Aufgaben:Aufgabe 4.15: WDF und Kovarianzmatrix: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(5 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID669__Sto_A_4_15.png |right|frame|Zwei Korrelationsmatrizen]]
+
[[Datei:P_ID669__Sto_A_4_15.png |right|frame|Zwei Kovarianzmatrizen]]
Wir betrachten hier die dreidimensionale Zufallsgröße $\mathbf{x}$, deren allgemein dargestellte Kovarianzmatrix $\mathbf{K}_{\mathbf{x}}$ in der Grafik angegeben ist. Die Zufallsgröße besitzt folgende Eigenschaften:
+
Wir betrachten hier die dreidimensionale Zufallsgröße  $\mathbf{x}$,  deren allgemein dargestellte Kovarianzmatrix  $\mathbf{K}_{\mathbf{x}}$  in der Grafik angegeben ist.  Die Zufallsgröße besitzt folgende Eigenschaften:
  
 
* Die drei Komponenten sind gaußverteilt und es gilt für die Elemente der Kovarianzmatrix:
 
* Die drei Komponenten sind gaußverteilt und es gilt für die Elemente der Kovarianzmatrix:
Zeile 10: Zeile 10:
 
* Die Elemente auf der Hauptdiagonalen seien bekannt:
 
* Die Elemente auf der Hauptdiagonalen seien bekannt:
 
:$$ K_{11} =1, \  K_{22} =0, \ K_{33} =0.25.$$
 
:$$ K_{11} =1, \  K_{22} =0, \ K_{33} =0.25.$$
* Der Korrelationskoeffizient zwischen den Koeffizienten $x_1$ und $x_3$ beträgt $\rho_{13} = 0.8$.
+
* Der Korrelationskoeffizient zwischen den Koeffizienten  $x_1$  und  $x_3$  beträgt  $\rho_{13} = 0.8$.
  
  
Im zweiten Teil der Aufgabe soll die Zufallsgröße $\mathbf{y}$ mit den beiden Komponenten $y_1$ und $y_2$ betrachtet werden, deren Kovarianzmatrix $\mathbf{K}_{\mathbf{y}}$ durch die angegebenen Zahlenwerte  $(1, \ 0.4, \ 0.25)$  bestimmt ist.
+
Im zweiten Teil der Aufgabe soll die Zufallsgröße  $\mathbf{y}$  mit den beiden Komponenten  $y_1$  und  $y_2$  betrachtet werden,  deren Kovarianzmatrix  $\mathbf{K}_{\mathbf{y}}$  durch die angegebenen Zahlenwerte  $(1, \ 0.4, \ 0.25)$  bestimmt ist.
  
Die Wahrscheinlichkeitsdichtefunktion einer mittelwertfreien Gaußschen zweidimensionalen Zufallsgröße $\mathbf{y}$ lautet gemäß den Angaben auf der Seite [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Zusammenhang_zwischen_Kovarianzmatrix_und_WDF|Zusammenhang zwischen Kovarianzmatrix und WDF]] mit $N = 2$:
+
Die Wahrscheinlichkeitsdichtefunktion einer mittelwertfreien Gaußschen zweidimensionalen Zufallsgröße  $\mathbf{y}$  lautet gemäß den Angaben auf der Seite  [[Stochastische_Signaltheorie/Verallgemeinerung_auf_N-dimensionale_Zufallsgrößen#Zusammenhang_zwischen_Kovarianzmatrix_und_WDF|"Zusammenhang zwischen Kovarianzmatrix und WDF"]]  mit  $N = 2$:
 
:$$\mathbf{f_y}(\mathbf{y})  =  \frac{1}{{2 \pi \cdot
 
:$$\mathbf{f_y}(\mathbf{y})  =  \frac{1}{{2 \pi \cdot
 
\sqrt{|\mathbf{K_y}|}}}\cdot {\rm e}^{-{1}/{2} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y} ^{\rm T}\hspace{0.05cm}\cdot\hspace{0.05cm}\mathbf{K_y}^{-1} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y}  }=  C \cdot  {\rm e}^{-\gamma_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_1^2 \hspace{0.1cm}+\hspace{0.1cm} \gamma_2 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2^2 \hspace{0.1cm}+\hspace{0.1cm}\gamma_{12} \hspace{0.05cm}\cdot\hspace{0.05cm} y_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2 }.$$
 
\sqrt{|\mathbf{K_y}|}}}\cdot {\rm e}^{-{1}/{2} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y} ^{\rm T}\hspace{0.05cm}\cdot\hspace{0.05cm}\mathbf{K_y}^{-1} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y}  }=  C \cdot  {\rm e}^{-\gamma_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_1^2 \hspace{0.1cm}+\hspace{0.1cm} \gamma_2 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2^2 \hspace{0.1cm}+\hspace{0.1cm}\gamma_{12} \hspace{0.05cm}\cdot\hspace{0.05cm} y_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2 }.$$
  
*In den Teilaufgaben '''(5)''' und '''(6)''' sollen der Vorfaktor $C$ und die weiteren WDF-Koeffizienten $\gamma_1$, $\gamma_2$ und $\gamma_{12}$ gemäß dieser Vektordarstellung berechnet werden.  
+
*In den Teilaufgaben  '''(5)'''  und  '''(6)'''  sollen der Vorfaktor  $C$  und die weiteren WDF-Koeffizienten  $\gamma_1$,  $\gamma_2$  und  $\gamma_{12}$  gemäß dieser Vektordarstellung berechnet werden.  
*Dagegen würde die entsprechende Gleichung bei herkömmlicher Vorgehensweise entsprechend dem Kapitel [[Stochastische_Signaltheorie/Zweidimensionale_Gaußsche_Zufallsgrößen#Wahrscheinlichkeitsdichte-_und_Verteilungsfunktion|Zweidimensionale Gaußsche Zufallsgrößen]] lauten:
+
*Dagegen würde die entsprechende Gleichung bei  herkömmlicher Vorgehensweise entsprechend dem Kapitel  [[Stochastische_Signaltheorie/Zweidimensionale_Gaußsche_Zufallsgrößen#Wahrscheinlichkeitsdichte-_und_Verteilungsfunktion|Zweidimensionale Gaußsche Zufallsgrößen]]  lauten:
 
:$$f_{y_1,\hspace{0.1cm}y_2}(y_1,y_2)=\frac{\rm 1}{\rm 2\pi \sigma_1
 
:$$f_{y_1,\hspace{0.1cm}y_2}(y_1,y_2)=\frac{\rm 1}{\rm 2\pi \sigma_1
 
\sigma_2 \sqrt{\rm 1-\rho^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2
 
\sigma_2 \sqrt{\rm 1-\rho^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2
Zeile 44: Zeile 44:
 
{Welche der folgenden Aussagen sind zutreffend?
 
{Welche der folgenden Aussagen sind zutreffend?
 
|type="[]"}
 
|type="[]"}
- Die Zufallsgröße $\mathbf{x}$ ist mit Sicherheit mittelwertfrei.
+
- Die Zufallsgröße  $\mathbf{x}$  ist mit Sicherheit mittelwertfrei.
+ Die Matrixelemente $K_{12}$, $K_{21}$, $K_{23}$ und $K_{32}$ sind $0$.
+
+ Die Matrixelemente  $K_{12}$,  $K_{21}$,  $K_{23}$  und  $K_{32}$  sind Null.
 
- Es gilt $K_{31} = -K_{13}$.
 
- Es gilt $K_{31} = -K_{13}$.
  
Zeile 54: Zeile 54:
  
  
{Berechnen Sie die Determinante $|\mathbf{K}_{\mathbf{y}}|$.
+
{Berechnen Sie die Determinante  $|\mathbf{K}_{\mathbf{y}}|$.
 
|type="{}"}
 
|type="{}"}
 
$|\mathbf{K}_{\mathbf{y}}| \ =  \ $ { 0.09 3% }
 
$|\mathbf{K}_{\mathbf{y}}| \ =  \ $ { 0.09 3% }
  
  
{Berechnen Sie die inverse Matrix $\mathbf{I}_{\mathbf{y}} = \mathbf{K}_{\mathbf{y}}^{-1}$ mit den Matrixelementen  
+
{Berechnen Sie die inverse Matrix  $\mathbf{I}_{\mathbf{y}} = \mathbf{K}_{\mathbf{y}}^{-1}$  mit den Matrixelementen  
 
$I_{ij}$ :
 
$I_{ij}$ :
 
|type="{}"}
 
|type="{}"}
Zeile 68: Zeile 68:
  
  
{Berechnen Sie den Vorfaktor $C$ der 2D-WDF. Vergleichen Sie das Ergebnis
+
{Berechnen Sie den Vorfaktor  $C$  der zweidimensionalen Wahrscheinlichkeitsdichtefunktion.  Vergleichen Sie das Ergebnis
mit der entsprechenden Formel gemäß dem Theorieteil.
+
mit der im  Theorieteil angebenen Formel.
 
|type="{}"}
 
|type="{}"}
 
$C\ =  \ $ { 0.531 3% }
 
$C\ =  \ $ { 0.531 3% }
  
  
{Bestimmen Sie die Koeffizienten im Argument der Exponentialfunktion. Vergleichen Sie das Ergebnis mit der 2D–WDF–Gleichung.
+
{Bestimmen Sie die Koeffizienten im Argument der Exponentialfunktion.  Vergleichen Sie das Ergebnis mit der zweidimensionalen  WDF–Gleichung.
 
|type="{}"}
 
|type="{}"}
 
$\gamma_1 \ =  \ $ { 1.389 3% }
 
$\gamma_1 \ =  \ $ { 1.389 3% }
Zeile 86: Zeile 86:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist nur <u>der Lösungsvorschlag 2</u>:
+
'''(1)'''&nbsp; Richtig ist nur&nbsp; <u>der Lösungsvorschlag 2</u>:
*Anhand der Kovarianzmatrix $\mathbf{K}_{\mathbf{x}}$ ist keine Aussage darüber möglich, ob die zugrunde liegende Zufallsgröße $\mathbf{x}$ mittelwertfrei oder mittelwertbehaftet ist, da ein eventueller Mittelwert $\mathbf{m}$ herausgerechnet wird.  
+
*Anhand der Kovarianzmatrix&nbsp; $\mathbf{K}_{\mathbf{x}}$&nbsp; ist keine Aussage darüber möglich,&nbsp; ob die zugrunde liegende Zufallsgröße&nbsp; $\mathbf{x}$&nbsp; mittelwertfrei oder mittelwertbehaftet ist,&nbsp; da ein eventueller Mittelwert&nbsp; $\mathbf{m}$&nbsp; herausgerechnet wird.  
*Um Aussagen über den Mittelwert machen zu können, müsste die Korrelationsmatrix $\mathbf{R}_{\mathbf{x}}$ bekannt sein.  
+
*Um Aussagen über den Mittelwert machen zu können,&nbsp; müsste die Korrelationsmatrix&nbsp; $\mathbf{R}_{\mathbf{x}}$&nbsp; bekannt sein.  
*Aus $K_{22} = \sigma_2^2  = 0$ folgt zwingend, dass alle anderen Elemente in der zweiten Zeile $(K_{21}, K_{23})$ und der zweiten Spalte $(K_{12}, K_{32})$  ebenfalls $0$ sind.  
+
*Aus&nbsp; $K_{22} = \sigma_2^2  = 0$&nbsp; folgt zwingend,&nbsp; dass alle anderen Elemente in der zweiten Zeile&nbsp; $(K_{21}, K_{23})$&nbsp; und der zweiten Spalte&nbsp; $(K_{12}, K_{32})$&nbsp; ebenfalls Null sind.  
*Dagegen ist die dritte Aussage falsch: Die Elemente sind symmetrisch zur Hauptdiagonalen, so dass stets $K_{31} = K_{13}$ gelten muss.  
+
*Dagegen ist die dritte Aussage falsch: &nbsp; Die Elemente sind symmetrisch zur Hauptdiagonalen,&nbsp; so dass stets&nbsp; $K_{31} = K_{13}$&nbsp; gelten muss.  
  
  
[[Datei:P_ID2915__Sto_A_4_15a.png|right|Vollständige Kovarianzmatrix]]
+
 
'''(2)'''&nbsp; Aus $K_{11}  = 1$ und $K_{33}  = 0.25$ folgen direkt $\sigma_1 = 1$ und $\sigma_3 = 0.5$. Zusammen mit dem Korrelationskoeffizienten $\rho_{13}  = 0.8$ (siehe Angabenblatt) erhält man somit:
+
[[Datei:P_ID2915__Sto_A_4_15a.png|right|frame|Vollständige Kovarianzmatrix]]
 +
'''(2)'''&nbsp; Aus&nbsp; $K_{11}  = 1$&nbsp; und&nbsp; $K_{33}  = 0.25$&nbsp; folgen direkt&nbsp; $\sigma_1 = 1$&nbsp; und&nbsp; $\sigma_3 = 0.5$.  
 +
*Zusammen mit dem Korrelationskoeffizienten&nbsp; $\rho_{13}  = 0.8$&nbsp; (siehe Angabenblatt) erhält man somit:
 
:$$K_{13} =  K_{31} = \sigma_1 \cdot \sigma_2 \cdot \rho_{13}\hspace{0.15cm}\underline{= 0.4}.$$
 
:$$K_{13} =  K_{31} = \sigma_1 \cdot \sigma_2 \cdot \rho_{13}\hspace{0.15cm}\underline{= 0.4}.$$
  
'''(3)'''&nbsp; Die Determinante der Matrix $\mathbf{K_y}$ lautet:
+
 
 +
 
 +
'''(3)'''&nbsp; Die Determinante der Matrix&nbsp; $\mathbf{K_y}$&nbsp; lautet:
 
:$$|{\mathbf{K_y}}| = 1 \cdot 0.25 - 0.4 \cdot 0.4 \hspace{0.15cm}\underline{= 0.09}.$$
 
:$$|{\mathbf{K_y}}| = 1 \cdot 0.25 - 0.4 \cdot 0.4 \hspace{0.15cm}\underline{= 0.09}.$$
 +
  
 
'''(4)'''&nbsp; Entsprechend den Angaben auf den Seiten &bdquo;Determinante einer Matrix&rdquo;  und &bdquo;Inverse einer Matrix&rdquo; gilt:
 
'''(4)'''&nbsp; Entsprechend den Angaben auf den Seiten &bdquo;Determinante einer Matrix&rdquo;  und &bdquo;Inverse einer Matrix&rdquo; gilt:
Zeile 108: Zeile 113:
 
\end{array} \right].$$
 
\end{array} \right].$$
  
Mit $|\mathbf{K_y}|= 0.09$ gilt deshalb weiter:
+
*Mit&nbsp; $|\mathbf{K_y}|= 0.09$&nbsp; gilt deshalb weiter:
 
:$$I_{11} = {25}/{9}\hspace{0.15cm}\underline{ = 2.777};\hspace{0.3cm} I_{12} = I_{21} = -40/9 \hspace{0.15cm}\underline{ = -4.447};\hspace{0.3cm}I_{22} = {100}/{9} \hspace{0.15cm}\underline{=
 
:$$I_{11} = {25}/{9}\hspace{0.15cm}\underline{ = 2.777};\hspace{0.3cm} I_{12} = I_{21} = -40/9 \hspace{0.15cm}\underline{ = -4.447};\hspace{0.3cm}I_{22} = {100}/{9} \hspace{0.15cm}\underline{=
 
11.111}.$$
 
11.111}.$$
  
  
'''(5)'''&nbsp; Ein Vergleich der Matrizen $\mathbf{K_y}$ und $\mathbf{K_x}$ unter der Nebenbedingung $K_{22} = 0$ zeigt, dass $\mathbf{x}$ und $\mathbf{y}$ identische Zufallsgrößen sind, wenn man $y_1 = x_1$  und $y_2 = x_3$ setzt. Somit gilt für die WDF-Parameter:
+
 
 +
'''(5)'''&nbsp; Ein Vergleich von&nbsp; $\mathbf{K_y}$&nbsp; und&nbsp; $\mathbf{K_x}$&nbsp; mit Nebenbedingung&nbsp; $K_{22} = 0$&nbsp; zeigt,&nbsp; dass&nbsp; $\mathbf{x}$&nbsp; und&nbsp; $\mathbf{y}$&nbsp; identische Zufallsgrößen sind,&nbsp; wenn man&nbsp; $y_1 = x_1$&nbsp; und&nbsp; $y_2 = x_3$&nbsp; setzt.  
 +
*Somit gilt für die WDF-Parameter:
 
:$$\sigma_1 =1, \hspace{0.3cm} \sigma_2 =0.5, \hspace{0.3cm} \rho =
 
:$$\sigma_1 =1, \hspace{0.3cm} \sigma_2 =0.5, \hspace{0.3cm} \rho =
 
0.8.$$
 
0.8.$$
  
Der Vorfaktor entsprechend der allgemeinen WDF-Definition  ist somit:
+
*Der Vorfaktor entsprechend der allgemeinen WDF-Definition  ist somit:
:$$C =\frac{\rm 1}{\rm 2\pi \sigma_1 \sigma_2 \sqrt{\rm 1-\rho^2}}=
+
:$$C =\frac{\rm 1}{\rm 2\pi \cdot \sigma_1 \cdot \sigma_2 \cdot \sqrt{\rm 1-\rho^2}}=
 
\frac{\rm 1}{\rm 2\pi \cdot 1 \cdot 0.5 \cdot 0.6}= \frac{1}{0.6
 
\frac{\rm 1}{\rm 2\pi \cdot 1 \cdot 0.5 \cdot 0.6}= \frac{1}{0.6
 
\cdot \pi} \hspace{0.15cm}\underline{\approx 0.531}.$$
 
\cdot \pi} \hspace{0.15cm}\underline{\approx 0.531}.$$
  
Mit der in der Teilaufgabe (3) berechneten Determinante ergibt sich das gleiche Ergebnis:
+
*Mit der in der Teilaufgabe&nbsp; '''(3)'''&nbsp; berechneten Determinante ergibt sich das gleiche Ergebnis:
 
:$$C =\frac{\rm 1}{\rm 2\pi \sqrt{|{\mathbf{K_y}}|}}= \frac{\rm
 
:$$C =\frac{\rm 1}{\rm 2\pi \sqrt{|{\mathbf{K_y}}|}}= \frac{\rm
 
1}{\rm 2\pi \sqrt{0.09}} = \frac{1}{0.6 \cdot \pi}.$$
 
1}{\rm 2\pi \sqrt{0.09}} = \frac{1}{0.6 \cdot \pi}.$$
  
'''(6)'''&nbsp; Die  in der Teilaufgabe (4) berechnete inverse Matrix kann auch wie folgt geschrieben werden:
+
 
 +
 
 +
'''(6)'''&nbsp; Die  in der Teilaufgabe&nbsp; '''(4)'''&nbsp; berechnete inverse Matrix kann auch wie folgt geschrieben werden:
 
:$${\mathbf{I_y}} = \frac{5}{9}\cdot \left[
 
:$${\mathbf{I_y}} = \frac{5}{9}\cdot \left[
 
\begin{array}{cc}
 
\begin{array}{cc}
Zeile 133: Zeile 142:
 
\end{array} \right].$$
 
\end{array} \right].$$
  
Somit lautet das Argument $A$ der Exponentialfunktion:
+
*Somit lautet das Argument&nbsp; $A$&nbsp; der Exponentialfunktion:
 
:$$A = \frac{5}{18}\cdot{\mathbf{y}}^{\rm T}\cdot \left[
 
:$$A = \frac{5}{18}\cdot{\mathbf{y}}^{\rm T}\cdot \left[
 
\begin{array}{cc}
 
\begin{array}{cc}
Zeile 141: Zeile 150:
 
y_2\right).$$
 
y_2\right).$$
  
Durch Koeffizientenvergleich ergibt sich:
+
*Durch Koeffizientenvergleich ergibt sich:
 
:$$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 =
 
:$$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 =
 
\frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = -
 
\frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = -
 
\frac{80}{18} \approx -4.444.$$
 
\frac{80}{18} \approx -4.444.$$
  
Entsprechend der herkömmlichen Vorgehensweise ergeben sich die gleichen Zahlenwerte:
+
*Entsprechend der herkömmlichen Vorgehensweise ergeben sich die gleichen Zahlenwerte:
 
:$$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm
 
:$$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm
 
1-\rho^2})}=
 
1-\rho^2})}=

Aktuelle Version vom 28. März 2022, 12:34 Uhr

Zwei Kovarianzmatrizen

Wir betrachten hier die dreidimensionale Zufallsgröße  $\mathbf{x}$,  deren allgemein dargestellte Kovarianzmatrix  $\mathbf{K}_{\mathbf{x}}$  in der Grafik angegeben ist.  Die Zufallsgröße besitzt folgende Eigenschaften:

  • Die drei Komponenten sind gaußverteilt und es gilt für die Elemente der Kovarianzmatrix:
$$K_{ij} = \sigma_i \cdot \sigma_j \cdot \rho_{ij}.$$
  • Die Elemente auf der Hauptdiagonalen seien bekannt:
$$ K_{11} =1, \ K_{22} =0, \ K_{33} =0.25.$$
  • Der Korrelationskoeffizient zwischen den Koeffizienten  $x_1$  und  $x_3$  beträgt  $\rho_{13} = 0.8$.


Im zweiten Teil der Aufgabe soll die Zufallsgröße  $\mathbf{y}$  mit den beiden Komponenten  $y_1$  und  $y_2$  betrachtet werden,  deren Kovarianzmatrix  $\mathbf{K}_{\mathbf{y}}$  durch die angegebenen Zahlenwerte  $(1, \ 0.4, \ 0.25)$  bestimmt ist.

Die Wahrscheinlichkeitsdichtefunktion einer mittelwertfreien Gaußschen zweidimensionalen Zufallsgröße  $\mathbf{y}$  lautet gemäß den Angaben auf der Seite  "Zusammenhang zwischen Kovarianzmatrix und WDF"  mit  $N = 2$:

$$\mathbf{f_y}(\mathbf{y}) = \frac{1}{{2 \pi \cdot \sqrt{|\mathbf{K_y}|}}}\cdot {\rm e}^{-{1}/{2} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y} ^{\rm T}\hspace{0.05cm}\cdot\hspace{0.05cm}\mathbf{K_y}^{-1} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y} }= C \cdot {\rm e}^{-\gamma_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_1^2 \hspace{0.1cm}+\hspace{0.1cm} \gamma_2 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2^2 \hspace{0.1cm}+\hspace{0.1cm}\gamma_{12} \hspace{0.05cm}\cdot\hspace{0.05cm} y_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2 }.$$
  • In den Teilaufgaben  (5)  und  (6)  sollen der Vorfaktor  $C$  und die weiteren WDF-Koeffizienten  $\gamma_1$,  $\gamma_2$  und  $\gamma_{12}$  gemäß dieser Vektordarstellung berechnet werden.
  • Dagegen würde die entsprechende Gleichung bei  herkömmlicher Vorgehensweise entsprechend dem Kapitel  Zweidimensionale Gaußsche Zufallsgrößen  lauten:
$$f_{y_1,\hspace{0.1cm}y_2}(y_1,y_2)=\frac{\rm 1}{\rm 2\pi \sigma_1 \sigma_2 \sqrt{\rm 1-\rho^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2 (1-\rho^{\rm 2})}\cdot(\frac { y_1^{\rm 2}}{\sigma_1^{\rm 2}}+\frac { y_2^{\rm 2}}{\sigma_2^{\rm 2}}-\rm 2\rho \frac{{\it y}_1{\it y}_2}{\sigma_1 \cdot \sigma_2}) \rm \Bigg].$$



Hinweise:



Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

Die Zufallsgröße  $\mathbf{x}$  ist mit Sicherheit mittelwertfrei.
Die Matrixelemente  $K_{12}$,  $K_{21}$,  $K_{23}$  und  $K_{32}$  sind Null.
Es gilt $K_{31} = -K_{13}$.

2

Berechnen Sie das Matrixelement der letzten Zeile und ersten Spalte.

$K_\text{31} \ = \ $

3

Berechnen Sie die Determinante  $|\mathbf{K}_{\mathbf{y}}|$.

$|\mathbf{K}_{\mathbf{y}}| \ = \ $

4

Berechnen Sie die inverse Matrix  $\mathbf{I}_{\mathbf{y}} = \mathbf{K}_{\mathbf{y}}^{-1}$  mit den Matrixelementen $I_{ij}$ :

$I_\text{11} \ = \ $

$I_\text{12} \ = \ $

$I_\text{21} \ = \ $

$I_\text{22} \ = \ $

5

Berechnen Sie den Vorfaktor  $C$  der zweidimensionalen Wahrscheinlichkeitsdichtefunktion.  Vergleichen Sie das Ergebnis mit der im Theorieteil angebenen Formel.

$C\ = \ $

6

Bestimmen Sie die Koeffizienten im Argument der Exponentialfunktion.  Vergleichen Sie das Ergebnis mit der zweidimensionalen WDF–Gleichung.

$\gamma_1 \ = \ $

$\gamma_2 \ = \ $

$\gamma_{12}\ = \ $


Musterlösung

(1)  Richtig ist nur  der Lösungsvorschlag 2:

  • Anhand der Kovarianzmatrix  $\mathbf{K}_{\mathbf{x}}$  ist keine Aussage darüber möglich,  ob die zugrunde liegende Zufallsgröße  $\mathbf{x}$  mittelwertfrei oder mittelwertbehaftet ist,  da ein eventueller Mittelwert  $\mathbf{m}$  herausgerechnet wird.
  • Um Aussagen über den Mittelwert machen zu können,  müsste die Korrelationsmatrix  $\mathbf{R}_{\mathbf{x}}$  bekannt sein.
  • Aus  $K_{22} = \sigma_2^2 = 0$  folgt zwingend,  dass alle anderen Elemente in der zweiten Zeile  $(K_{21}, K_{23})$  und der zweiten Spalte  $(K_{12}, K_{32})$  ebenfalls Null sind.
  • Dagegen ist die dritte Aussage falsch:   Die Elemente sind symmetrisch zur Hauptdiagonalen,  so dass stets  $K_{31} = K_{13}$  gelten muss.


Vollständige Kovarianzmatrix

(2)  Aus  $K_{11} = 1$  und  $K_{33} = 0.25$  folgen direkt  $\sigma_1 = 1$  und  $\sigma_3 = 0.5$.

  • Zusammen mit dem Korrelationskoeffizienten  $\rho_{13} = 0.8$  (siehe Angabenblatt) erhält man somit:
$$K_{13} = K_{31} = \sigma_1 \cdot \sigma_2 \cdot \rho_{13}\hspace{0.15cm}\underline{= 0.4}.$$


(3)  Die Determinante der Matrix  $\mathbf{K_y}$  lautet:

$$|{\mathbf{K_y}}| = 1 \cdot 0.25 - 0.4 \cdot 0.4 \hspace{0.15cm}\underline{= 0.09}.$$


(4)  Entsprechend den Angaben auf den Seiten „Determinante einer Matrix” und „Inverse einer Matrix” gilt:

$${\mathbf{I_y}} = {\mathbf{K_y}}^{-1} = \frac{1}{|{\mathbf{K_y}}|}\cdot \left[ \begin{array}{cc} 0.25 & -0.4 \\ -0.4 & 1 \end{array} \right].$$
  • Mit  $|\mathbf{K_y}|= 0.09$  gilt deshalb weiter:
$$I_{11} = {25}/{9}\hspace{0.15cm}\underline{ = 2.777};\hspace{0.3cm} I_{12} = I_{21} = -40/9 \hspace{0.15cm}\underline{ = -4.447};\hspace{0.3cm}I_{22} = {100}/{9} \hspace{0.15cm}\underline{= 11.111}.$$


(5)  Ein Vergleich von  $\mathbf{K_y}$  und  $\mathbf{K_x}$  mit Nebenbedingung  $K_{22} = 0$  zeigt,  dass  $\mathbf{x}$  und  $\mathbf{y}$  identische Zufallsgrößen sind,  wenn man  $y_1 = x_1$  und  $y_2 = x_3$  setzt.

  • Somit gilt für die WDF-Parameter:
$$\sigma_1 =1, \hspace{0.3cm} \sigma_2 =0.5, \hspace{0.3cm} \rho = 0.8.$$
  • Der Vorfaktor entsprechend der allgemeinen WDF-Definition ist somit:
$$C =\frac{\rm 1}{\rm 2\pi \cdot \sigma_1 \cdot \sigma_2 \cdot \sqrt{\rm 1-\rho^2}}= \frac{\rm 1}{\rm 2\pi \cdot 1 \cdot 0.5 \cdot 0.6}= \frac{1}{0.6 \cdot \pi} \hspace{0.15cm}\underline{\approx 0.531}.$$
  • Mit der in der Teilaufgabe  (3)  berechneten Determinante ergibt sich das gleiche Ergebnis:
$$C =\frac{\rm 1}{\rm 2\pi \sqrt{|{\mathbf{K_y}}|}}= \frac{\rm 1}{\rm 2\pi \sqrt{0.09}} = \frac{1}{0.6 \cdot \pi}.$$


(6)  Die in der Teilaufgabe  (4)  berechnete inverse Matrix kann auch wie folgt geschrieben werden:

$${\mathbf{I_y}} = \frac{5}{9}\cdot \left[ \begin{array}{cc} 5 & -8 \\ -8 & 20 \end{array} \right].$$
  • Somit lautet das Argument  $A$  der Exponentialfunktion:
$$A = \frac{5}{18}\cdot{\mathbf{y}}^{\rm T}\cdot \left[ \begin{array}{cc} 5 & -8 \\ -8 & 20 \end{array} \right]\cdot{\mathbf{y}} =\frac{5}{18}\left( 5 \cdot y_1^2 + 20 \cdot y_2^2 -16 \cdot y_1 \cdot y_2\right).$$
  • Durch Koeffizientenvergleich ergibt sich:
$$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 = \frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = - \frac{80}{18} \approx -4.444.$$
  • Entsprechend der herkömmlichen Vorgehensweise ergeben sich die gleichen Zahlenwerte:
$$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm 1-\rho^2})}= \frac{\rm 1}{\rm 2 \cdot 1 \cdot 0.36} \hspace{0.15cm}\underline{ \approx 1.389},$$
$$\gamma_2 =\frac{\rm 1}{\rm 2 \cdot\sigma_2^2 \cdot ({\rm 1-\rho^2})}= \frac{\rm 1}{\rm 2 \cdot 0.25 \cdot 0.36} = 4 \cdot \gamma_1 \hspace{0.15cm}\underline{\approx 5.556},$$
$$\gamma_{12} =-\frac{\rho}{ \sigma_1 \cdot \sigma_2 \cdot ({\rm 1-\rho^2})}= -\frac{\rm 0.8}{\rm 1 \cdot 0.5 \cdot 0.36} \hspace{0.15cm}\underline{ \approx -4.444}.$$