Aufgaben:Aufgabe 4.12: Leistungsdichtespektrum eines Binärsignals: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 7: Zeile 7:
 
:$$\varphi_x (\tau) = {\rm 4 \hspace{0.05cm}V^2} \cdot (1 - \frac{| \tau |}{T}).$$
 
:$$\varphi_x (\tau) = {\rm 4 \hspace{0.05cm}V^2} \cdot (1 - \frac{| \tau |}{T}).$$
  
:Hierbei ist vorausgesetzt, dass die einzelnen Symbole statistisch voneinander unabhängig sind.  
+
Hierbei ist vorausgesetzt, dass die einzelnen Symbole statistisch voneinander unabhängig sind.  
  
:Das unten skizzierte Signal $y(t)$ ist ebenfalls binär und rechteckförmig mit der gleichen Symboldauer $T = 1 \hspace{0.05cm}\rm \mu s$. Die möglichen Amplitudenwerte sind nun aber $0\hspace{0.05cm}\rm V$ und $4\hspace{0.05cm}\rm V$, wobei der Amplitudenwert $4\hspace{0.05cm}\rm V$ seltener als der Wert $0\hspace{0.05cm}\rm V$ auftritt. Es gilt:
+
Das unten skizzierte Signal $y(t)$ ist ebenfalls binär und rechteckförmig mit der gleichen Symboldauer $T = 1 \hspace{0.05cm}\rm \mu s$. Die möglichen Amplitudenwerte sind nun aber $0\hspace{0.05cm}\rm V$ und $4\hspace{0.05cm}\rm V$, wobei der Amplitudenwert $4\hspace{0.05cm}\rm V$ seltener als der Wert $0\hspace{0.05cm}\rm V$ auftritt. Es gilt:
 
:$${\rm Pr}(x(t) = 4 \hspace{0.05cm} {\rm V}) = p\hspace{0.5cm} {\rm mit}\hspace{0.5cm} 0 <p \le 0.25.$$
 
:$${\rm Pr}(x(t) = 4 \hspace{0.05cm} {\rm V}) = p\hspace{0.5cm} {\rm mit}\hspace{0.5cm} 0 <p \le 0.25.$$
  
Zeile 18: Zeile 18:
 
*Beachten Sie die folgende Fourierkorrespondenz, wobei ${\rm \Delta} (t)$ einen um $t= 0$ symmetrischen Dreieckimpuls mit ${\rm \Delta} (t= 0) = 1$ und ${\rm \Delta} (t) = 0$ f&uuml;r $|t| \ge T$ bezeichnet:
 
*Beachten Sie die folgende Fourierkorrespondenz, wobei ${\rm \Delta} (t)$ einen um $t= 0$ symmetrischen Dreieckimpuls mit ${\rm \Delta} (t= 0) = 1$ und ${\rm \Delta} (t) = 0$ f&uuml;r $|t| \ge T$ bezeichnet:
 
:$${\rm \Delta} (t) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} T \cdot {\rm si}^2 ( \pi f T).$$
 
:$${\rm \Delta} (t) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} T \cdot {\rm si}^2 ( \pi f T).$$
*Weiterhin gilt die Notation ${\rm si}(x) \\sin(x)/x$ mit folgendem Integralwert:
+
*Weiterhin gilt die Notation ${\rm si}(x) = \sin(x)/x$ mit folgendem Integralwert:
 
:$$\int^1_0 {\rm si}^2 ( \pi u) \, {\rm d}u \ \approx 0.456.$$
 
:$$\int^1_0 {\rm si}^2 ( \pi u) \, {\rm d}u \ \approx 0.456.$$
  
Zeile 25: Zeile 25:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie das Leistungsdichtespektrum <i>&Phi;<sub>x</sub></i>(<i>f</i>) des bipolaren Zufallssignals <i>x</i>(<i>t</i>) an. Welche LDS-Werte ergeben sich f&uuml;r <i>f</i> = 0, <i>f</i> = 500 kHz, <i>f</i> = 1 MHz?
+
{Geben Sie das Leistungsdichtespektrum ${\it \Phi}_x(f)$ des bipolaren Zufallssignals $x(t)$ an.  
 +
<br>Welche LDS-Werte ergeben sich f&uuml;r $f= 0$, $f = 500 \hspace{0.05cm}\rm kHz$  und $f = 1 \hspace{0.05cm}\rm MHz$?
 
|type="{}"}
 
|type="{}"}
$\phi_x(f = 0)$ = { 4 3% } $.10^-6 \ V^2 /Hz$
+
${\it \Phi}_x(f = 0) \ = $ { 4 3% } $\ \cdot 10^{-6} \rm V^2 /Hz$
$\phi_x(f = 500 kHz)$ = { 1.62 3% } $.10^-6 \ V^2 /Hz$
+
${\it \Phi}_x(f = 500 \hspace{0.05cm}\rm kHz) \ = $ { 1.62 3% } $\ \cdot 10^{-6} \rm V^2 /Hz$
$\phi_x(f = 1 MHz)$ = { 0 3% } $V^2 /Hz$
+
${\it \Phi}_x(f = 1 \hspace{0.05cm}\rm MHz) \ = $ { 0. } $\ \cdot 10^{-6} \rm V^2 /Hz$
  
  
{Berechnen Sie die AKF <i>&phi;<sub>y</sub></i>(<i>&tau;</i>) des unipolaren Zufallssignals <i>y</i>(<i>t</i>). Welche AKF-Werte ergeben sich mit <i>p</i> = 0.25 f&uuml;r <i>&tau;</i> = 0, <i>&tau;</i> = <i>T</i> und <i>&tau;</i> = 2<i>T</i>?
+
{Berechnen Sie die AKF $\varphi_y(\tau)$ des unipolaren Zufallssignals $x(t)$. Welche AKF-Werte ergeben sich mit $p = 0.25$ f&uuml;r $\tau =0$, $\tau =T$ und $\tau =2T$?
 
|type="{}"}
 
|type="{}"}
<i>&phi;<sub>y</sub></i>(<i>&tau; = 0</i>) = { 4 3% } $V^2$
+
$\varphi_y(\tau = 0) \ = $ { 4 3% } $\ \rm V^2$
<i>&phi;<sub>y</sub></i>(<i>&tau; = T</i>) = { 1 3% } $V^2$
+
$\varphi_y(\tau = T) \ = $ { 1 3% } $\ \rm V^2$
<i>&phi;<sub>y</sub></i>(<i>&tau; = 2T</i>) = { 1 3% } $V^2$
+
$\varphi_y(\tau = 2T) \ = $ { 1 3% } $\ \rm V^2$
  
  
{Berechnen Sie das zugeh&ouml;rige Leistungsdichtespektrum <i>&Phi;<sub>y</sub></i>(<i>f</i>). Welcher Wert ergibt sich f&uuml;r <i>f</i> = 500 kHz?
+
{Berechnen Sie das zugeh&ouml;rige Leistungsdichtespektrum ${\it \Phi}_y(f)$. Welcher LDS-Wert ergibt sich f&uuml;r $f = 500 \hspace{0.05cm}\rm kHz$?
 
|type="{}"}
 
|type="{}"}
$\phi_y(f = 500 kHz)$ = { 1.216 3% } $.10^-6 \ V^2 /Hz$
+
${\it \Phi}_x(f = 500 \hspace{0.05cm}\rm kHz) \ = $ { 1.216 3% } $\ \cdot 10^{-6} \rm V^2 /Hz$
  
  
{Welche mittlere Signalleistung <i>P</i><sub>M</sub> (bezogen auf den Widerstand 1 &Omega;) zeigt ein Messger&auml;t an, das nur Leistungsanteile bis 1 MHz erfasst?
+
{Welche mittlere Signalleistung $P_{\rm M}$ (bezogen auf den Widerstand $1 \hspace{0.05cm}\rm \Omega$) zeigt ein Messger&auml;t an, das nur Leistungsanteile bis $1 \hspace{0.05cm}\rm  MHz$ erfasst?
 
|type="{}"}
 
|type="{}"}
$P_M$ = { 3.736 3% } $V^2$
+
$P_{\rm M} \ = $ { 3.736 3% } $\ \rm V^2$
  
  

Version vom 27. März 2017, 11:00 Uhr

Binäre Rechtecksignale

Wir betrachten ein rechteckförmiges Binärsignal $x(t)$ mit gleichwahrscheinlichen Amplitudenwerten $+2\hspace{0.05cm}\rm V$ und $-2\hspace{0.05cm}\rm V$. Die Symboldauer beträgt $T = 1 \hspace{0.05cm}\rm \mu s$. In Aufgabe 4.10 wurde bereits gezeigt, dass die dazugehörige AKF auf den Bereich von $-T \le \tau\le +t$ beschränkt ist und in diesem Bereich dreieckförmig verläuft:

$$\varphi_x (\tau) = {\rm 4 \hspace{0.05cm}V^2} \cdot (1 - \frac{| \tau |}{T}).$$

Hierbei ist vorausgesetzt, dass die einzelnen Symbole statistisch voneinander unabhängig sind.

Das unten skizzierte Signal $y(t)$ ist ebenfalls binär und rechteckförmig mit der gleichen Symboldauer $T = 1 \hspace{0.05cm}\rm \mu s$. Die möglichen Amplitudenwerte sind nun aber $0\hspace{0.05cm}\rm V$ und $4\hspace{0.05cm}\rm V$, wobei der Amplitudenwert $4\hspace{0.05cm}\rm V$ seltener als der Wert $0\hspace{0.05cm}\rm V$ auftritt. Es gilt:

$${\rm Pr}(x(t) = 4 \hspace{0.05cm} {\rm V}) = p\hspace{0.5cm} {\rm mit}\hspace{0.5cm} 0 <p \le 0.25.$$


Hinweise:

  • Die Aufgabe gehört zum Kapitel Leistungsdichtespektrum.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Beachten Sie die folgende Fourierkorrespondenz, wobei ${\rm \Delta} (t)$ einen um $t= 0$ symmetrischen Dreieckimpuls mit ${\rm \Delta} (t= 0) = 1$ und ${\rm \Delta} (t) = 0$ für $|t| \ge T$ bezeichnet:
$${\rm \Delta} (t) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} T \cdot {\rm si}^2 ( \pi f T).$$
  • Weiterhin gilt die Notation ${\rm si}(x) = \sin(x)/x$ mit folgendem Integralwert:
$$\int^1_0 {\rm si}^2 ( \pi u) \, {\rm d}u \ \approx 0.456.$$


Fragebogen

1

Geben Sie das Leistungsdichtespektrum ${\it \Phi}_x(f)$ des bipolaren Zufallssignals $x(t)$ an.
Welche LDS-Werte ergeben sich für $f= 0$, $f = 500 \hspace{0.05cm}\rm kHz$ und $f = 1 \hspace{0.05cm}\rm MHz$?

${\it \Phi}_x(f = 0) \ = $

$\ \cdot 10^{-6} \rm V^2 /Hz$
${\it \Phi}_x(f = 500 \hspace{0.05cm}\rm kHz) \ = $

$\ \cdot 10^{-6} \rm V^2 /Hz$
${\it \Phi}_x(f = 1 \hspace{0.05cm}\rm MHz) \ = $

$\ \cdot 10^{-6} \rm V^2 /Hz$

2

Berechnen Sie die AKF $\varphi_y(\tau)$ des unipolaren Zufallssignals $x(t)$. Welche AKF-Werte ergeben sich mit $p = 0.25$ für $\tau =0$, $\tau =T$ und $\tau =2T$?

$\varphi_y(\tau = 0) \ = $

$\ \rm V^2$
$\varphi_y(\tau = T) \ = $

$\ \rm V^2$
$\varphi_y(\tau = 2T) \ = $

$\ \rm V^2$

3

Berechnen Sie das zugehörige Leistungsdichtespektrum ${\it \Phi}_y(f)$. Welcher LDS-Wert ergibt sich für $f = 500 \hspace{0.05cm}\rm kHz$?

${\it \Phi}_x(f = 500 \hspace{0.05cm}\rm kHz) \ = $

$\ \cdot 10^{-6} \rm V^2 /Hz$

4

Welche mittlere Signalleistung $P_{\rm M}$ (bezogen auf den Widerstand $1 \hspace{0.05cm}\rm \Omega$) zeigt ein Messgerät an, das nur Leistungsanteile bis $1 \hspace{0.05cm}\rm MHz$ erfasst?

$P_{\rm M} \ = $

$\ \rm V^2$


Musterlösung

P ID406 Sto A 4 12 a.png
1.  Das LDS ist die Fouriertransformierte der AKF. Mit der Fourierkorrespondenz auf der Angabenseite und x0 = 2 V erhält man:
$${\it \Phi}_x(f)= x_{\rm 0}^2 \cdot T \cdot {\rm si}^2(\pi f T).$$
Der LDS-Wert bei f = 0 ist 4 · 10–6 V2/Hz. Bei f = 500 kHz ist das LDS um den Faktor si2(π/2) = 4/π2 ≈ 0.405 kleiner (1.62 · 10–6 V2/Hz). Bei f = 1 MHz besitzt Φx(f) die erste Nullstelle.
P ID407 Sto A 4 12 b.png
2.  Aufgrund des rechteckigen Signalverlaufs ändert sich an der Dreiecksform der AKF prinzipiell nichts. Der AKF-Wert bei τ = 0 gibt wieder das Moment 2. Ordnung an. Mit p = 0.25 erhält man:
$$\varphi_y( 0) = \frac{1}{4}\cdot {(\rm 4V)}^2 + \frac{3}{4}\cdot {(\rm 0V)}^2 \hspace{0.15cm}\underline{= {\rm 4\,V^2}}.$$
Ab τ = T ist die AKF konstant gleich my2. Mit der Wahrscheinlichkeit p = 0.25 und
$$m_y = p \cdot {\rm 4V} + (1-p)\cdot {\rm 0V} = 1 \, \rm V$$
erhält man ab τ = T den konstanten Wert φy(τT) = 1 V2.
3.  Die AKF kann auch wie folgt dargestellt werden:
$$\varphi_y(\tau) = 1{\rm V}^2 + 3 {\rm V}^2 \cdot \Delta (\tau).$$
Der AKF-Gleichanteil (mit 1V2) führt im LDS zu einer Diracfunktion bei f = 0 (siehe Skizze zu a). Der dreieckförmige AKF-Term bewirkt einen kontinuierlichen LDS-Anteil entsprechend der si2-Form:
$${\it \Phi}_y(f)= 1{\rm V}^2 \cdot {\rm \delta } (f) + 3 \cdot 10^{-6} {\frac {\rm V^2} {\rm Hz}} \cdot {\rm si}^2(\pi f T).$$
Für f = 500 kHz (f · T = 0.5) ergibt sich der LDS-Wert zu 1.216 · 10–6 V2/Hz.
4.  Die Leistung ist als Integral über das LDS berechenbar. Unter Berücksichtigung der spektralen Begrenzung auf 1 MHz erhält man
mit der Substitution u = f · T :
$$P_{\rm M} \hspace{-0.15cm} = \hspace{-0.15cm} 1{\rm V}^2 + 3 \cdot 10^{-6} {\frac {\rm V^2} {\rm Hz}} \cdot \int^{\rm 1 MHz}_{-\rm 1 MHz} {\rm si}^2(\pi f T)\hspace{0.1cm}{\rm d}f = \\ =\hspace{-0.15cm} 1{\rm V}^2 + 3 V^2 \cdot 2 \cdot \int^{1}_{\rm 0} {\rm si}^2(\pi u)\hspace{0.1cm}{\rm d}u = (1 + 3\cdot 2 \cdot 0.456)\,{\rm V^2} \hspace{0.15cm}\underline{= 3.736 \, {\rm V^2}}. $$
Würden dagegen alle Spektralanteile erfasst, ergäbe sich die Leistung φy(τ = 0) = 4 V2.