Aufgaben:Aufgabe 4.16: Vergleich zwischen binärer PSK und binärer FSK: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choic…“)
 
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:|right|]]
+
[[Datei:P_ID1746__Mod_A_4_15.png|right|]]
 +
Die Grafik zeigt die Bitfehlerwahrscheinlichkeit für eine binäre [http://www.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren#Bin.C3.A4re_FSK_mit_kontinuierlicher_Phasenanpassung FSK–Modulation] bei
 +
:* im Vergleich zur binären Phasenmodulation (BPSK). Es wird stets Orthogonalität vorausgesetzt. Bei kohärenter Demodulation kann hierbei der Modulationsindex h ein Vielfaches von 0.5 sein, so dass die mittlere Kurve auch für ''Minimum Shift Keying'' (MSK) gültig ist. Dagegen muss bei nichtkohärenter Demodulation einer FSK der Modulationsindex h ein Vielfaches von 1 sein.
 +
 
 +
Diesem Systemvergleich liegt wieder der sog. AWGN–Kanal zugrunde, gekennzeichnet durch das Verhältnis $E-B/N_0$. Die Gleichungen für die Bitfehlerwahrscheinlichkeiten lauten bei
 +
:* ''Binary Phase Shift Keying'' (BPSK):
 +
$$p_{\rm B} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = \frac{1}{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ),$$
 +
:* ''Binary Frequency Shift Keying'' (BFSK) mit ''kohärenter'' Demodulation:
 +
$$p_{\rm B} = {\rm Q}\left ( \sqrt{\frac{E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = \frac{1}{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{2 \cdot N_0 }} \hspace{0.1cm}\right ),$$
 +
:* ''Binary Frequency Shift Keying'' (BFSK) mit ''inkohärenter'' Demodulation:
 +
$$p_{\rm B} = \frac{1}{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$
 +
In [http://www.lntwww.de/Aufgaben:4.7_Fehlerwahrscheinlichkeiten Aufgabe A4.7] wurde gezeigt, dass bei BPSK das logarithmierte Verhältnis $10 · lg E_B/N_0$ mindestens 9.6 dB betragen muss, damit die Bitfehlerwahrscheinlichkeit den Wert $p_B = 10^{–5}$ nicht überschreitet.
 +
 
 +
'''Hinweis:''' Die Aufgabe behandelt die Thematik von [http://www.lntwww.de/Modulationsverfahren/Lineare_digitale_Modulationsverfahren Kapitel 4.2] und [http://www.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren Kapitel 4.4]. Verwenden Sie die Näherung $lg(2) ≈ 0.3$.
  
  
Zeile 9: Zeile 22:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Welches $E_B/N_0$ ist bei MSK und kohärenter Demodulation erforderlich, damit $p_B ≤ 10^{–5}$ erfüllt ist?
 +
|type="{}"}
 +
$MSK, \text{kohärent}:  10 · lg E_B/N_0$ = { 12.6 3% } $dB$
 +
 
 +
 
 +
{Sind folgende Aussagen richtig: Das gleiche Ergebnis erhält man bei
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- einer FSK mit Modulationsindex $η = 0.7$,
+ Richtig
+
+ einer FSK mit Modulationsindex $η = 1$?
  
 +
{Welches $E_B/N_0$ ist bei FSK mit dem Modulationsindex h = 1 und inkohärenter Demodulation erforderlich, damit $p_B ≤ 10^{–5}$ erfüllt ist?
 +
|type="{}"}
 +
$FSK, \text{inkohärent}:  10 · lg E_B/N_0$ = { 13.4 3% } $dB$
  
{Input-Box Frage
+
{Welche Fehlerwahrscheinlichkeit ergibt sich bei $10 · lg E_B/N_0 = 12.6 dB$ und inkohärenter Demodulation?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$FSK, \text{inkohärent}:  p_B$ = { 1.12 3% } $10^{-4}$
 +
</quiz>
  
 +
===Musterlösung===
 +
{{ML-Kopf}}
 +
'''1.''' Ein Vergleich der beiden ersten Gleichungen auf der Angabenseite macht deutlich, dass bei der MSK mit kohärenter Demodulation das AWGN–Verhältnis $E_B/N_0$ verdoppelt werden muss, damit die gleiche Fehlerwahrscheinlichkeit wie bei BPSK erreicht wird. In anderen Worten: Die kohärente BFSK–Kurve liegt um $10 · lg (2) ≈ 3 dB$ rechts von der BPSK–Kurve. Um $p_B ≤ 10^{–5}$ zu garantieren, muss gelten:
 +
$$10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}} /{N_{\rm 0}}= 9.6\,\,{\rm dB} + 3\,\,{\rm dB} = \underline{12.6\,\,{\rm dB}}\hspace{0.05cm}.$$
 +
 +
'''2.''' Die angegebene Gleichung gilt nicht nur für die MSK (diese ist eine FSK mit $η = 0.5$), sondern für jede Form von orthogonaler FSK. Eine solche liegt vor, wenn der Modulationsindex η ein ganzzahliges Vielfaches von 0.5 ist, zum Beispiel für $η = 1$. Mit $η = 0.7$ ergibt sich keine orthogonale FSK. Es kann gezeigt werden, dass sich für $η = 0.7$ sogar eine kleinere Fehlerwahrscheinlichkeit als bei orthogonaler FSK ergibt. Mit $10 · lg E_B/N_0 = 12.6 dB$ erreicht man hier sogar $p_B ≈ 10^{–6}$, also eine Verbesserung um eine Zehnerpotenz. Richtig ist demzufolge der Lösungsvorschlag 2.
  
 +
'''3.''' Aus der Umkehrfunktion der angegebenen Gleichung erhält man:
 +
$$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82$$
 +
$$\Rightarrow \hspace{0.3cm}{E_{\rm B}} /{N_{\rm 0}}= 21.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}}/ {N_{\rm 0}}\approx \underline{13.4\,\,{\rm dB}}\hspace{0.05cm}.$$
  
</quiz>
+
'''4.'''  Aus $10 · lg E_B/N_0 = 12.6 dB$ folgt:
 +
$${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.25cm}\Rightarrow \hspace{0.25cm} ({E_{\rm B}} /{N_{\rm 0}})/2 \approx 8.4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4} \approx \underline{1.12 \cdot 10^{-4}}\hspace{0.05cm}.$$
 +
Das heißt: Bei gleichem $E_B/N_0$ wird die Fehlerwahrscheinlichkeit bei der inkohärenten Demodulation gegenüber kohärenter Demodulation (siehe Teilaufgabe a) um etwa den Faktor 11 vergrößert.
  
===Musterlösung===
 
{{ML-Kopf}}
 
'''1.'''
 
'''2.'''
 
'''3.'''
 
'''4.'''
 
'''5.'''
 
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Version vom 6. Januar 2017, 18:33 Uhr

P ID1746 Mod A 4 15.png

Die Grafik zeigt die Bitfehlerwahrscheinlichkeit für eine binäre FSK–Modulation bei

  • im Vergleich zur binären Phasenmodulation (BPSK). Es wird stets Orthogonalität vorausgesetzt. Bei kohärenter Demodulation kann hierbei der Modulationsindex h ein Vielfaches von 0.5 sein, so dass die mittlere Kurve auch für Minimum Shift Keying (MSK) gültig ist. Dagegen muss bei nichtkohärenter Demodulation einer FSK der Modulationsindex h ein Vielfaches von 1 sein.

Diesem Systemvergleich liegt wieder der sog. AWGN–Kanal zugrunde, gekennzeichnet durch das Verhältnis $E-B/N_0$. Die Gleichungen für die Bitfehlerwahrscheinlichkeiten lauten bei

  • Binary Phase Shift Keying (BPSK):

$$p_{\rm B} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = \frac{1}{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ),$$

  • Binary Frequency Shift Keying (BFSK) mit kohärenter Demodulation:

$$p_{\rm B} = {\rm Q}\left ( \sqrt{\frac{E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = \frac{1}{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{2 \cdot N_0 }} \hspace{0.1cm}\right ),$$

  • Binary Frequency Shift Keying (BFSK) mit inkohärenter Demodulation:

$$p_{\rm B} = \frac{1}{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$ In Aufgabe A4.7 wurde gezeigt, dass bei BPSK das logarithmierte Verhältnis $10 · lg E_B/N_0$ mindestens 9.6 dB betragen muss, damit die Bitfehlerwahrscheinlichkeit den Wert $p_B = 10^{–5}$ nicht überschreitet.

Hinweis: Die Aufgabe behandelt die Thematik von Kapitel 4.2 und Kapitel 4.4. Verwenden Sie die Näherung $lg(2) ≈ 0.3$.


Fragebogen

1

Welches $E_B/N_0$ ist bei MSK und kohärenter Demodulation erforderlich, damit $p_B ≤ 10^{–5}$ erfüllt ist?

$MSK, \text{kohärent}: 10 · lg E_B/N_0$ =

$dB$

2

Sind folgende Aussagen richtig: Das gleiche Ergebnis erhält man bei

einer FSK mit Modulationsindex $η = 0.7$,
einer FSK mit Modulationsindex $η = 1$?

3

Welches $E_B/N_0$ ist bei FSK mit dem Modulationsindex h = 1 und inkohärenter Demodulation erforderlich, damit $p_B ≤ 10^{–5}$ erfüllt ist?

$FSK, \text{inkohärent}: 10 · lg E_B/N_0$ =

$dB$

4

Welche Fehlerwahrscheinlichkeit ergibt sich bei $10 · lg E_B/N_0 = 12.6 dB$ und inkohärenter Demodulation?

$FSK, \text{inkohärent}: p_B$ =

$10^{-4}$


Musterlösung

1. Ein Vergleich der beiden ersten Gleichungen auf der Angabenseite macht deutlich, dass bei der MSK mit kohärenter Demodulation das AWGN–Verhältnis $E_B/N_0$ verdoppelt werden muss, damit die gleiche Fehlerwahrscheinlichkeit wie bei BPSK erreicht wird. In anderen Worten: Die kohärente BFSK–Kurve liegt um $10 · lg (2) ≈ 3 dB$ rechts von der BPSK–Kurve. Um $p_B ≤ 10^{–5}$ zu garantieren, muss gelten: $$10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}} /{N_{\rm 0}}= 9.6\,\,{\rm dB} + 3\,\,{\rm dB} = \underline{12.6\,\,{\rm dB}}\hspace{0.05cm}.$$

2. Die angegebene Gleichung gilt nicht nur für die MSK (diese ist eine FSK mit $η = 0.5$), sondern für jede Form von orthogonaler FSK. Eine solche liegt vor, wenn der Modulationsindex η ein ganzzahliges Vielfaches von 0.5 ist, zum Beispiel für $η = 1$. Mit $η = 0.7$ ergibt sich keine orthogonale FSK. Es kann gezeigt werden, dass sich für $η = 0.7$ sogar eine kleinere Fehlerwahrscheinlichkeit als bei orthogonaler FSK ergibt. Mit $10 · lg E_B/N_0 = 12.6 dB$ erreicht man hier sogar $p_B ≈ 10^{–6}$, also eine Verbesserung um eine Zehnerpotenz. Richtig ist demzufolge der Lösungsvorschlag 2.

3. Aus der Umkehrfunktion der angegebenen Gleichung erhält man: $$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82$$ $$\Rightarrow \hspace{0.3cm}{E_{\rm B}} /{N_{\rm 0}}= 21.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}}/ {N_{\rm 0}}\approx \underline{13.4\,\,{\rm dB}}\hspace{0.05cm}.$$

4. Aus $10 · lg E_B/N_0 = 12.6 dB$ folgt: $${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.25cm}\Rightarrow \hspace{0.25cm} ({E_{\rm B}} /{N_{\rm 0}})/2 \approx 8.4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4} \approx \underline{1.12 \cdot 10^{-4}}\hspace{0.05cm}.$$ Das heißt: Bei gleichem $E_B/N_0$ wird die Fehlerwahrscheinlichkeit bei der inkohärenten Demodulation gegenüber kohärenter Demodulation (siehe Teilaufgabe a) um etwa den Faktor 11 vergrößert.