Aufgaben:Aufgabe 4.1: Tiefpass- und Bandpass-Signale: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(23 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
  
{{quiz-Header|Buchseite=*Buch*/*Kapitel*
+
{{quiz-Header|Buchseite=Signaldarstellung/Grundsätzliches_zu_Tiefpass-_und_Bandpass-Signalen
 
}}
 
}}
  
[[Datei:P_ID691__Sig_A_4_1.png|250px|right|TP- und BP-Signale (Aufgabe A4.1)]]
+
[[Datei:P_ID691__Sig_A_4_1.png|250px|right|frame|Vorgegebene Signalverläufe]]
  
Rechts sind drei Signalverläufe skizziert, wobei die beiden ersten Signale folgenden Verlauf aufweisen:
+
Rechts sind drei Signalverläufe skizziert, wobei die beiden ersten folgenden Verlauf aufweisen,  mit  ${\rm si}(x)=\sin(x)/x$:
 
   
 
   
$$x(t)  =  10\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot
+
:$$x(t)  =  10\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot
 
{t}/{T_x}) ,$$
 
{t}/{T_x}) ,$$
  
$$y(t)  =  6\hspace{0.05cm}{\rm V} \cdot {\rm si}( \pi \cdot
+
:$$y(t)  =  6\hspace{0.05cm}{\rm V} \cdot {\rm si}( \pi \cdot
 
{t}/{T_y}) .$$
 
{t}/{T_y}) .$$
 
   
 
   
Die Parameter Tx = 100 μs und Ty = 166.67 μs geben jeweils die erste Nullstelle von x(t) bzw. y(t) an.
+
Hierbei geben  $T_x = 100 \,{\rm µ}\text{s}$  und  $T_y = 166.67 \,{\rm µ}\text{s}$  jeweils die erste Nullstelle von  $x(t)$  bzw.  $y(t)$  an.
Das Signal d(t) ergibt sich aus der Differenz der beiden oberen Signale (untere Grafik):
+
 
 +
Das Signal  $d(t)$  ist die Differenz der beiden oberen Signale (untere Grafik):
 
   
 
   
$$d(t)  =  x(t)-y(t)  .$$
+
:$$d(t)  =  x(t)-y(t)  .$$
  
In der Teilaufgabe d) ist nach den Integralflächen der impulsartigen Signale x(t) und d(t) gefragt. Für diese gilt:
+
In der Teilaufgabe  '''(4)'''  ist nach den Integralflächen der zeitlich begrenzten Signale  $x(t)$  und  $d(t)$  gefragt.  Für diese gilt:
 
   
 
   
$$F_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}x(t)\hspace{0.1cm}{\rm d}t , \hspace{0.5cm}F_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}d(t)\hspace{0.1cm}{\rm d}t .$$
+
:$$F_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}x(t)\hspace{0.1cm}{\rm d}t , \hspace{0.5cm}F_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}d(t)\hspace{0.1cm}{\rm d}t .$$
  
Dagegen gilt für die entsprechenden Signalenergien mit dem Satz von Parseval:
+
Dagegen gilt für die entsprechenden Signalenergien mit dem  [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion#Leistung_und_Energie_eines_Bandpass-Signals|Satz von Parseval]]:
 
   
 
   
$$E_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|x(t)|^2\hspace{0.1cm}{\rm
+
:$$E_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|x(t)|^2\hspace{0.1cm}{\rm
 
d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|X(f)|^2\hspace{0.1cm}{\rm
 
d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|X(f)|^2\hspace{0.1cm}{\rm
 
d}f ,$$  
 
d}f ,$$  
  
$$E_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|d(t)|^2\hspace{0.1cm}{\rm
+
:$$E_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|d(t)|^2\hspace{0.1cm}{\rm
 
d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|D(f)|^2\hspace{0.1cm}{\rm
 
d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|D(f)|^2\hspace{0.1cm}{\rm
 
d}f .$$
 
d}f .$$
  
Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 4.1. Berücksichtigen Sie weiterhin, dass die Fourierrücktransformierte eines rechteckförmigen Spektrums
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hinweise:''
 +
*Die Aufgabe gehört zum  Kapitel  [[Signaldarstellung/Grundsätzliches_zu_Tiefpass-_und_Bandpass-Signalen|Grundsätzliches zu Tiefpass- und Bandpass-Signalen]].
 
   
 
   
$$X(f)=\left\{ {X_0 \; \rm f\ddot{u}r\; |\it f| < \rm B, \atop {\rm 0 \;\;\; \rm sonst}}\right.$$
+
*Die Fourierrücktransformierte eines rechteckförmigen Spektrums&nbsp; $X(f)$&nbsp; führt zu einer&nbsp; $\rm si$&ndash;förmigen Zeitfunktion $x(t)$:
 +
 
 +
:$$X(f)=\left\{ {X_0 \; \rm f\ddot{u}r\; |\it \hspace{0.05cm}f\hspace{0.05cm}| < \rm B, \atop {\rm 0 \;\;\; \rm sonst}}\right. \;\;
 +
\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \;\;x(t)  =  2 \cdot X_0 \cdot B \cdot {\rm si} ( 2\pi B t), \hspace{0.5cm} {\rm si}(x)=\sin(x)/x.$$  
  
wie folgt lautet:
 
 
$$x(t)  =  2 \cdot X_0 \cdot B \cdot {\rm si} ( 2\pi B t) .$$
 
  
 
===Fragebogen===
 
===Fragebogen===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet das Spektrum X(f) des Signals x(t)? Wie groß sind X(f = 0) und die physikalische, einseitige Bandbreite von x(t)?
+
{Wie lautet das Spektrum&nbsp; $X(f)$&nbsp; des Signals&nbsp; $x(t)$?&nbsp; Wie groß sind&nbsp; $X(f = 0)$&nbsp; und die physikalische, einseitige Bandbreite&nbsp; $B_x$&nbsp; von&nbsp; $x(t)$?
 
|type="{}"}
 
|type="{}"}
$X(f=0) = $ { 1 } mV/Hz
+
$X(f=0)\ = \ $   { 1 3% } &nbsp;$\text{mV/Hz}$
$B_x =$ { 5000 } Hz
+
$B_x \ = \ $ { 5 3% } &nbsp;$\text{kHz}$
  
{Wie lauten die entsprechenden Kenngrößen des Signals y(t)?
+
{Wie lauten die entsprechenden Kenngrößen des Signals&nbsp; $y(t)$?
 
|type="{}"}
 
|type="{}"}
$Y(f=0) = $ { 1 } mV/Hz
+
$Y(f=0)\ = \ $ { 1 3% } &nbsp;$\text{mV/Hz}$
$B_y =$ { 3000 } Hz
+
$B_y \ = \ $ { 3 3% } &nbsp;$\text{kHz}$
  
{Berechnen Sie das Spektrum D(f) des Differenzsignals d(t) = x(t) y(t). Wie groß sind D(f = 0) und die physikalische, einseitige Bandbreite Bd?
+
 
 +
{Berechnen Sie das Spektrum&nbsp; $D(f)$&nbsp; des Differenzsignals&nbsp; $d(t) = x(t) - y(t)$.&nbsp; Wie groß sind&nbsp; $D(f = 0)$&nbsp; und die (einseitige) Bandbreite&nbsp; $B_d$?
 
|type="{}"}
 
|type="{}"}
$D(f=0) = $ { 0 } mV/Hz
+
$D(f=0)\ = \ $ { 0. } &nbsp;$\text{mV/Hz}$
$B_d =$ { 2000 } Hz
+
$B_d \ = \ $ { 2 3% } &nbsp;$\text{kHz}$
  
{Wie groß sind die Integralflächen Fx und Fd der Signale x(t) und d(t)?
+
{Wie groß sind die Integralflächen&nbsp; $F_x$&nbsp; und&nbsp; $F_d$&nbsp; der Signale&nbsp; $x(t)$&nbsp; und&nbsp; $d(t)$?
 
|type="{}"}
 
|type="{}"}
$F_x =$ { 0.001 } Vs
+
$F_x\ = \ $ { 0.001 } &nbsp;$\text{Vs}$
$F_d =$ { 0 } Vs   
+
$F_d\ = \ $ { 0. } &nbsp;$\text{Vs}$  
  
{Wie groß sind die (auf 1 Ω umgerechneten) Energien dieser Signale?
+
{Wie groß sind die (auf&nbsp; $1Ω$&nbsp; umgerechneten) Energien dieser Signale?
 
|type="{}"}
 
|type="{}"}
$E_x =$ { 0.01 } $\text{V^2s}$
+
$E_x \ = \ $ { 0.01 3% } &nbsp;$\text{V}^2\text{s}$
$E_d =$ { 0.004 } $\text{V^2s}$
+
$E_d \ = \ $ { 0.004 3% } &nbsp;$\text{V}^2\text{s}$
  
  
Zeile 73: Zeile 83:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' a)  Die si–förmige Zeitfunktion x(t) lässt auf ein Rechteckspektrum X(f) schließen. Die absolute, zweiseitige Bandbreite 2 · Bx ist gleich dem Kehrwert der ersten Nullstelle. Daraus folgt:
+
'''(1)'''&nbsp; Die&nbsp; $\rm si$–förmige Zeitfunktion&nbsp; $x(t)$&nbsp; lässt auf ein Rechteckspektrum&nbsp; $X(f)$&nbsp; schließen.  
 +
*Die absolute, zweiseitige Bandbreite&nbsp; $2 \cdot B_x$&nbsp; ist gleich dem Kehrwert der ersten Nullstelle.&nbsp; Daraus folgt:
 
   
 
   
$$B_x = \frac{1}{2 \cdot T_x}  =  \frac{1}{2 \cdot 0.1
+
:$$B_x = \frac{1}{2 \cdot T_x}  =  \frac{1}{2 \cdot 0.1
 
\hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
 
\hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
  
Da der Signalwert bei t = 0 gleich der Rechteckfläche ist, ergibt sich für die konstante Höhe:
+
*Da der Signalwert bei&nbsp; $t = 0$&nbsp; gleich der Rechteckfläche ist, ergibt sich für die konstante Höhe:
 
   
 
   
$$X(f=0) = \frac{x(t=0)}{2 \cdot B_x}  =  \frac{10
+
:$$X(f=0) = \frac{x(t=0)}{2 B_x}  =  \frac{10
\hspace{0.1cm}{\rm V}}{10 \hspace{0.1cm}{\rm kHz}} \hspace{0.15 cm}\underline{= 10^{-3}
+
\hspace{0.1cm}{\rm V}}{10 \hspace{0.1cm}{\rm kHz}} \hspace{0.15 cm}\underline{= 1
\hspace{0.1cm}{\rm V/Hz}}.$$
+
\hspace{0.1cm}{\rm mV/Hz}}.$$
  
b)  Aus Ty = 0.167 ms erhält man By = 3 kHz. Zusammen mit y(t = 0) = 6V führt dies zum gleichen Spektralwert Y(f = 0) = 10−3 V/Hz.
 
  
[[Datei:P_ID701__Sig_A_4_1_c_neu.png|250px|right|Rechteckförmiges BP-Spektrum (ML zu Aufgabe A4.1)]]
 
  
c)  Aus d(t) = x(t) y(t) folgt wegen der Linearität der Fouriertransformation:
+
'''(2)'''&nbsp; Aus&nbsp; $T_y = 0.167 \,\text{ms}$&nbsp; erhält man&nbsp; $B_y \;\underline{= 3 \,\text{kHz}}$.
 +
*Zusammen mit&nbsp; $y(t = 0) = 6\,\text{V}$&nbsp; führt dies zum gleichen Spektralwert&nbsp; $Y(f = 0)\; \underline{= 1\, \text{mV/Hz}}$&nbsp; wie bei der Teilaufgabe&nbsp; '''(1)'''.
 +
 
 +
 
 +
 
 +
 
 +
[[Datei:P_ID701__Sig_A_4_1_c_neu.png|right|frame|Rechteckförmiges Bandpass&ndash;Spektrum]]
 +
'''(3)'''&nbsp; Aus&nbsp; $d(t) = x(t) - y(t)$&nbsp; folgt wegen der Linearität der Fouriertransformation: &nbsp; $D(f)  = X(f) - Y(f).$
 +
 
 +
*Die Differenz der zwei gleich hohen Rechteckfunktionen führt zu einem rechteckförmigen Bandpass–Spektrum zwischen&nbsp; $3 \,\text{kHz}$&nbsp; und&nbsp; $5 \,\text{kHz}$.
 +
*Die (einseitige) Bandbreite beträgt somit&nbsp; $B_d \;\underline{= 2 \,\text{kHz}}$.&nbsp; In diesem Frequenzintervall ist&nbsp; $D(f) = 1 \,\text{mV/Hz}$.&nbsp; Außerhalb, also auch bei&nbsp; $f = 0$, gilt&nbsp; $D(f)\;\underline{ = 0}$.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Nach den fundamentalen Gesetzmäßigkeiten der Fouriertransformation ist das Integral über die Zeitfunktion gleich dem Spektralwert bei&nbsp; $f = 0$.&nbsp; Daraus folgt:
 
   
 
   
$$D(f) = X(f) - Y(f).$$
+
:$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x}  =  10^{-3}
 +
\hspace{0.1cm}{\rm V/Hz}\hspace{0.15 cm}\underline{=  0.001 \hspace{0.1cm}{\rm Vs}},$$
  
Die Differenz der zwei gleich hohen Rechteckfunktionen führt zu einem rechteckförmigen BP–Spektrum zwischen 3 kHz und 5 kHz. Die (einseitige) Bandbreite beträgt somit Bd = 2 kHz. In diesem Frequenzintervall ist D(f) = 10–3 V/Hz. Außerhalb, also auch bei f = 0, gilt D(f) = 0.
+
:$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$
d)  Nach den fundamentalen Gesetzmäßigkeiten der Fouriertransformation ist das Integral über die Zeitfunktion gleich dem Spektralwert bei f = 0. Daraus folgt:
 
 
   
 
   
$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x}  =  10^{-3}
+
&rArr; &nbsp; '''Bei jedem Bandpass–Signal sind die Flächen der positiven Signalanteile gleich groß wie die Flächen der negativen Anteile'''.
\hspace{0.1cm}{\rm V/Hz}\hspace{0.15 cm}\underline{=  10^{-3} \hspace{0.1cm}{\rm Vs}},$$
 
  
$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$
+
 
+
 
Das bedeutet: Bei jedem Bandpass–Signal sind die Flächen der positiven Signalanteile genau so groß wie die Flächen der negativen Anteile.
+
'''(5)'''&nbsp; In beiden Fällen ist die Berechnung der Signalenergie im Frequenzbereich einfacher als im Zeitbereich, da hier die Integration auf eine Flächenberechnung von Rechtecken zurückgeführt werden kann:
e) In beiden Fällen ist die Berechnung im Frequenzbereich einfacher als im Zeitbereich, da hier die Integration auf eine Flächenberechnung von Rechtecken zurückgeführt werden kann:
 
 
   
 
   
$$E_x =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5
+
:$$E_x =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5
\hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 10^{-2} \hspace{0.1cm}{\rm V^2s}},$$
+
\hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 0.01 \hspace{0.1cm}{\rm V^2s}},$$
  
$$E_d =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 2
+
:$$E_d =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 2
\hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 4 \cdot 10^{-3} \hspace{0.1cm}{\rm
+
\hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 0.004 \hspace{0.1cm}{\rm
 
V^2s}}.$$
 
V^2s}}.$$
 
   
 
   

Aktuelle Version vom 3. Mai 2021, 18:08 Uhr

Vorgegebene Signalverläufe

Rechts sind drei Signalverläufe skizziert, wobei die beiden ersten folgenden Verlauf aufweisen,  mit  ${\rm si}(x)=\sin(x)/x$:

$$x(t) = 10\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot {t}/{T_x}) ,$$
$$y(t) = 6\hspace{0.05cm}{\rm V} \cdot {\rm si}( \pi \cdot {t}/{T_y}) .$$

Hierbei geben  $T_x = 100 \,{\rm µ}\text{s}$  und  $T_y = 166.67 \,{\rm µ}\text{s}$  jeweils die erste Nullstelle von  $x(t)$  bzw.  $y(t)$  an.

Das Signal  $d(t)$  ist die Differenz der beiden oberen Signale (untere Grafik):

$$d(t) = x(t)-y(t) .$$

In der Teilaufgabe  (4)  ist nach den Integralflächen der zeitlich begrenzten Signale  $x(t)$  und  $d(t)$  gefragt.  Für diese gilt:

$$F_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}x(t)\hspace{0.1cm}{\rm d}t , \hspace{0.5cm}F_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}d(t)\hspace{0.1cm}{\rm d}t .$$

Dagegen gilt für die entsprechenden Signalenergien mit dem  Satz von Parseval:

$$E_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|x(t)|^2\hspace{0.1cm}{\rm d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|X(f)|^2\hspace{0.1cm}{\rm d}f ,$$
$$E_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|d(t)|^2\hspace{0.1cm}{\rm d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|D(f)|^2\hspace{0.1cm}{\rm d}f .$$





Hinweise:

  • Die Fourierrücktransformierte eines rechteckförmigen Spektrums  $X(f)$  führt zu einer  $\rm si$–förmigen Zeitfunktion $x(t)$:
$$X(f)=\left\{ {X_0 \; \rm f\ddot{u}r\; |\it \hspace{0.05cm}f\hspace{0.05cm}| < \rm B, \atop {\rm 0 \;\;\; \rm sonst}}\right. \;\; \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \;\;x(t) = 2 \cdot X_0 \cdot B \cdot {\rm si} ( 2\pi B t), \hspace{0.5cm} {\rm si}(x)=\sin(x)/x.$$


Fragebogen

1

Wie lautet das Spektrum  $X(f)$  des Signals  $x(t)$?  Wie groß sind  $X(f = 0)$  und die physikalische, einseitige Bandbreite  $B_x$  von  $x(t)$?

$X(f=0)\ = \ $

 $\text{mV/Hz}$
$B_x \ = \ $

 $\text{kHz}$

2

Wie lauten die entsprechenden Kenngrößen des Signals  $y(t)$?

$Y(f=0)\ = \ $

 $\text{mV/Hz}$
$B_y \ = \ $

 $\text{kHz}$

3

Berechnen Sie das Spektrum  $D(f)$  des Differenzsignals  $d(t) = x(t) - y(t)$.  Wie groß sind  $D(f = 0)$  und die (einseitige) Bandbreite  $B_d$?

$D(f=0)\ = \ $

 $\text{mV/Hz}$
$B_d \ = \ $

 $\text{kHz}$

4

Wie groß sind die Integralflächen  $F_x$  und  $F_d$  der Signale  $x(t)$  und  $d(t)$?

$F_x\ = \ $

 $\text{Vs}$
$F_d\ = \ $

 $\text{Vs}$

5

Wie groß sind die (auf  $1\ Ω$  umgerechneten) Energien dieser Signale?

$E_x \ = \ $

 $\text{V}^2\text{s}$
$E_d \ = \ $

 $\text{V}^2\text{s}$


Musterlösung

(1)  Die  $\rm si$–förmige Zeitfunktion  $x(t)$  lässt auf ein Rechteckspektrum  $X(f)$  schließen.

  • Die absolute, zweiseitige Bandbreite  $2 \cdot B_x$  ist gleich dem Kehrwert der ersten Nullstelle.  Daraus folgt:
$$B_x = \frac{1}{2 \cdot T_x} = \frac{1}{2 \cdot 0.1 \hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
  • Da der Signalwert bei  $t = 0$  gleich der Rechteckfläche ist, ergibt sich für die konstante Höhe:
$$X(f=0) = \frac{x(t=0)}{2 B_x} = \frac{10 \hspace{0.1cm}{\rm V}}{10 \hspace{0.1cm}{\rm kHz}} \hspace{0.15 cm}\underline{= 1 \hspace{0.1cm}{\rm mV/Hz}}.$$


(2)  Aus  $T_y = 0.167 \,\text{ms}$  erhält man  $B_y \;\underline{= 3 \,\text{kHz}}$.

  • Zusammen mit  $y(t = 0) = 6\,\text{V}$  führt dies zum gleichen Spektralwert  $Y(f = 0)\; \underline{= 1\, \text{mV/Hz}}$  wie bei der Teilaufgabe  (1).



Rechteckförmiges Bandpass–Spektrum

(3)  Aus  $d(t) = x(t) - y(t)$  folgt wegen der Linearität der Fouriertransformation:   $D(f) = X(f) - Y(f).$

  • Die Differenz der zwei gleich hohen Rechteckfunktionen führt zu einem rechteckförmigen Bandpass–Spektrum zwischen  $3 \,\text{kHz}$  und  $5 \,\text{kHz}$.
  • Die (einseitige) Bandbreite beträgt somit  $B_d \;\underline{= 2 \,\text{kHz}}$.  In diesem Frequenzintervall ist  $D(f) = 1 \,\text{mV/Hz}$.  Außerhalb, also auch bei  $f = 0$, gilt  $D(f)\;\underline{ = 0}$.



(4)  Nach den fundamentalen Gesetzmäßigkeiten der Fouriertransformation ist das Integral über die Zeitfunktion gleich dem Spektralwert bei  $f = 0$.  Daraus folgt:

$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x} = 10^{-3} \hspace{0.1cm}{\rm V/Hz}\hspace{0.15 cm}\underline{= 0.001 \hspace{0.1cm}{\rm Vs}},$$
$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$

⇒   Bei jedem Bandpass–Signal sind die Flächen der positiven Signalanteile gleich groß wie die Flächen der negativen Anteile.


(5)  In beiden Fällen ist die Berechnung der Signalenergie im Frequenzbereich einfacher als im Zeitbereich, da hier die Integration auf eine Flächenberechnung von Rechtecken zurückgeführt werden kann:

$$E_x = (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5 \hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 0.01 \hspace{0.1cm}{\rm V^2s}},$$
$$E_d = (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 2 \hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 0.004 \hspace{0.1cm}{\rm V^2s}}.$$