type="[]"}
 
|type="[]"}
+ Die in A4.1 berechneten Basisfunktionen sind auch hier geeignet.
+
+ Die in Aufgabe 4.1 berechneten Basisfunktionen sind auch hier geeignet.
 
- Es gibt unendlich viele Möglichkeiten für $\{\varphi_1(t), \varphi_2(t), \varphi_3(t)\}$.
 
- Es gibt unendlich viele Möglichkeiten für $\{\varphi_1(t), \varphi_2(t), \varphi_3(t)\}$.
 
- Ein möglicher Satz lautet $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\}$, mit $j = 1, 2, 3$.
 
- Ein möglicher Satz lautet $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\}$, mit $j = 1, 2, 3$.
Zeile 44: Zeile 46:
 
{Wie lauten die Koeffizienten des Signals $s_4(t)$, bezogen auf die Basisfunktionen $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, mit $j = 1, 2, 3$?
 
{Wie lauten die Koeffizienten des Signals $s_4(t)$, bezogen auf die Basisfunktionen $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, mit $j = 1, 2, 3$?
 
|type="{}"}
 
|type="{}"}
$s_{\rm 41}$ = { 1 3% } $\ 10^{\rm &ndash;3} \ \rm (Ws)^{\rm 0.5} $
+
$s_{\rm 41} \ = \ $ { 1 3% } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
$s_{\rm 42}$ = { -1.03--0.97 } $\ 10^{\rm &ndash;3} \ \rm (Ws)^{\rm 0.5} $
+
$s_{\rm 42} \ = \ $ { -1.03--0.97 } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
$s_{\rm 43}$ = { 3 3% } $\ 10^0 \ \rm (Ws)^{\rm 0.5} $
+
$s_{\rm 43} \ = \ $ { 3 3% } $\ \rm \sqrt{Ws}$
 
</quiz>
 
</quiz>
  

Version vom 9. November 2017, 09:24 Uhr

Einige energiebegrenzte Signale

Diese Aufgabe verfolgt das genau gleiche Ziel wie die Aufgabe 4.1: Für $M = 4$ energiebegrenzte Signale $s_i(t)$ mit $i = 1, \ ... \ , 4$ sollen die $N$ erforderlichen orthonormalen Basisfunktionen $\varphi_{\it j}(t)$ gefunden werden, die folgende Bedingung erfüllen müssen.

$$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t = {\rm \delta}_{jk} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} j = k \\ j \ne k \\ \end{array} \hspace{0.05cm}.$$

Mit $M$ Sendesignale $s_i(t)$ können bereits weniger Basisfunktionen $\varphi_{\it j}(t)$ ausreichen, nämlich $N$. Allgemein gilt also $N ≤ M$.

Es handelt sich hier um die genau gleichen energiebegrenzten Signale $s_i(t)$ wie in der Aufgabe 4.1:

  • Der Unterschied ist die unterschiedliche Reihenfolge der Signale $s_i(t)$.
  • Diese sind in dieser Aufgabe so sortiert, dass die Basisfunktionen auch ohne Anwendung des umständlicheren Gram–Schmidt–Verfahrens gefunden werden können.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Signale, Basisfunktionen und Vektorräume.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Verwenden Sie für numerische Berechnungen: $A = 1 \sqrt{\rm W} , \hspace{0.2cm} T = 1\,{\rm \mu s} \hspace{0.05cm}. $


Fragebogen

1

In Aufgabe 4.1 hat das Gram–Schmidt–Verfahren zu $N = 3$ Basisfunktionen geführt. Wieviele Basisfunktionen benötigt man hier?

$N$ =

2

Geben Sie die 2–Norm aller Signale an:

$||s_1(t)|| \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$||s_2(t)|| \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$||s_3(t)|| \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$||s_4(t)|| \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$

3

Welche Aussagen gelten für die Basisfunktionen $\varphi_1(t)$, $\varphi_2(t)$ und $\varphi_3(t)$?

Die in Aufgabe 4.1 berechneten Basisfunktionen sind auch hier geeignet.
Es gibt unendlich viele Möglichkeiten für $\{\varphi_1(t), \varphi_2(t), \varphi_3(t)\}$.
Ein möglicher Satz lautet $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\}$, mit $j = 1, 2, 3$.
Ein möglicher Satz lautet $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, mit $j = 1, 2, 3$.

4

Wie lauten die Koeffizienten des Signals $s_4(t)$, bezogen auf die Basisfunktionen $\{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}$, mit $j = 1, 2, 3$?

$s_{\rm 41} \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$s_{\rm 42} \ = \ $

$\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}$
$s_{\rm 43} \ = \ $

$\ \rm \sqrt{Ws}$


Musterlösung

(1)  Der einzige Unterschied zur Aufgabe A4.1 ist die unterschiedliche Nummerierung der Signale $s_i(t)$. Damit ist offensichtlich, dass auch hier $\underline {N = 3}$ gelten muss.


(2)  Die 2–Norm gibt die Wurzel aus der Signalenergie an und ist vergleichbar mit dem Effektivwert bei leistungsbegrenzten Signalen. Die ersten drei Signale haben alle die 2–Norm

$$||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = \sqrt{A^2 \cdot T}\hspace{0.1cm}\hspace{0.15cm}\underline { = 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$

Die Norm des letzten Signals ist um den Faktor „Wurzel aus 2” größer:

$$||s_4(t)|| \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.$$


(3)  Die erste und die letzte Aussage sind zutreffend im Gegensatz zu den Aussagen 2 und 3:

  • Es wäre völlig unlogisch, wenn die gefundenen Basisfunktionen bei anderer Sortierung der Signale $s_i(t)$ nicht mehr gelten sollten.
  • Das Gram–Schmidt–Verfahren liefert nur einen möglichen Basisfunktionssatz $\{\varphi_{\it j}(t)\}$. Bei anderer Sortierung ergibt sich (möglicherweise) ein anderer. Die Anzahl der Permutationen von $M = 4$ Signalen ist $4! = 24$. Mehr Basisfunktionssätze kann es auf keinen Fall geben. Daraus folgt: der Lösungsvorschlag 2 ist falsch.
  • Wahrscheinlich gibt es (wegen $N = 3$) aber nur $3! = 6$ mögliche Basisfunktionssätze. Wie aus der Musterlösung zur Aufgabe A4.1 ersichtlich ist, werden sich mit der Reihenfolge $s_1(t), s_2(t), s_4(t), s_3(t)$ die gleichen Basisfunktionen ergeben wie mit $s_1(t), s_2(t), s_3(t), s_4(t)$. Dies ist aber nur eine Vermutung der Autoren; wir haben es nicht überprüft.
  • Die Aussage 3 kann allein schon wegen den unterschiedlichen Einheiten von $s_i(t)$ und $\varphi_{\it j}(t)$ nicht stimmen. Die Signale weisen wie $A$ die Einheit „Wurzel aus Watt” auf, die Basisfunktionen die Einheit „1 durch Wurzel aus Sekunde”.
  • Richtig ist somit die letzte Lösungsalternative, wobei für $K$ gilt:
$$K = ||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = 10^{-3}\sqrt{\rm Ws} \hspace{0.05cm}.$$


(4)  Aus dem Vergleich der Diagramme auf der Angabenseite erkennt man:

$$s_{4}(t) = s_{1}(t) - s_{2}(t) = K \cdot \varphi_1(t) - K \cdot \varphi_2(t)\hspace{0.05cm}.$$

Weiterhin gilt:

$$s_{4}(t) = s_{41}\cdot \varphi_1(t) + s_{42}\cdot \varphi_2(t) + s_{43}\cdot \varphi_3(t)$$
$$\Rightarrow \hspace{0.3cm}s_{41} = K \hspace{0.1cm}\hspace{0.15cm}\underline {= 10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{42} = -K \hspace{0.1cm}\hspace{0.15cm}\underline {= -10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 0}\hspace{0.05cm}. $$