Aufgaben:Aufgabe 4.16: Binary Frequency Shift Keying: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 7: Zeile 7:
 
:$$ s_{\rm BP1}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt{2E/T} \cdot \cos( 2\pi  f_1  t)\hspace{0.05cm}.$$
 
:$$ s_{\rm BP1}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \sqrt{2E/T} \cdot \cos( 2\pi  f_1  t)\hspace{0.05cm}.$$
  
Die Grafik zeigt beispielhafte Signale. In obiger Gleichung gibt $f_{\rm T}$ die <i>Trägerfrequenz</i> an und $\Delta f_{\rm A}$ den <i>Frequenzhub</i> als die maximale Abweichung der [[Augenblicksfrequenz]] von der Trägerfrequenz an. $T$ ist die Symboldauer und $E$ die Signalenergie. Dabei gilt gleichermaßen für die mittlere Symbolenergie und die mittlere Bitenergie:
+
Die Grafik zeigt beispielhafte Signale. In obiger Gleichung gibt $f_{\rm T}$ die <i>Trägerfrequenz</i> an und $\Delta f_{\rm A}$ den <i>Frequenzhub</i> als die maximale Abweichung der [[Modulationsverfahren/Frequenzmodulation_(FM)#Augenblicksfrequenz|Augenblicksfrequenz]] von der Trägerfrequenz an. $T$ ist die Symboldauer und $E$ die Signalenergie. Dabei gilt gleichermaßen für die mittlere Symbolenergie und die mittlere Bitenergie:
 
:$$E_{\rm S} = E_{\rm B} = E\hspace{0.05cm}.$$
 
:$$E_{\rm S} = E_{\rm B} = E\hspace{0.05cm}.$$
  
Zeile 23: Zeile 23:
 
In diesem Fall ist auch eine nichtkohärente Demodulation wie im Kapitel [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Trägerfrequenzensysteme mit nichtkohärenter Demodulation]] beschrieben möglich.
 
In diesem Fall ist auch eine nichtkohärente Demodulation wie im Kapitel [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Trägerfrequenzensysteme mit nichtkohärenter Demodulation]] beschrieben möglich.
  
Das innere Produkt der BP&ndash;Signale kann aus dem inneren Produkt der TP&ndash;Signale ermittelt werden:
+
Das innere Produkt der BP&ndash;Signale kann aus dem inneren Produkt der TP&ndash;Signale durch Realteilbildung ermittelt werden:
 
:$$<  \hspace{-0.05cm}s_{\rm BP0}(t) \cdot s_{\rm BP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}=   
 
:$$<  \hspace{-0.05cm}s_{\rm BP0}(t) \cdot s_{\rm BP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}=   
 
  {\rm Re}\left [ \hspace{0.1cm}<  \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.15cm} \right ]\hspace{0.05cm}.$$
 
  {\rm Re}\left [ \hspace{0.1cm}<  \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.15cm} \right ]\hspace{0.05cm}.$$
  
 
Gilt $&#9001; s_{\rm BP0}(t) \cdot s_{\rm BP1}(t)&#9002; = 0$, aber gleichzeitig auch $&#9001; s_{\rm TP0}(t) \cdot s_{\rm TP1}(t)&#9002; &ne; 0$, so ist zwar eine kohärente Demodulation möglich, aber keine nichtkohärente.
 
Gilt $&#9001; s_{\rm BP0}(t) \cdot s_{\rm BP1}(t)&#9002; = 0$, aber gleichzeitig auch $&#9001; s_{\rm TP0}(t) \cdot s_{\rm TP1}(t)&#9002; &ne; 0$, so ist zwar eine kohärente Demodulation möglich, aber keine nichtkohärente.
 +
  
 
''Hinweise:''
 
''Hinweise:''
* Die Aufgabe beschreibt die im Kapitel Trägerfrequenzsysteme mit kohärenter Demodulation auf [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Binary_Frequency_Shift_Keying_.282.E2.80.93FSK.29| Seite 8]] und [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Minimum_Shift_Keying_.28MSK.29| Seite 9]] behandelte Thematik.
+
* Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit kohärenter Demodulation]].
 +
* Bezug genommen wird insbesondere auf die Seiten [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#Binary_Frequency_Shift_Keying_.282.E2.80.93FSK.29|'' Binary_Frequency_Shift_Keying'']](BPSK) und [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Minimum_Shift_Keying_.28MSK.29|''Minimum Shift Keying'']] (MSK).
 
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  
Zeile 37: Zeile 39:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Trägerfrequenz $f_{\rm T}$ und welcher Frequenzhub liegen der Grafik auf der Angabenseite zugrunde?
+
{Welche Trägerfrequenz $f_{\rm T}$ und welcher Frequenzhub $\Delta f_{\rm A}$ liegen der Grafik auf der Angabenseite zugrunde?
 
|type="{}"}
 
|type="{}"}
$f_{\rm T}$ = { 4 3% } $\ \cdot 1/T$
+
$f_{\rm T}\hspace{0.48cm} = \ $ { 4 3% } $\ \cdot 1/T$
$\Delta f_{\rm A}$ = { 0.5 3% } $\ \cdot 1/T$
+
$\Delta f_{\rm A}\ = \ $ { 0.5 3% } $\ \cdot 1/T$
  
 
{Welchem Modulationsindex $h$ entspricht dieser Frequenzhub?
 
{Welchem Modulationsindex $h$ entspricht dieser Frequenzhub?
 
|type="{}"}
 
|type="{}"}
$h$ = { 1 3% }
+
$h\ = \ ${ 1 3% }
  
{Für welche Werte von $h$ ist die Orthogonalität der TP&ndash;Signale gegeben?
+
{Für welche Werte von $h$ ist die Orthogonalität der Tiefpass&ndash;Signale gegeben?
 
|type="[]"}
 
|type="[]"}
 
- $h = 0.5$,
 
- $h = 0.5$,
Zeile 53: Zeile 55:
 
+ $h = 2$.
 
+ $h = 2$.
  
{Für welche Werte von $h$ ist die Orthogonalität der BP&ndash;Signale gegeben?
+
{Für welche Werte von $h$ ist die Orthogonalität der Bandpass&ndash;Signale gegeben?
 
|type="[]"}
 
|type="[]"}
 
+ $h = 0.5$,
 
+ $h = 0.5$,
Zeile 60: Zeile 62:
 
+ $h = 2$.
 
+ $h = 2$.
  
{Welche Aussagen gelten hinsichtlich kohärenter/nichtkohärenter Demodulation?
+
{Welche Aussagen gelten hinsichtlich kohärenter bzw. nichtkohärenter Demodulation?
 
|type="[]"}
 
|type="[]"}
 
- Kohärente Demodulation ist immer möglich.
 
- Kohärente Demodulation ist immer möglich.
+ Ist nichtkohärente Demodulation möglich, so geht auch kohärente.
+
+ Ist nichtkohärente Demodulation möglich, so geht auch eine kohärente Demodulation.
- Ist kohärente Demodulation möglich, so geht auch nichtkohärente.
+
- Ist kohärente Demodulation möglich, so geht auch eine nichtkohärente Demodulation.
 
</quiz>
 
</quiz>
  

Version vom 26. November 2017, 16:25 Uhr

Bandpass-Signale der FSK

Bei der binären FSK werden die beiden Nachrichten $m_0$ und $m_1$ durch zwei unterschiedliche Frequenzen dargestellt. Für die beiden möglichen Bandpass–Signale gilt dann jeweils im Bereich $0 ≤ t ≤ T$ mit $f_0 = f_{\rm T} + \Delta f_{\rm A}$ sowie $f_1 = f_{\rm T} \, – \Delta f_{\rm A}$:

$$s_{\rm BP0}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{2E/T} \cdot \cos( 2\pi f_0 t)\hspace{0.05cm},$$
$$ s_{\rm BP1}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{2E/T} \cdot \cos( 2\pi f_1 t)\hspace{0.05cm}.$$

Die Grafik zeigt beispielhafte Signale. In obiger Gleichung gibt $f_{\rm T}$ die Trägerfrequenz an und $\Delta f_{\rm A}$ den Frequenzhub als die maximale Abweichung der Augenblicksfrequenz von der Trägerfrequenz an. $T$ ist die Symboldauer und $E$ die Signalenergie. Dabei gilt gleichermaßen für die mittlere Symbolenergie und die mittlere Bitenergie:

$$E_{\rm S} = E_{\rm B} = E\hspace{0.05cm}.$$

Meist arbeitet man mit dem Modulationsindex, der als das Verhältnis von Gesamtfrequenzhub und Symbolrate definiert ist:

$$h = \frac{2 \cdot \Delta f_{\rm A}}{1/T} = 2 \cdot \Delta f_{\rm A} \cdot T \hspace{0.05cm}.$$

Die äquivalente Tiefpassdarstellung führt unter Verwendung von $h$ zu den beiden komplexen Signalen

$$ s_{\rm TP0}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},$$
$$ s_{\rm TP1}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm}.$$

Eine orthogonale FSK liegt vor, wenn das innere Produkt den Wert $0$ ergibt:

$$< \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= \int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t =0 \hspace{0.05cm}.$$

In diesem Fall ist auch eine nichtkohärente Demodulation wie im Kapitel Trägerfrequenzensysteme mit nichtkohärenter Demodulation beschrieben möglich.

Das innere Produkt der BP–Signale kann aus dem inneren Produkt der TP–Signale durch Realteilbildung ermittelt werden:

$$< \hspace{-0.05cm}s_{\rm BP0}(t) \cdot s_{\rm BP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= {\rm Re}\left [ \hspace{0.1cm}< \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.15cm} \right ]\hspace{0.05cm}.$$

Gilt $〈 s_{\rm BP0}(t) \cdot s_{\rm BP1}(t)〉 = 0$, aber gleichzeitig auch $〈 s_{\rm TP0}(t) \cdot s_{\rm TP1}(t)〉 ≠ 0$, so ist zwar eine kohärente Demodulation möglich, aber keine nichtkohärente.


Hinweise:


Fragebogen

1

Welche Trägerfrequenz $f_{\rm T}$ und welcher Frequenzhub $\Delta f_{\rm A}$ liegen der Grafik auf der Angabenseite zugrunde?

$f_{\rm T}\hspace{0.48cm} = \ $

$\ \cdot 1/T$
$\Delta f_{\rm A}\ = \ $

$\ \cdot 1/T$

2

Welchem Modulationsindex $h$ entspricht dieser Frequenzhub?

$h\ = \ $

3

Für welche Werte von $h$ ist die Orthogonalität der Tiefpass–Signale gegeben?

$h = 0.5$,
$h = \pi/4$,
$h = 1$,
$h = 2$.

4

Für welche Werte von $h$ ist die Orthogonalität der Bandpass–Signale gegeben?

$h = 0.5$,
$h = \pi/4$,
$h = 1$,
$h = 2$.

5

Welche Aussagen gelten hinsichtlich kohärenter bzw. nichtkohärenter Demodulation?

Kohärente Demodulation ist immer möglich.
Ist nichtkohärente Demodulation möglich, so geht auch eine kohärente Demodulation.
Ist kohärente Demodulation möglich, so geht auch eine nichtkohärente Demodulation.


Musterlösung

(1)  Durch Abzählen der Schwingungen innerhalb einer Symboldauer $T$ kommt man zu den beiden Frequenzen $f_0 = 4.5/T$ und $f_1 = 3.5/T$. Daraus berechnen sich Trägerfrequenzen und Frequenzhub zu

$$f_{\rm T} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{2}\cdot (f_0 + f_1) = \underline{4 \cdot 1/T}\hspace{0.05cm},$$
$$ \Delta f_{\rm A} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{2}\cdot (f_0 - f_1)= \underline{0.5 \cdot 1/T }\hspace{0.05cm}.$$


(2)  Mit der angegebenen Gleichung gilt für den Modulationsindex:

$$h = 2 \cdot \Delta f_{\rm A} \cdot T = 2 \cdot 0.5 \cdot 1/T \cdot T \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{h= 1}\hspace{0.05cm}. $$


(3)  Das innere Produkt der TP–Signale lautet:

$$< \hspace{-0.05cm} s_{\rm TP0}(t) \hspace{0.01cm} \ \cdot \ \hspace{0.01cm} s_{\rm TP1}(t) \hspace{-0.05cm} > \hspace{0.2cm} = \int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t =$$
$$ \hspace{-1.1cm} \ = \ \hspace{-0.1cm} \frac{E}{T} \cdot \int_{0}^{T} {\rm e}^{\hspace{0.05cm}{\rm j} 2\pi h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T} \,{\rm d} t = \frac{E}{{\rm j}2\pi h} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} 2\pi h} - 1 \right ] \hspace{0.05cm}.$$

Orthogonalität bedeutet, dass dieses innere Produkt $0$ sein muss:

$$< \hspace{-0.05cm} s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm} > \hspace{0.2cm} = \frac{E}{{\rm j}2\pi h} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} 2\pi h} - 1 \right ] = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} h = 1, 2, 3, ...$$

Richtig sind demzufolge die Lösungsvorschläge 3 und 4. Ist der Modulationsindex $h$ ganzzahlig, so kann nichtkohärent demoduliert werden, ohne dass die Orthogonalität verletzt wird.


(4)  Für das innere Produkt der Bandpass–Signale kann nach den Erläuterungen auf der Angabenseite geschrieben werden:

$$< \hspace{-0.05cm}s_{\rm BP0}(t) \hspace{0.01cm} \ \cdot \ \hspace{0.01cm} s_{\rm BP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= {\rm Re}\left [ \hspace{0.1cm}< \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.2cm} \right ] = {\rm Re}\left [ \frac{E}{{\rm j}2\pi h} \cdot \left ( {\rm e}^{\hspace{0.05cm}{\rm j} 2\pi h} - 1 \right ) \right ] =$$
$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}\left [ \frac{E}{2\pi h} \cdot \left ( \sin( 2\pi h) - {\rm j} \cdot [\cos( 2\pi h) - 1 ]\right ) \right ] = \frac{E \cdot \sin( 2\pi h)}{2\pi h} \hspace{0.05cm}.$$

Dieses Ergebnis ist immer dann $0$, wenn der Modulationsindex $h$ ein ganzzahliges Vielfaches von $0.5$ ist. Richtig sind also die Lösungsvorschläge 1, 3 und 4.


(5)  Richtig ist hier nur der Lösungsvorschlag 2. Für kohärente Demodulation muss $h$ ein Vielfaches von $0.5$ sein. Ist nichtkohärente Demodulation möglich, wie zum Beispiel im hier betrachteten Fall ($h = 1$), so ist auch kohärente Demodulation anwendbar. Dagegen kann für $h = 0.5$ zwar kohärent demoduliert werden, aber eine nichtkohärente Demodulation (die auf die Hüllkurve angewiesen ist) versagt.